From 1994720e09bec63341d54b920d4839a14921330a Mon Sep 17 00:00:00 2001 From: Mathias Date: Fri, 24 Mar 2023 09:46:33 -0700 Subject: [PATCH] hw8 --- hw/hw8/eva-congrats.png | Bin 0 -> 133762 bytes hw/hw8/hw8.ipynb | 1889 +++++++++++++++++++++++++++++++++++++++ 2 files changed, 1889 insertions(+) create mode 100644 hw/hw8/eva-congrats.png create mode 100644 hw/hw8/hw8.ipynb diff --git a/hw/hw8/eva-congrats.png b/hw/hw8/eva-congrats.png new file mode 100644 index 0000000000000000000000000000000000000000..ecae95947ae597d7027893eaf885240adb8b3b6f GIT binary patch literal 133762 zcmZ^}19WE1@-O^6aVAbCoY=OliEZ1q?M&=sV%v5yv2EM7@4V-nd(VG;_q)BKoY_7}L60+x-IoaJzB-C9RE}^zq%St!x}Q-FOK9h2Z>4|HGyu#Qzt> z$&!aqOSM7&tgM=;#^g7#V5)B4`}lZJhMoXlxvb{%z!c+YvT)G;}bxb27KJ!T-muzJaZ? z6AvNbKaT!S`FB5!-OT^%$;R|DT$Zxyk=S?H|d%)&3RNzuj^F zV~kVI+|AfZUD({(*v9d1*LayY*t!4Z=KqrXx1;|Hg1p z;QhAQ1_uHF@B_q!1(e)?=iZPRs0%BfT#i>8lOU4n$z9)n%JKJ<)QaXCM3FpVJVanw zN=ZdRjA60--c4D~CmsC7LJARuVfZtj93Nkyz!gnx_0hrfbLws~W2M#gO1sJb^X}s1 z;(R=l!*Mm^j@Op!D9kBj67AT^|3B69R~NX}5;AUPZap}sX3l>qmsJo5dd^1#c@q8|Id zUGZ&#JT4V}l3Ymy8FSp;=%d(CHfVF~gyXfPAWKPX+IRB;o}A5VCLNrb_)TG)ntD{{ zL3Dp?(?2xRaLj1+aq8SI8(+r86IDP2go1?GzCl$!>5F{PSm$iKaj$R5-Q2jr(a|7${yEDf1u7i{*?B*%Fl~k}iC-=rzUOs+Kq?%UK%E^+u;Q!2%m=!QTiosQ~ zq>K&d6uwzJ#LIBbvy{ZpqP?m&BG9gQy4=YMpS@it57CWJr|6-lsnl0g`&!}A?4`6` zcCjN?u-JeIiwTHzD-ttFqxry{astpl&V!C(NwhD_6RC7sjeedyzuf6kV47DV$Ti7px=`mhWO6icVx4d5_Q zpB2hn)6>kkU;b;$#G+lFOzow#cAI+GL25wB8`i4T?N**hvhq3hT;q5ptCNt~V4}O` zE;fg}lgv5P8?)ziZx9%p2@pnkSt@HM9na*FS606m zp|gg_MEKWc{G4j^ll2uF)0^tV+O~sBT?p;j_~L4pNOmx|S4?TmzWIzM98&iYZ&Y4` z{Qey{Zy#h{ZN!q&x)pb{0fU_zuW0HzgIC#1=QhlF5(Sg&6nHd`mlIOwArn=KFL+J= z2&Xf5Dez-B&e7voSRjctRi{6AUjKl@d1g#-r1^99%dBl)+@vop*)pj;c@6x8jVIN^ zW~2JqpQ|_jL3-mwwsU@>D8=Ud4tyGP*%yLaHiphx&{SEZZwmDg3=e=lsGah95Hz zlyN;f$D&HsaNYvE%7`~d?j`$)vF2|+UdDqr`v!`lqH$E7l{BDPV@~!oPOT)jmz~_* zLu{%p%`hfEp`5;93{BBsy&unv@wyO2Lt-Z@Uo5VC=w95sG$S23TbHQhSchL-9=6yF z1DC0ciPT!$hr0q4M1?vv#aUF=!?XO=nmrk~zFhxx!fwqy*x{Y z;OuS5Us!4z)2%L-Y3b0sN=BJvIs1WXQ6 z#u*`5X=XqU(kU!fE%?`C*<>1#b6g`9i%rrUc3fBhiU1J-Gh`G)?{S(RTk3viB;0Njo?eT|_E~bydC?9quSOdWMMSeech};=o7idYdfyA@^}COSrEzm9aS?8Mp|^XSLkNl)OWQko@#jG-pTE;%lKP^ zE>T(om?ME38(AOs%9UT83m1Psj4|c=iBd`36|zCiNp*#B=3(npC6hU zzrUK?Lh4oh!ba!6KdkxN(@%1q4Hx1tJOaLb(L0VQ?4z##f$Tbe^KHOoJ%GV&cqA15 zLR)B+ZFOGE!G~slziz9cF8)%#LN}gnYTpjAkU$go4vOCZItM=+OH_Yzue}ROi+S1UQIlK3n6+a%w`u%T~4-_g;ytn5%Phr(j?ReV(6$+?@ zcUet#{-Z}fLo_9}j4Uws3J@1~|s*uZwBj*L3U3|ZzcRZnB?Br?v5VNnPK`XPb9)mBoM z)A}ftTkfWa0&{q80b9jNK-VqO(9I#ofRIB)6h8GSoR_I9wflItQ-`zxaC{2dJE=YN zE7!1+%{b%FY8fh|@9>!Sb~DSo2=U##S`qNj9U&v?saWF;>Tu>%%964^FcsYk_wiqhnjfqq7YwZ|`yM!iqh z0?Ngux=cpHa*|B0{rW6W5t_*fd^0(3*_s@~X`W(g?Z?-kD9t0(D{@ausWdDua`$PJ zBzvIA--Z2{QuXq^3%AFg5$n&>_-Eg!sh8muo@Dju7N$4ej|8~#s5MwKH)Rqt`W_xO z+Q8NQo9~wmRqxe6=&T8r!)M!tKy~E-$^yc+)(HjpIVfxN3PLgeo!-$y8PpAD z+dtL;B7gd|-gQ76Moblub$F85G?2(^)so#drD%L@&ByXX3|^&jXA3FcTKu3zzJuaQ zMo^xe@Vw6ETBh(h%-2on^67m9Gq?Wu2Kwm_Mqty4r%XUVMb z=e|9DXcw&Q>Z!Du-N2CM>5^5oRW_TY8(*9M=ry$N9xc3*U2cgr&9|RnKg_oMV%gTW z5mILHTN({YPj5ell^$NAzBX*L(c(MCu*8aektpW8^C*qEk5%iClKjzRO6(WHmfZ&m z=LJ*J*6&>RwcL)khW~L4?WFi~^nYu4RNs0-K~=U;Ka+^UHP956$k|U>q zg>||n15|i->%jugT~dbUi`M-$w{L%mO`B$Ar7R=_mErD_=xu}VuCh_pC!7FIq;hVp zOnGAfFYp;->>9{@MM1i~mBO^fHV9h}PSxxE%+6;azS2TZh3&CvvaW(;o{bxs&h?}> z77njCh#t*tVR6U|5)k@hgutzZcCq~d^d!|n_ucvBp0yXWNiP7>=ZXDs4_CgV{B>F< z|FqL(7B|7QjcN7N5(5hN9_so6*HdH0vZnu~m{T+#+RW_{_MRA_ReAPWAW*sf+#>Ql z*E*i_y=Z1K&iHGkGQ6V5DHj<6?ix@@Z!>g6{VYPZNn-v}Mv*+B>k||Y0m=_b4qr+X zZ`uCfXzpd3@O?W)K>LU?|0sXVBR<9?50fN7rGK--)OoPmt4{~9d;mR{bMAt5C7+Ta zGx~-?R>Gjuq{wtRjL zf%A1lN%0{V5Tw=!PQbNY9BuM5BExqUujB1G=0URA$W-Z^$NHe~>?Yv=B1(b3$5?V~ zWA$0=wVR=)n!W*@K7KXiJ{Xozd)+%Uk+kWj1eUFj?})oK;bch2_{**n+ojw^QLjZ! z9fvo+@BCWYDE1vBF#^v^d?;$OvrlO4+pN3TRxTuEfU=UeaXKlFC1K@P3iGo@c8`ra z(Y$&K2rZUF2(y|YB7HtxY3)0?DnGs8Y1$kE z5Fb&?Dk95<#R-FfCwLSs5{=SJhLer&Vu+H%^0)jLcw9!)Bs`sG{a?COUV5UX{io#6 z#Jn@QxgJ4tl1Prl%@XH=?i}q(hbmELZz&W=Y;4yzzB^H4#@EA|1L||C8DCm7DlZn& z69akti+(7?4$D7dxn<&*qT996#&IY(I2!FebQcCBV>0V+%Gi*B`Te+S#Y=AXOfpSG zGqp%;pf(-TKI+at`lG5X?RM{|n{8%7qGEjf>fFZV%7LcENf(jZ&3-@x32-MVpl}p@ zlu$ZEv;VaHNO~oZ)|Yw?|FYWpi0q7#y#bTErApc5V_j_NlxpOA`fWPn)#zOnC_J;u z@>nsk`$**CA|)8^CS;C%xCg&$y*Q;*3!L6Hra<6P$ysuf`l%iW6y-}#R5Y$81qrqY zh#JFGLQ~{ti87~L*AI9I?vBotukE+r2`Iaq%$s?ZMNDj4ao%~W$N_C!9Do1k#XbY; zNxyG;{X(go9PmnuyVg3DSX#7Gyk51>yx87sUPE3J+&%68VbX3h(eQpA*}8qmhW`tJ zcmEVRmZsF!f%ct;SB3lmv$2kdwc|M2w{OeS%h_4U4AFNdo6Vp%=dIwg5UH?QJ% z!VAGRWMw_AGRr`NphAfFYP838t*QIv?4tw@scnKwn^&cpm3Vs!0dyng9nWpJKF`)` zS95T|;Z?J!Tyhb5NEj=!*%}8S;fjBYRalLhbM^S9-9T}BD7ib>eR!XbcmId(<5wj? zPKX<8rN~~U(VtOQt)(>WD<$cN)9Ym`T}lRLGGn%!*;Khxst%zy5%mI5mnGbRjjD7> z#C)=aII?caC%%ue{w?9T%2YyH)z2sE?cd)w9Y$$J*yrLxKe^>EJ3np#?5CL*uH&?w z&mx0+*fHZ~Q%h1jYCfy7Sf_#Dr!}k^omk7#o~bRC_xW zQqy$R?u#mVY*$x#OoK|PCoHWE;n4R(#nlv;2ZaZvnbRcRpl--+a>fJvfgFL=O|xeZ z<;60x$2xDGG72^cUKh$KMG-8sHm>Z!pRM}w49 zlV@}e%MRIUlAQDUFY;8+oP*WCIV4+943|#RC$&`F?1+7rpaiQMXL4IHp1G6L@~a{s zWqVZ>%xGJ#vVpaO{yTS4K6}rq|B4@%(@&fRe-C-}s>?^&Opd}-=uO5ExiuRYn4ggO z=#6&7jUtQ67UStE_q72#?*@D|H5d`bSh&Qb;Nad4Id2=o0ZW~l$+gVO1a%XHYeJ*| zh{CkozD2Y3iS)Ly$BWiFhY>mFkAn%?7y2a%{=q@VXsE6^%ZY-SJ3(!_;7ujZ^c z&r|maz3PS@x}K@V#yAGZuKg=w&go>RRdm*`aQAD^Gu@>80Sv0~!^o+p4VUM099880 zBfWtGZla|$$=d?XY`uY$u56*vten3MpCiE#u*QWpRqh+=ZcllUD*D(A_m3YWP;yqR z(7nyIqXL$5ZSdAD--5T~8bGN>H$JJT`xw5%l$6{ICYzlEz0`kQ(5l(tv|hV}tAwOl z*_0AJ9vg`hVKVPxVjfgziSA1y3U}QvU|T5ZOL1|?(k@i=XCbU%bwo=Et_;^+ zG&p(&rkznJFPd^o@N|m0`EgT(F+rn%?kO)Bj|Z~N)JDyUNnE%vH26hs19{!XR9@eGO7J>GZJe^Aou_TMSFe)bOiivd7ac^F+9? zkY3HJAh>%^y^tonAEms#Tf0oUqxC``bS|(4(b4U$l{9)Z?c4wG^%mO9@<D+8h`2o@(P{0gonYJTtcH#aidgz>nJv@mcm!V$HVy%jW;WF$Et;j`2f1~j@iY&u z`Q+2I|08S2Je?Sy=I7g2u!jW~3XH!r9=;$+4V~pPVFdbdASq>H_;dL-BF}7Rz-(V&$i*=%4f$ozXVHIfayp^ z(UWsaalnIYrF#?0;N9a(8xKZfH8^!&EXnclUY zJKj`IGx7qD-{!!4e4T$Z<9^yqQu;txMVdUzC-XY}$ylQEH%nyPZ@R6e=z z(|hwhqmMR1TQJX1s(;F}UpwtX5z?L1T*%pn6 z2gZC}(C*vu&2mMky8|~hR9N#?WphF1jPHJHrEwYubX;GT*15Uci-GL0Rc5Ez+VT|3 zzly1{CAf)ZzVJw5@3{{u@f;E(=Sq`fvsaT~%9ZFuN@KZ7BIvjKN?>S=7d%aK_|dqLfwrwM=Ao=l&lK}9TejlSb{&|fyHp0GH$FsX$zGUKV=MWyb zjINXWn6_E|?Aw1cHS&Vqh1vR=k#79*`x6OScPK6(Ea{D#I5`k`Lo9G<)sBHgf&2xj zB<5U<_>CD9i!9@nuJxsPYKQ9+#4p4( zFW-WW_i={Xn}&~h75r$-f1Lk16%2&jjKia8;PG~?8S(Mg5 zlW$+r5|AUkajzg<-+^Z%^q1-ML(AUwXN&+7a+g7$mS#MgZJ$1sla()y7T}kJ4BwlE z`^ie+ey!&efm&H&2-u+D#{*K!Cl!yKQov*$3xy7OsEf|5h_Zq#1irJ$n3tP1NHL%pXbXwesDaHDdcNLuGFz1UgT2AS17E2vbi=QKTeU(z;7$ z+FC<)U6maWOp+cgJ!O;)-pZ`S;3X0`+cO#az@#J$St_>X9iECbwwE+{Pfv*JYB821 ztv7fe{6b^C=bTz)Pi$;Nvn4J`G{mDJwfy8qN9Fi44?Tu7W$*d5i$CPu?N349rpNOe z7_@u&HxS(5aQ6K8*c5CTV?iz`aUhN3m zP4>Eb2Z*?{cd$9qofskWmZYTQ6rq=}$)5a^ysE;o1(ktTV0C}?V?KaQ(-8?V9(To; zs&0Qs^u`z~h~firSgVx=zfGYY7LU%n4faT4dE=*pkT5ELyzVtGV1J46CWy=Uu|nXs zm=Blg>f;WBM3mSd`G+GR>of|!1PgZ921is?tw!P4=?CZVBYR}b-vXCJD&3xMb+hK5}Wg+G+_jMDm+ax~*e zC8&(^*mwRd<#S~F)6;!Z^Bb-dxpG_w?CR&%SMr`AW?TT*c3Ig2#n$4+>ttH>NFy7c z^}{*z$c$Wyg%y5%n`jX7Zt>hxqC1l)$+9hMYz=%eDhDmr2w(C~Chv~Ffl<3RcZOWJ z&zVvt<@SdbQ?51jj3e`FfZ>|S%Fssl>t?Z-j5nl7A&83CKaOX9Pc_FUuO$5-`mhka z=Hlm4*e>@GipqX?sjdk4%>)I%&QU#5diakz;$Ji+Zq^t)F> zn>Ezmq!vMsPifs@?=PHkJN0l`q?bgjV>LR^fxO|>65+GiUzhR@5Hc`6X|>ZDkso9s zQduY+SsBZiWSow2pZN*#CW-2HpkRMEkqB$32xUy{v%C~_yt7w~sY=JwZqzXH+!FO( z7$ikmbz=oRcyI@1c*$o=ii%X)C=x(Blhy8U$``mcRI$D#)Ogo1{yD|}vJizncEmI!W|M-msse`C zM1oS`O6B#WW^D^k=!@@OMmcyg_qH3D@6xN(L@-vG@HOeBx{C*doCnRWMGk~vGBpBG zQf3kvS=j29hSIVU^&uK6Z9`qV29R{hX(rIfe(Vh~HXTWndXAxS8L{O?&}n-oJ)`~c zT6(go4b8q>K-Du>UMHNr0J?t^dLJ~ieaNv|pRS~)D1RJRJn-Q!=TEEwB8&XYr?Nyd zB!1*R&J?Qsi6;`s>J@Njq7M$XU{j~5^TxSg6MU0)-MHH_ zn;E$VqxrR-Ck6(`cZ^nk2sxE&+Dlnq`;1CoBspSM{!wLIWIvG30veUSCP;NC~CQfRW4|{uFKfGOB)f(90hIDCHk*KG0Me ziA~rvQ75|DtnKPWVrJu&pdj9jFXuZqlWUIzwd4N)_ShADsI4zlLpUO?`x_>*XL@|X z-M(&p3MIw-%!33ME*PKS#v555_F6-M!piv3%WUT4;@xX|GRxb-B)v-)Gf>4+J}`Rk zAphq?+v5wG7>-`ba5l5u0)B8y$iNxcc@;vz;|;Iy=XBJ_jl~}W@0}>q@#bC^KIQGQ zgIPy8O&awZ6orv)LovJiQ%}wMnq%C8izzOz8=%=pG^5Z0*&wwUNvMGtITYku)`HSo z5)=udbA4#s)m;Ies50k9o3aM2NMw`;@sIUZCWJysbo|jib+=BnKst2G{igw%7WAwk zQNh_Zg~7`=#h00ZB_v`RgzI`bT-AFrXn#maqp0#>cM%HwrFGQz2d^ukD82s&Mg zrOzXqJpkeo&9CcyS@Or$z-b#<*OdCPXX0-}#uV|HX|@70cIBumP_Zl+Y~Z0cuUuC~ zdkVF-T7_O%mnCL67{3Al{^93$w8@<-q1m77L8C z#%&V&g15mNYr$PEq#+*in&5PtJJ%|kO>(feyDalwycejHqJf~({W@^&t%f#fN`(o7 zpc=w@I785ryNeLQyga8)J}PYE5d`f(0h$etFiu%7f0P03*fpG~ufEB2x=7Jt?Jz&1-|K1$Zi%yMzQOiu0!xz56X9|7mD53+wa$$rFhvSu4m z)NJgS)$#n^d%J6Rq=(p7Jl+Ip>v&s)%SaB99#nB8WwZ`27^8E~zX^&fph@!iM1%~* zOr(zAe?yWjSx`)M^uCP;7QL-qHbReR``Eg)?W0M@YU}M`soz^z4!{i*|9(vIlUC_C zF*U|S3}t?U<(?Y9;!HOfX108{;;mB+yg0mZN*2GfgH(YF(;~Co=nrs7#HQ=<)~^N` zmg1)vw<&Uukl^+VF1 zPKl433zhX?Y@wB(a>hh6G~>N#|7b~ULpLR_Dx#NYl|3JncGnC2UapN!$bm85zym)m z#OK;|CGxZLd8~`k^H47BA-h)EkC+MOawJx*7XllS22m;20jB4+x)t+A6AQRc1w@F* zN{k?Qnj1XrCtmUs&8ah}F9IN(m)$&)klD2r?saSAhFgywF zU#3nO+^QuHOq;t1yFd3T{YNG6bEh9zl^N>l7%DkAR)cDyX*=bn9qza<@tQnK{Ts2?b>C z;x|tU)!>J>?+Vy&a)~MH#Pc9MW<2RFVU`3Xp*)v37-TA4ggW*sT(@lO$!V&wCHiCa zDTzAz<>_6j{kRcr6Y{`aMK;-_h8!byVZ0k)({~ zPi;~(Fr;$U+1$HXC~tJ^&wVV(2$@qSr)dVE(Xk?tc^TG1)nxl`%hnj;F@21eIS&90 zcV&F#*4bp@p67T-J_oyYeLMFRk)?ciRV|(cv-uLn zbl7!H*GE|_z0)QMqEerYazhg)r+eEgYafPMpu?^wyf{69+dU$c4M%m(u^(epkJX&{ z(0lhdsGO@OJV?}(fk&*Ny$bhSqx%w1>=pDukC{x?!BF85n+0k1j#l$bUMO<~Dw3@V z+OGWs3kax*CvPaO5?_BF_5 zXS5_}=2t&^VN@6n*ATI$dKTT^9KMKakKZwsJ-i_n5LC4$8Rs}1RhrbI87c=4^Q7ZU>LYH#{oO=_d^Q*a6S1GkRfP^Utfqpv) z40`w+!c`fWKvXH}W0fSXaYBC-93Q2jUrLM&a3>+YHjj1^ar973Yb=ra-T77xff(=( z!p<(rj*3{=R%{Q%SHYQgc9fAf>6vIpeXXTBnDqQg1>iEcanGR5Fl@^Q_>7Lk@$B-n zWici8uX^?6buBMZb05WB>_N^AfzaQinCB)+;+v;BXb{FC!X8YU`0rm`X;< zdnwY(He`D%Z|f`VRd`7D1X`|6VDY?y=AYV7d4B_i$PA=6y(|@*I(@1^?Z>#o`JJ`F zEt6?Bmb`=micK9SdwgOkg*3d8{1A-lcnhaS361xd%Ud(P7CVacs4$VW}!e8Vjp z67lZSGXBGJp!J*e^0Gz9JikAeAz2}CC# zAJg?F_3L0mK8xyX5iM*1lnn|C{}U{n{>ZvVU`i6`Qh(E`LJ0po+dRA+2HNOVnbNz3 zV~JmvS=^@UZpE)=*BXvm$b|U~0oPw!-te6M(ESf)P?jV6ymK;Qf>+HtSYQFavO%g) z@rJl*Ub-7a4D4%D2_CPEM@rmN)$krP2FPvw|@pr>5(kz}K%P z$h{&dxx#wjTC}K&2@Zx3oi-88uMwj2LNG@tcjT&k7-{44X;A&+2zJ z4eiNvb#03oYw-oUvvTAtRgC2%ZrvnT^fE(0NX0v7o*#Qbw{fbisB-BTvD+(JY%3fw zIr=K;1CbKX9CV{qTy2IuL;y%9{8R2e581o5bw#-qp3KOLr0-f(hO&+k$o<>7e|CxBCFQ)e68^7hQH0^8y2AAr_RiLIS`- z4-BmU3k5aqfAD(z@J34gfWD$jKgM~~j;>%ZlHGNiu_=ZlgV zKFMA>n&C9H>R+T0ipGNP}$329%$_TLL1Ee$D_b+=?pp{`|{Q z`M?39>!nEPDVnyUzj?5^c(T%xigV{W>aZtp(45w9m6oCp687-tbk69>!Y(Gv#h+ig zc`3)-th|=uHFpeAAi4c)91X{r$-)-O*m&G(VVH(b?xR%+YwM@WLjqV`iNGTh-}VLJ z>Fs`uOyWRvv;!r)c{B#fVJf>RD*IvSKW>jurk5cIn|n+p;q>28#n@|B8CtL$ZC{d_ zS&^|BJ=0x>C)e z;#*#4%<|8+dsI8rsucn>14Jj)9iIBS5mqA}h}i3*v!aHnOf%=71TC=CL{O;x%5j2) z1b+qk8Gvl*uO2pYq}wvKw0yUqdnBpOrr(F2DHZDGX!FujwUQ;@*9Sc$$JeGzWvwEirBDN>AkgXQJI!a-oQwK z$n9{$-Q-jJeJWbQCoNatW87sS2tooGy841LlUJX!Wly4R7TECPAw^#YM79*)FQ z+7{T`9YHsYFaflIz!L!${teTOmF?fa@07EO6;B8OVXGwker753L0Q)<4v~pzCx@u3HYMGfgIXRq8cr|E#N9@Av{=r^k%s zDo0k_q&FrCz3{}g57?@O+#u@iII&U>3Wg#~@vFgw&TIRH3>BW}iXm7L4|93K&FvT3 z{(wJn#iZin{uDS%q6&A=)vs@e3VY@jqo|FP%-KLw?}*hK_|sB$n{6kaE>$ki4=K6o z&yohD+lTF7Ug!hl0P!u(yd%#k^huz=f(h@o8ofA&BoKGa#y|7u$YHw~ZEOX-i!u=k ze?y-@@(q43QLCEbd7!!H7@e;R8nJ-c)ubH> zD_YODQ1IqKNTdp^iukbPl?1^6UJM8+ZUoTqlOyWPII(ede4?LkP;loN-$%s@Om(g~ z^F4rj8C4h0{vs;Y0q%8Yljc2vl;wL((duYonAHBc2{hDj;qABp91k1&O>DSzW~XNQ z@Wh!42+vGT#705wCQHA-0mJ-jJ$*Yn2;!p2EfUNd-|gIAj_j)WKDiXccPpnam{gR-PC4)c~?eOp{v{4KCE+))Y1>{FwHj6<>p$RXc?*oO` zB3^4c7)^-DpgziYrrLNjFm{nm;%@GQq9+=y*OSIJL2i>UCwu z?fVr!^sNI%6cUsjy0WP5wfbKh9= zZD0RokrM#+3fUXDwHKLho09U?)NOT~Ovfs9J5#SU^31vm3(5gVKmkAl2Eah^xvAtr zPHp*vOhE~`nGpF2F;jyPiX`;jP>v9_la{60jJCG4uF%rGT-G?Cxn-y~EE8zYS5+uL z@8_ax^ABdh9gmA+D{(J$MK=p8>{jD!hWNoR( z6aFFgruh+?V?FuyDwZM@XJ_+NC>SN>Y=qRlDBQ>4y>CU>9kS7m)QfJnmyK?A1aL`q zfc}xA%)l51_TLW79EKFX?4S@xJF|gpHOL+d`e(+=xRwQNq(wo~9YT3(;S0v-wAlE` zK=`j*APkGhUe+oayESqiRAP3y5q5!W@aRYX9^AQ{5Tb?!QZ0mp|8?7k%ixd7WHQOalG->A7WvA z7}cASh;V{RG9A^|x^s&a7J{y?@_IjrspjHtPa$A;Qpc`tUe*m-FUu_VgNS^I(6hY* z-ybKhjss#eA&$iNpAlnWZ~2M+#R0=)eqm^-!H>~)-E91S96KflZ6cfVYZpfzaon@C zAq~^2LwWX|J)6PtxW(=g)7dZ+aGOYDZ$#vJo(&$m-e}TZx)#cBp;;`NNi&)4H(rMs zN9w*R-1#SxNi`DI+GTddCP$euumW~}+X%)RON)pCNA3cvvv%nuuppSp55WgXy9p+! z!cCDc(%NKD;4+CN=Cu`-_?~0k9j;K=MyPCc&2QX1MyG-##bB>=i}JWzy#`G^u(h(n z%2{Katb6=E-MdU{{&Z7W8%fES}#wt5~&fpRx$8^^04Ki?ID04z(w*(@yGATZ?kFm zG=m%}yKE67rbHr7CLifH{wUH?um4uT@kmLR~Q26rVcwpHhV68w*-wI z%4Aj?jMB~9K3-)3KVW%8-PEKpiA3aKu<4wWV=WS8d)ep;R+!Hh=*>qS74<>)L1-qB zTu?>$+M#ZJ&Pd;nwEe2KDVBWL{ZrQ^XTGzx%|*sUtB*h9^NZK4hd7rnN7#h=Z&HVC z@9-WY9;IwRLELKXCS`wHH91C6YvoG9A_3fH7XiT!;b_2Pr1A)TD)zMUz9;5+skY@(Lf{=mQ*O%S!VOlaH;5q|3X_% z+bbGr=7cC1<5vY0y9QPR&3P{s=5P)~zln6zDo8Z+9hnnA8;dxiUM9A;g=aOeRS37j3Hs$380nIRAybv4EBXX*Lt=}#Awdkk#6 z(f*OL%$bRPbKy#Rfkc!8inXO=pl%AapxCubg$f8M}w zGYH5GqUsjR#+=n?kDze4sEzx7S)X9mCwrEeUR2}U-E@#HH-33fZ`Ylx$Q(2zw=Fdl z$RV9a?I#{?bR31)?9JmWPnDBg{bp}RXP2td2lVowWnG%DTP%#%7%A<6Zqy~2@SviG zv%qZ<6D!rm&b1w|#r89j`9FLizy@9SZ1+MtZ6DUx2!r!jl|UA84%tzb9?_7`h>l2L zgMa`7bkz4Esx%s;>(GB1awzIQXO9Oi#fdGFsmYq6M%_iGAGaFM-Y)(W{OuCbU*ZP! z=eCfi5MsU5UXcai52)CcKfVLvOq9!cmt=wElQocm$Wd7c8rX zXRNLxjl18-6v))L6>qD~-usZI8~9X|9uh`)(+P!P65-O0Pr7|U1W8|~DtQLp2kS7K z&`|Kr6!I3ykR#TYnTxb%u3^JB9Iq_K< zOiC(FctpfLNC5?l;=QC^HEHy*X#|b(j{t?CN355s6cusD*7S2bT4;@!En7w90YYj_ zA~?i^+OkS#7kgj#+aI1|dyufPRH6sNC6~)$z%4^h=gO=VS2dqx{dXV9osE!N!QXoH z-ctamDKI2YU#mXPia^^ij~5vn`%98vflbJZX-kPML_=Y;&tgQKaU!jgCCJ0_oU`^0XWMsq4$NIR$~*wBA_i(M@=oplrg!yuvmqmRR=`&d7B4bVay@g zbX{bM#(|HrvIgZ1)K#KCYysO2+eowN-Y?yPt~RG|nz7eSYE4zW2 z8Ed#tG6oD8EzCa?PKJ|OKbLy&VPT&U>Xgz)cbtU2`To2=KR!XVYTN!KSamGgMm?(+ z$4P@f@;6w;I^|f|d}i9IlutJlxxQ%d{%zV8_)mU!u;uw#lftQ$P@pz{o3& zc1!5{!A$-_-*UM(;zh@J9iS^PFhj-!ViTG=h6rHLMn3)#6|WI8bUxTu|HNeJrQ zwU-bY(Gi-~q;~3O+IBax-smqHFS5_)*Sq;adlK5v+vLvFPQjwIbTCn0u}sWs%1g{F zGSN77d?2{n7r3P4d4suUmR9mv!+6!3wT#C?8?L9sYm78$o#R%yLSzl^kcqK`;`*G% zF+AQY2Bm+KRbIh}!4*oN&|zA|_n}8kUGIhfp$sQ}0)Dc`>sp_mNtB@zsMNeRsSmqv za)Oi`$S)3UIRuaBQAU6vrl>fh>^HV~{VahF>lWLx>AnYU5Cx(id}KN5cc1Bj;WXWa zBI`~@f|1rF`Qr1#*1>We4V*f)#Yad0B&XKrKFbrNr}t5zl&CRe){;*`87dT;mo2vJ zw9w;ynHN2m2?L_&XQBUgvTk--X1e`=XUyc9g6hq;LU;%esHsGLD8hGZ{sKBHTe+W> zYqLbrlyVQ8vX_CmUBj(Z>jyWtFx5$l(XEn`>@TdXxABq(xqPyTF)Eh?g`KyB23E<_ z$DjB4p<@V>UFsK<*rs3f9;Gk< zf`olf1a`3&1QOqw^@Dofw?Fz!F}pGiWG9{dkxCP;oUHD8oNdia>BbiX5Jz%reaCK* zf&v)I!R52lQCcX|xyp<=vw@roq=rehT_a4N&q>&+3Onn9S9OVwqTZm~p69B1|E$>1 z)0#D7m^}CR2{LQuFdghxv_|UV4dbcC0uY_!?btS0cg7JA3BFGBGa-7CJ~C20+a9n(|8dVk_)8s3*VI!H3QB7DHs8OZDj>K&t8rTYW8f zV;}}vCcZ_vd_J!)Hpm?Y=Ku^bv>&Ce?)jCnbw{pB(o8#oamzr7k#-ioONNBwnfF|& zDZtK_7elSg$&mio^E3(iV(Nb(VxbX&c1Rt){dY?a_j)KN3oh-}P}-aam3l>0#Xgey z*eh<#`cMtsei3HiY$OY&Sz>j7-qlZ=-*a~cd<6Ya%$Fa)9RB@O-F~OV!@HiEDtUsM zM?eQ?0_v`ZaZeS9@dr04lT**fKrHB4ouJ}z9jAbCz@hep)3Lqjt@`YRf8Hqf{rNWvOjH+5x+GbT$f(C&id@wB)^EnU!J44`>OOQwoIheq zs;LwpOn>8Rr2rEZxtV@ zR=^v#p8bkrubGvDeR@P%70@W3Rt5B{744=)X!$>UFcN&Klo~c=UWb-SkeA(>=$s}} z#h6hq8Sf|~RnUGx23(o&5L4drf~1eR8-YVV0!pHyF-9SGTH`F%!Jg7p@3Wv9uN5Dq z#E&~Z7A9yUx+I_yKN6}cER%&zi)bJ)}| z@R!lEJfl081_=&sZ%QLPpSjbqVNHg-{O?IZ4=;iTJGrI_K%)4(O?p(8N(?K-g;uo% zfeF+%J-p%t(uH5zuwGc7VLE01fo0OQ8|= z6=>(6-GoG%f%YG7f?Qke9Q+iJHn?V$ZEuN6wyNhyBy{N!Lqs&U#DCiV!2odYhvK1_ zrRWE$LYf>T_}SGmW5!TfxB!Noo?t>@TyGN4gB;G_M&KUchFF>O6x95>H+i=OH^S-g zn~(_7(@1BHH}k%cxK=G56vSd$3??0N;6{>QPAhN;{;9j&}QX<6QRvb`JAv>+8w z$7x&vB|bs-EU>_(nxzWV@aiXPM?8X&DiBeDx0~N7eItew^R5w> zgz9DewR-y_>w0(p{+evbDInMfOOK>eQz18pQU*MR1`JyvHE-{sWonv@SMMmAl0ZG< z<2_`=K45jh=%)?%zGKHP4Tx3RcrAFq347^6ETht!{71D+x_Y9OurV6M(ztBi)IFh0 z;qOU;OoxZD=b(RlnJ!2FKIkRa$6`A(&~d|?ms9eFN6h?q=}-FYN@YqNCapppR9Q!N z+H5B$`=#a6H$ejV6Rw~6-GLVzerTV8-zvz+J^1sAh5@#CYEs%*WFrzcQbnDg5z1xy zAUl!;fL{pL>_v-vN(NTlB`_q1@I3<>TwaB%A4|qrU>325eSKee;H{HB)*3Kw&p_pS zqug-y4^@3>q!!!GxdmyT;H9qwy^&7Y&JkQJ)X*u$aph0{j>oJ2I%nhKZ==od1@#>k zn@5^p;*bWW3QF(rAn7>?Kfr^#nc^W2?+a6s@a-Ta9jt;%Rk~F7ntqW~vD$u*M1_Y# z!!p;(!F2{nxz?44;eQh?_YcUPspyI<@a8@W_3S<3!}?q_ zmUgkS`jg5u4vCUqWVUorDm^*NiT=ugAq)T44+;P*zDs~(2 zfapBWwi-Sn+i18b5{7wmie>DXD^)#(#%v79Aj03oI1u`wn7C&My?FsNNCzSZBnRe* zzOW@MH&6X@s4dhDmd$}S8ol>gc`+2#U&$8)r)_o)sywhvp^$UU?%sVh6!h30u2vQ= z>Zdjso#Vi~6Dk}k04|3NS)X_#&968b<%`co;OV<*3AIsy4c}v(N^8~Cxo~b!x=q@x z?dHwn;8$&?P@ys~-{e54t#@Al2Pgl5XHUlzf;NDd#?>8r)jEoPse{&y>wKY)S@|fN zH>6TWhH8u|GD=|#?9(@l%ouPMiFu2^V+k@Tfy#>Dkt4O$+v~T9XY(L{Fr_P|KlnPn z>q`R*Z#X|1bMGN=Py*g(48Uy#>I^j%Cp_A8MP@)d(>q!NNHL}1`ELz`;XhLfy4Rxp z(E-y0exoYvwn%B>=Gy=on~s(E7HmOW^QOMxD&uwz#_Kt_cMDcVzF*gEqohX0%!$kK z)GByP5Zu}6&Tr*D-vC!^CSXS}yWbB!SX~T5`^9juVMd+KIa?g->o+_+-(!~bHFPYcmrTb?%LflWC0GzB*l9|1RPydu6Uc<_qF_+; z@eHbB=#FYUk(i+|K-0)P>|qrcxCW62|Kyg@0>c#+f=C%+%hE%tdGNevgx5k z6&NL&R0nrIW1RSta33uLvBsuMT*-6NZI7zx%sj|Na*%OfYWQ3)H(X^v^dLDXS4MC! z2VZ0`zjL|VT%A)vgZr4}P&qV?i`4U6QstQb zo-vSf=@G^vcexSz{H&b}iV|?p@}8KO zM`^9DHY0e(3$`2goM>&pyr3qp!dz-WkNlNkODd=Iw8_N}?vHmRbqZr(ayaMdnA z4AR&X&1QhHun_LKk!l4)rnkB_?+BiKJ7J19y{Do7Xgz`l?H#c?_=eTcHb(}4&K+F5 zk^mCP?wT95BYX2bg5`+OOQk0nxl$Alz`*jDneJw`yY@MMi52z!3uW5eWery2rGpCX zdv*W(m&oVWi?iS%?|AoA33f{4ekE8bfG+xE$V||^)A55g4?7z91jcB1OwtAf^%p?N z9E@-7GY;(}q-}mW>{a3R!?gz*WSYkpmCUDS7j30#F9n^$#H3H?qR%u4UWm_kd^FW} zJ-WxvNwDBrSK3ki9KXU-I)dEZBC!F`kb^V1XrPNFosD6cKtUH(p1XCSjY`Es<|1qa_1yYA9V(4-mtOM{(mT^ziIbr5`~hN>uMWJljL|*$%zRW$MgYN*(C+*v z0`R!{=T9prkuZ_7t&D8DzRKECZpuc&Fl$a<s87~#Rpd-~nLpbi;Uss=}vQR71`NcU$??UXQJya>(yXW#G)gQdo3I}No)&vI$3hP1}MLt+#r z`r+&5@-feqZ3X<{ z>+8G$YV@b%`iZRNSUBy}^QOQ{sth9U1GuwQ;!{rdqzvCni%B*YR3c$JkkNtkK|4s~ zu$Q5>I#p==eD3-ERV;_;bTrdp=j1`cu(`Ci`m_)3wHXr@@z9i=5mSA^3K6d7l$BG7 zG{TV^)BOC4o;r)XC?6X|!N#myAJaqNKxT00qtEnfT*>d@8Kc*J*j>}Dk4y33K0h1Y z_+1DFtq;bt3JY=Ldy}wc%F;!B<-kL~Oq-Yz9Y_ase>S!p*40U>D--YtzArua2JmzV zlUUPfGw3_%BDUauMHPEa>R{5>{L`JMFM^Y4CS%uk|M;$WghVIi=K7wA*>OjKA@6I#TS9B|<`l^zB1IFjk?8Eu_ zwKCy=FX5mi-^Xa4p} zT_bAnUYF{I^mJn#d+>qsvs+)$Eg&zw<~enzV*|56iO7^bJhxRg8aryxhzb28T;%K= zGCc#(89i&Lf(B`*IdExg8+M-Ou4nQjU>H>q)8q#}^FX`io}c)9xQeQGsw4Q3U^o&aB3Pz%+2B7 z3cOP|NWjo?J*VDKOC+mY7@cXBmKMnD&xWbGiaXi`Tpx7Lro3hiCFOpR?jEBTDEH`R z3BUa)#1;m%b9k36`_Hir`r+-(!HJJC$y#n+ojb3eUIv84JTPZ8U$S&y9;G|G8C&on z({`7H*Mgn-aF=Zr?h6SKoB5HKgRYt;gwszG#k-9*U%RST+9)hrdqdC640-?8!y5HA zZA*}25*7AV1=uDR>@aLvk(lE$ZG={yk>dt_}wG&n+GPtA>>kk%m?DawO;c7 zCWHH)rF81qf84CnH|d25)D$$Xi8Zrcy)o@LT=+eW1>@19i*CZlp8Sq_S8}2-pHqr4 zw8zjqszvvy=(dVApSa|Q*Ga>TSAq@itOSX}tUMajF2r~f zFnF+IX+Wo1zph6DQRIDcApD>Mhc1-^;s4H^)pXr|5PjpJuXWAk7{8xSkW$1nCCg zJMZkJ<>4AoEGx@Kupq%!q8%zab>~Ad>COZaQ=`K+_gZ)M<^<5PL*2Mh&rvpXg$@yUl~fGZ)=wY6~h@ki+EEeMpr3JbT$q2HRP z>ydHeC^Cj-Oz_NL0L0FO$b%J;so~(bHWG#x3ro9zK|A~VZ_26XV~gdPmq~nn7c3z8 zjvjQfaSQHM74wMkmi+FI_o~EUKquzrjP_>YH?GcY(j^!$zl*MTQC@xjdb$6}N94{w zP0@u{Uw!L3x%S2!)8bzMe^J~Z_#(ym~2FCNT|K4 z>M}oU^u0D6-JBcS%NzWI)fmmY1}u1H2tb2BF!0JYg$)S2=>>|F+VOjW3&z|GGm+3d z51-vKRDS~wS}1rdMZU0W=n@)!zG3@{y2Gvqc)ZyQb#9PzE_yX3r$u5)pLXi#&BQ4) zC^Ubj?H}Ba!H#oerYEX=7R{`dIWzWDeX?!1V-98>sRHuWjh&!&Fu~JdbG;*v(=_*6 zd!~^*+s&We5XYi+AkM3o_0zpMsM2WGKn_AlTTV+tSUuEi{8kX(=F+JuhZvhCbnn5= z(R?rfw6QdGzcg=G)jHC>?^@3h1fRWG+bQ};U0nnmF1Qvy^vLk3tGUtkGkVSxsEv2T zdt^8C_T25g#B{~x_1?9`tiA4;kduCA$UQr@VBeV8d#HNLL?BQm2QovHN~i*(LxZk@ zV48|m@~agF5gqddv(%!H9xm^J}`AawB$UxSwaewvoSl+8$4T(+Jr>jWkS14v|wv%393X`C|8_7a^qeA&1=CPWeLoJa z8|6GTOw~Yc~z*}$_32Ci@i%fY??K|m)m zT!%UHnRY7LJt%Q(fSor*pqk2Cs{9bJuFF)#M1sa(R5~uC3cBJFENm=w9lZ{O`Nvo< z=MZqXE1bq$&W8g5RA+{R*R+%VDG~E$Yxn9-y9vD8G5;mg zj*ULD--X3w7FyqdsdDTA^P{))h}nyT^)B0%?d{D$FSTYC0i+WEZ8_BcvrNr}RLiiW zjL&x6MM2vg%VZSwg=Z5D@#z9uMx`x$!_tj#3kJxi3k|i|GHf6kq9xK4`W+WctgZ7@ zEM2p0>6ID7%M1bY)l9*>nCbu1!|{T;{#|~scRW&F%=(fT?+4|lYaQsQ1Lc&M73>e2@RdjG|K*VpX^f2n3`0El*0PK>o<@k#ms{|Ev@ z2W`=v7#*mF<8Mv%XdGPlsYX|g3p6lUc`xWBVNP0n_V2eU-6OMX)K~_D41jp5d*;%X zv1dxx_H#!92Ra-(4%*Z=R2%ySiEl8A8_#JY;C{hPTvwqkiGTT;IFt8RF_Gwe^KYMn zG5wGFVU2jnJg`jbJrv()Tm>}`p#=I4@>8xZK2+T8i!^%ppW#A+d(eGv+U#**rW5cP zxe!hiq8A3YrPM84abMLsj9|EYfR9@Nl@NfUVvj7j@`_93x|`0GEtp>&{T@2qI>a?# z;df%b&Y+SII=nLj8*yP>olCFyXP`3UAmQL)$KD1bsb}Z##O{4fzXct2yx&t z4HEj~K%%3o1#}$#KHJNA0^%e>MlQ`V9Tt^Js)4f?X$Ee30SECAn+O*wq_t`d5NQob%BeOI$No zA;ArIH4-h{Ny1r{%$_+^zkhQv*_KpOksxysQwQ{$uE;8d8{iL*H-F4=I{~gB@X3rp z>KMTOYXT*Z!;bz4&4BR)Mo;%Q!9$~|;P@qoxX=)IbYQR)_1}^RKv0)+=SZWzGOD@@ zE}NnfVZ+BLDAe3MxZN$iGL?abx0fs4Bw?;HL7Ok>UK2HzuU=!B9oSFkg%w)ywkf0gRv3N+bA4#gL~QqKE7VjSsGqeV>(fob`Oeu z462`m_*T^S>i7C*9ymSHs_YePeBQeK~jio+25 z`bQPm^y$S)ENvQ&6F)^`Ogz#hIZ(!Z_F11Wunmz2ajcE+HGieK(Lhe{=cZ2K`s&^s z&AhK*R);1<-zplg0bF#`uFUk5c#T>nBlZG%gI?2ylQOXFU>l+oW28?G{4jBewPL+0 zem@4oh}1)U$g*^W#739c<^akg@}6{1w!@PS!sRgK=RHbWx^N)p74IwnC}_(w4ikHH zA&U-^@s>v`lgIAPl4|DhdFSmf%h?lr~LgJ`mX6~hB-6s=%BbNWgxy8 zn>+_&mduR5m2*vXEMW394`@B=BbEQ-Wyt>If!j%^eGJAB5)9v^VuL&?50;T2g2h)k zAB@{Ps47fg^Q~JfMMJI}JWM>1ab;+7?Pc zUNl(r%Qw;n?{F1aGl{6WQsz-nD9~;sHG%StB4eykAIz^x`?H-4H`%@L) z7>(dTqf}wRrT;QMd`r%Y_5vf^&WE!+#$6P z{D(2@dJbUngNxrwAkKVDb;ZXY4^$OY1ZpM*BX#Juqmb6vo`EM6RUuuP5_)~n|3`Ps zg>#2$xg|T^ygk8x$IR9?1TnlmSUByLT{qfBxT#Yl-UY+ftLw7ma3N#6rUNvB8P}b{ z_ZT&5onYmGfJmFXmGFajoqX~vjmM=*nh-5U#%E-(D!g{3^l798*QfAyMulg9_M*1> zf5ZnYPX5!0smQ8Xdj#su<fn z!}D^v4EiRnc59-v@r(q^VBd(<(G8a>Os2y=%OzZNbpqla87IH3`P>8}VR4f&_DA;1 zodu@-?TItRT?5ID;}G@{6AXhG1`(Yci81lc+k0xcOk4s;1yV-4 zI=nVxR+&BZiJ#WQf!J8zqmFJv@|a$6R(GaF_y(kN#pW zsmcd&qsYcU)e*OJ6z6#?aQ0Wvj~ks>1JCBbr6J0E#)jtP9nP8HhD)@2JpS~9>V;sC zmjs@TM*!hFs$MdS$U#cr+ELnp3|RPpp#-0T5D2!JHBMVXa_C(M_q~jMp319kjn_#T z$)tx%2b`bPUu5x@eP#PL_{XC&8g7u_ar2}zR2tEa;%8twr8)C9uia&?aF1x(ItS1P!70v)A&moU|u=K4*}w9^0I%L*IkW zowK#WI`?YXIv{bwE0aUZ&NQYr^{jGa{pvp6q(}6fof*jK?G+~UB=$UEaFWD-P9aRIuZc_gX34ERtg%FTmTl`0PcyGOrMB!pX(4zQd$ z-{H42buwqZ#4>W{LSmargw3VL7Z8tYfw8T!uu|~I{5;{_;hg!+$9_npZsu;YXQQT? z*+Bayr7QN?UcEQTzT=jweIwE*eS2!ZgTTKKV`Uv}I{x@cm8BATNOMDqH*4DNmuN<) zz?6xiGQ!XjpT6kW$8D>R$VZjU4 z;pX_*fCtr9@4PiiBHzGG`Jt-MdvO5e+}$wc*GYa*l}qEt2CT{Dx#!)MtxM;*7_k62nI%ciFh%RY~G# zOn5ofj}j$PG?0^c(X)y~hv}|em#>o^RT68?Kn?;-`x%KS%VYvMd~)Qcojnb1-k2O% z=Czl3o^WQV@m*YWqxBW}>ea>m6HYH7ese!O4V6?@WTgZjWki~L-#o+jNVl9i>$Y`U zjvRCB9B-oJhMh|r7VJ0N^oeVMv8}p*h>hryQ^mc*DJht2+jkxxr5i5GN44Czaaa-t zszi4cB;o!@*=HnE<^lW0j8BHAlpMqHO`oNwV-}3Z>f#GfV9-gdkZg=3P7g!&YaMT} zXTSOS_$FhDW0ZD4?!{tkC7PHS<2;8C{EQTp%H}oRSR^p~f>AB{VS6 zdLir{m^8<=o{l)Ni~Q~NTQO_&ODW&lOTohc2v;99`eFIPL!{vv zO#VD4`}Bv)#Opu}25uqUKqrU(+q+J{HZo9I`C@Q#XVg4RIagyhy5m2U{O(&7eE5t5 zhMc1DaW_8i`d*5Es+i7{Y&9& zFclvry&)P60*MmsyB2i}alK5#1k+aLcYDsgdRFS|%}IA!FT`5DqM%7u;kr$_D$DewqhWklRvrK(Bd4;y`a|z2|2L`*8}GH`s?iOX5-8uGq@=t3aZVEg zml;Vre}lFo*f&0zJ|vK4!~HaT&9sb~N><{#QY(S6XKZ@}4Sr8!1Juc_uq$vGlMmnD zD@dQ|Fp#;ROE2w#T<%?$^+`d{b-d!Sg3usKrcRlllW0kElBE}>%W&pdAA833a%dzl z?hV6e)LuM?>50B%XaLSyH!!PekPol9m2om8ll$d}W4@4s4_d4?D|)dN^|^GUrjfAp ziFc=?|92p8kbCrq0J+C*(fSW34KGrugWy4X1dTcuoO!LPTcW4qgHvRu2Ll@`6ij3C zmT6>OYvWg7#`Oo6!0vI68jt9{#@XgXc(Wu!Fd>TX6fA5^pB=(K_z}rraz-hab)cS; zoI-LiZoLM8OnJ{ zJ2nYEx!kvNojyA3H}+qa(s<1L$bBwb-c1LVipx!#K#N6U z=3tqHRK{qtPMAh)<3Ac_!=6=4W@nO++6ch#aq+x<{kI2T#&=1$etO;Ox_OcF|JXYZ zI4z31kI(a5kB2v2Gm(Aaxeq{&)z zfF5Fuvflw;%Ou{L_%Y3pvgE^ENnX=4=^$>E5^q8U#1(o!`1-kU{pcN zK9WODS!;c%an{@X;V1uTWqv56vYV`wA~VM7xCZFUHkbkF6ReH8uQ3n^GT<+WY^!zOAmVWMiIN+< z>+F$Lb2y z@6KIUSfJP_Tk)MF#yRnnkIXSAi{e}A0hM|kc0Yg>nsZpv1UE!YS#GYSO0#mSr8L&O zRQUg&S}H1HkU|ak+iAChI3thQOWCx2|I+JJE7Agb9*_jZAq_aayYK#w8M>dcO)k*- zQC^a?1^lJkEhVjaK4HA#Gzk$E=4P5bn-}YS)mHv{c5pgK8;&n+I}KiN`i+tZ7IyTL zKJL(InHOe6Vwzw_y=cZve^M0zV^S>h-TdD_xvFhjh|h_s!s}v&|GXmCw)PM?Y*zOt z%RzKXufNvc&JTwy;9}5$wN=1L>v^tz#&sn=;2wuNtWA|*2V)awO`F;+rLKfJSd%%W zcw~vzyJH-g5^mFB9Dc-}XT`FtL7o+Zg?`xL5Que7T=|VEZM(8H5r@7|g4G>6@PX*0&~kX!{z&+MX{Sc<7#yU{Gti&ivPvBbMY6i zmmQsap^1F`c0JJ*F`vQ;RtRMrFZvMvw(K!1Ek$f@INMk4S!_1Z@uaO6==?4hJ6&py<{n(5> zKtJM3^9({NmicUh&VRJ4KDlt}jWo|_gKrnetThija*sLWxUWofuI7uPZKo~Z6LF>C z?^RD!`6PK`qZrP}-C(*(WV&-vp~e=TF?q@DYdv2mT0&~@(+cu+XNGIVR6`cphN8;^ zI7Q#36jSN6oudjs`q|{JX&>xICVXS8sSs14TeN1aX?hJ3CMp8n=pTR3!*c8pOCSx} zbYd#&dA>&TJLUuIbR%{h(#P1Ex4+SqC?G4yA$grM04rgT-;h&^$E6X#3%5}*c8t^` zvQ+C%&$ki~_bgR$1hgNCfJm%(f5qFhViq9Ijg{tEfqCxum)>tp#9{ji5J1^UJpSKI zxaqEn>Z+;d_v~!oJW!T9u@wm9-rI+pkt41!%d-oO)qBKVqWw^s^zq_eID1z(rcRkW z&u5$}tE)emHr)?ZcD@_rrTLO5_8n}^KxDT4@a{JI@%8epA`RT4V`sM?uaoA$k1X7W zXYbB8Yf%=r?n%>xc|p-NZNFm((oIU&2KR9suEGr`^BVc`%egvG$3NDJs` zM~DN*#KM*}vh|;3DK6KJ>mR?N5E0jHRuLkyv6f<$p{5g-RraK#{WhyPe@tu2|m?{Qv>cw@sytwck?+9DUgab%kfIUt4JU51eBryn3^hYsZmB zLvNa{N}Uq@PQY{LfO%r4=@L_EZu^Uyt02uPt<`#Bs&DnpB&}$u z*mo&F4?(baaVv2k34*}g2Um|tFa5OQUwuDdL$ZRM`ay9H7#O_sh9{;13Hb}{vsMS~ z_I*Mru6yj-W=gne0qkN^!Dt}!KygT_7hWzgq_vB zeNCip`jjRATu z;LaX+XpBt}8(AbV#-_wLdS>LspvgE&q6~>nC&^C+;O>CEq~WnXYKke2JP6izDt@ir zfnE)1W7n{i9a2^7>mln(SOXKQGG+Z;R4F)M~|AEgbN&7o}K-X(j-* z(iQX@Q$nqaM()CQV{1}eX8I49W5VC4lWlb$b2~-LR==TeH)Nw+IKPeUANPYWn4gHQ z3Y)A~u+9ahXZK~6FxYwUOe;+YuhsW$r*>H;Y2Jm$%@|`jbXD^gxOj{wtmpZUdQX4= zwPURnH6p))onu?t1k98#x_Vrx)}i7t#4gm|Ii(`k=i0II?g+nvwD1W8V!u1ur!E!-ZlWVNDEC-{VDrlQ{h%+dKkRiGF+@YkJr)Ey3LEC5P5p_K+&`OnPskGmBM8S& z-9TAmT8Qj+Q^i_Wl^Qd2m)VwTg=)(TZoJa`p7tr*WHA9p6R^~ZPynuxy2j@0PV0K< z>ZUuCvT^Su+$uTOU6s1(TpMD$p>bLuDr82Q;IYr#YRywODfi9A zl3(wzK{1mai}-ZE1EyOp1M~CT3Y<_ySb+>T{(OnY&>u06kuTLBiHU;y8FTw>hnZj` z+f+p>%|0!PO#8<90>ZVGFVFjGie5u()CnNO=t) zv~wn1pEZZSmv0GHbZ%aPJV3M{%s1Y<$-MURKg^30ZZmJaf1SDf3I#^}POl&CL}F(D zeDwF0ZxJYvQ?3k25L5Zr5bF@m04|*G0ibqz2>X8Z{+)u|txLNeW4aRe96w>mF>7nb zo-5712Yh29>Z4WMgLIfi-c*Vs0NNmf5MgC77#eZJmFDrs_cm)fDNK`BViX!S`u1R({qxbd5B$-`a>n&ni);n}vn?s!1oABjj(@W?{o1A1MnWO8bF(7zpMl-X;T;Ms^1u=blQy`IM;M8Ci`@S_wJw< zH%+YD;@A+}2T1V|r~v|rE`37?M~EXlSe94bjeLA(o@e*+flxXduTfE}D_1m*Q{%BG z#doV#YH3B5#(&p4aQ)$f3LZ3+j<^aSgEbVu_oS0QwN#s5?#?2G65TA>yO1LsM{+61sW!Ve@4l0Fev3_V z?IeflMM;}&vZOsu6n|Lp#97}F07+Cn-q?f{0ckV{lpSFGNK@nkg>@Na%zghl#7zID zO1T5D<@p}SHfME$OqV1#RPzaXNRFM3iQ_FR-nT9=k2iCX8$kA0@e%XMRH)A)kWz*j z(P_tZIsFFn(jlK)ZhqQ~y7+aIzfur0u!G5swz10g=7Dk(nXFS?8t$p(w8eE{NP?Kk ziM{-H9dhWjSaK;%K>)m+iFC~Co9&;zH>SQBEy8Bmf}N{Unhiz1gDj3m^_&KO&2S$O`1K$M`Gm z{dUdL5|BsRMmgqRJNL9ob9^Vts&NVQxQ~VN+M5wa{mI;N{ZXcN*DRBHV${HvMyG3B zqQH|`HalA1$3V;z2+lU)8OqSN_OEf4Gyd@a%A(p(^nz&c8nP!MH>;$R*Bnb}Po3^H>Ts9U5RJFc_{%9Lr6qEJsR zoYEMPzp_s@CMb;Ln2bPXkL24n|F=i&x|mfC;DR7G8G6J$ghW1Aurwsb(QB~O`1fLD z@6RwddERTvR5$%Md9`bnaot;f!kiN^zfC>FW z#K-#r(Aq+8d%q)7Bt98z%&X&falO*_O&}iY{HOP4zZVEEU6BET)VUHODATYK5r?)tG}@wXlR6YjAZ<*~ z60V0!ZN0Srw9ejrYoG=4>DD%mwj)mXSloub7mvV4ePb=rn{0Qf|!lr}bY-Z}`y;yH2M%Imd=@fxpC;4oJl`^j%~ z0&pW>`)JmW7HIkrmqi+?XZOGdQT5I&l>1W^CdjIlEj%5C(qvLx=n%^ut54R95XE-P zW7?mr$h8R~!NkxaGIuiFUSHXA9lCz~O;1}HG{^(-3l!qXCr?(M0O@2z)w%_jvZXFaI*?Iax@sese$1kQja8&Q2^$#o!hch7)Y?(Eql~qWZ%?LeW`=08_ znvE8C35Z2N8aIp6I9)o6u36@i(Z5wTxEzzExj{jBd|}s)7Qo^lhiIo-1VwRitwB#P z>AmhI>pDea6Osx&nqjx_6C!M+*3Y^oVy1oG(Y!OUi$z2rA&Nsho8$avZ$POn@d>NQ zav=6(nt#5r;jdA9y*Ql%BUa>l-Z{Us-D_0ciF~2{cTL}(o!jU)6xM%^D0yee#=N#Vf*Bh7Y>A{gisFfq{`p65 zYoYTU(zk1`Xe21zF=@th99;$o37rYV8*?6$UXZiZm9)}b4Im-=4Ya=Bd3UFjk_iwA zqBi`lI(1Qc=Q#oOTWwmTq4xk0NTdh-2KGQKBF36FwWFCbS#8QB9-Rvt@CO9KIZS^4 zc;Pvg3%TI;=a^gWILe%H;(6xED^9egz!18K{V(cK`jls+fJt@97Jf(j#8x;Y0 z3%J=+)C6Xsn<^}hk3W!PM~H^(d-MsQ7YBSE4D*^%o1K(%g5pF>a2>GAa4yJjgM|%S zS8*?sABwzJ-=*fUC+@NGa} z3^C3WFr`SVmn%`qKYnDe`Jv~$yhBUZEn&~@dHqffEQ%mtg55NqSXSx2jpjdT zVgcl?zVq+#a6ua*PEWQdJ@c-FTCgt>tDi6 znDjzK*sOuHpJwV?1-^(S!m)ojxkrOK%wxrE7%hKmE*rBXbL-k7AHfOW5o;bt!tvvF zx4IS(kDp)#fgtY25XNyKaACPLBv5P0SIT*GCBRo1D(gX1yha>MJ|6 z+yOxV=PzjOvD~^Pjwmz<9D=fx1js}1r_avw;%qn7Qx!Ow@4jnm7nP0vnyQjJCvjDq zwxt$PIBOp+VReM;_QUu3NGhl?Hw08;ZCRwbI73SE1y+9k+G{skIWoQ;rmA@3cf@^6 zLoF;qav-zDlFOP-Cf2&?p>LKM47TtrtGKBo`E7G@6UCFw3SLxuF{`}!UoMAEbOu&8 zu!$DxUFLQGEB(}*2*2Qor!tQd(l{?*ETj*|y-p&=#b%rq)oc4S3()b-MmxPFlab4M~YZMU` z<>TeEUu2H~3nFEXx4fhXGa_2ThEdmC0qCdIZ>aB%lOlwUBSPo{x+G%0aWAIi;df(G ziLo+fwoT10U5^suq^hZir7os0tEJg@|L?4$FiQ6EuifMYNEGpDmG^40!6G34zQmMp z70Gad-w>Yo4h`L7mI+T&_u8wq7%^L~-B`aN^dR`&c)eHLx5Qu1ArXjI$AusUgO~;$ zBHE|iKA@x7wP^r$K#9Nbr9`Z;pF;rnd$8%_Ul?)lnM<^7j6BYoc;^Ry{``dlszP;B z1#|+=>dJ8+bltrmUKld{vlOD7MX_95O6F)aD|RpPk=VcwwUX9}V#mrNi+Sav-qXDU zO$Nj+Owxu5NM-I!0eR}vwkCwz9EZc+Qbkf`_u6Tx>DIB#PA2~(bLOvb3$USa5ljQ& z%q`U^c{hF&1*#XY4@&eF>I@kvz{ut^U{N(xn79#5y5(9_r8<^Q!w8WWIRIJ(*&ESy z002M$Nkl? zJXf#h&a%phcnAefA2zGd5`dNZ;xZ85gl-R-ko35j7YJ#b?g7>(pV*}y(#X%uF}L>Y zBT+{QBX ztKMeq!EGeORIJf0DrzecW<=V-e%#F%ZLq*^wMN>iNxlC#r{HVe`n!nRN6$BPYTJ6& zY_wtLbXRdK;-1hOg`UugUd{uw@m)8gw}`e(?E<~`b-zxZ` zQazL0sX;N7qz?EAIj?)wwx+`DT>(ZMaip^NMHEjCZ}tY-v;>|AJqW&Zz9p_*_D&K4 z5&<5v4Q<)TJTYWPGo)$bsk^*z$rDAUG~YuWTl^jUkJ_T+Um9_EV^4!T9$WDK!d}l^ zal*2ybx%3u!3}U9=stKsyeQZ*Ff9n=)t84@zmLZs*~erI*E||2<+(mw_$5&%U+8Ah zP>vF#t&IxHr&beNL@b5Kswk}aFzJd5EQl49A6YmA!XB|0v7u0AV{6W2qBw-%ZySVC zw!VoCI@gf5w&f6n6pEWw*#tm1K{>@S+y|nZk3Q~UCVkpNmBfKHFoyW^8NU`2>^?dT zTcQGPY{`WMDr9M7=VTSXd&ELRtd;GPfG2>daYnxBDa66|JFQzqJJsHdWu5#WetV%u zu&fG1Yefqt$|ggPP!(k1M;H=#L5U;2f%?t4Lw*4}7g!lF)VSj`7(=d7?LIzuXDiBq zfB|9HCdJs!T(|sYbOIQ2jOwi1CE`4w;<-P016gprkK#a`u|r3ih!?mJ&vI=uUk}yX zm^h9hLMT~GJwvw&po+@?KxdDMm<3tQtxnK!Q9PLbT(e`h__#Rt_R{YkfYV^}iK#ZT zQ?x*F`i&ABW(4HOdqls{rP~Ub0_z2KO5dafo+8@tMS??P9&-J_Z3PCvq48%lNvCq&#Rn{8XVB~`KON$ZMe4~WeX9YOd}Sl6s$ z;0AsxM;-HtHG$4-u8#(SbA7P2WB+u{5_nqEPd&MNN_`16vos$mtal2(k;Gt$id1Io zE`6+s|Fy-_Z-PVj2ms4%qwH%kx7AAiBQzm3aZ$f#8!9W)1NT;9P17B?{X2ReYh^b_L7Y) ztl*+Atp%63r@DW6$S~_FiKebM=EZTlSuxo+Gn-muraNrE z{@AU%!SNPk$hz8?+xSV=R5TwegR)#AFANNvej~b6FR_EFXf32I3ZqV%SVU8fv!pJ_ z14D#=-g>YVC(g=gYo!Yr=Yz$yw&$x-I>1Z=T;tujckA9KFA(GbC&Ipk>PU)Ubtc-S zEz-j*S=ho7f(~i;>#~jyIrMAmw-TKrIM7vBz3JeuW{({rLMi^kcXBorB1$G$K}f~2 zI=yPA4(5aX`&rIn!XCZN>qB>}ykk&rgD)K4a^8kjcV0Mg%dFikOvl5jUsuC(0d@ds;H~+L{~9!0Tch_J$e|F=M*>)r##2%0OdK3 zgVu58a#awU7?~jIJ5fT)`|+?-ULUH~f&#~~zD+1OKC2m?iXT-ol^pIAUFm_*Pt zEIE=Vg=^a>xi?1yW8u1hjZFaL8i?&3*8zow=QGh=Yv0xpIqmrPeoYaMNcz3RpNo#Due~;#mup zaMAck&8OUQVZw5f&wMfdQVY?m+B;Q(~W~MxQ%lvz&SVztG^I;QTI2` zf{SaI5u=QsmEYEirVyEdoEnQOr-0C|?zyAEYSE3WCLF39zhufyT>p981}!-MjrB$G zFzOm3nHbTRp__0~WIf)EdtybO&z~k1!T=qUzc|k0g%@@)2kd*fx$mw+Jo8pn3U<;z zq@<~4ncit+o}Ld^!g~bira~e*ZIN0-h)q?j{!zI8)R7a-zsEdamH*u8FA$bQWguBo zSh`kItgEz}qJI`XNSKRKyrQg$g%1#`eu5Qo^vd!|bH}{-=A+eXEkT3BW==+C9y%(% zCrG2;^OxK}Fxj6WZuAdhi;wGnu`Ry+r`!PYD3M#i1PP2xxJYlA&?K1aBD#8h-sBTr zJ@}GSb}DXrjpIJ#_Yr{F8{T%Ed3gR3^U5N9O_f3bqzZP=uf06jTz>U)=9tqao9H01 zkWY#_>86hl<&$Qj*$*jMKc1d=e4J`pSLiW6J0_^vM*ZuWTZdy}6pcKT7-Tb!;2 z7&q{1OUMJB%LdYzr#0}9fUv|N83!wt(?$C#{Jf^Bm7iyrjs=BgFGX3!`Y2IK^mZmB zes1~L|%7rby1qL#f#nnTo>2TCzRHD-zgB}17zsC)Y(uOwNHv$(DbFB*3UtJq+Z#e zv1u&KBkED?`#(sck-hYzi!t+OH8=NObg&sep+ z=kx17ocQVwqt7rShFxq*8_Ps>FWoe?;VuK{ZH|dp#yt>(AN#wz`LHCJA=%8Pl+c!o zQ9Zm;xzBMIt}Xw5bY2OwK)eFMo@eiOYLi z=P4+0%z2$?%88dybi*|uVsnUqHk^oxCQ z@co0k!J%-8z7IL+v;QUpu&>N7MVUut;Y66&&?8x(CjgnTx3~&%7CB=*QCr0kx#soh z1Feo`m_%+U<3Xx!Y#>88D7YWTY0wRbFV@j6um0s`0+0TDZo}y}nuRl?jYOIyip^c4 z`O2KJAu{UY0$b7PH%Jr9oMjAfOUZ@v_!;%?S!S)3qMr%U57Y!^ex{notQCRK%yXkA zOLHJNSnK~g={?bn+%FNfoHVV1okyi>Be@gEJ*8l`MQa+)!Z|8(&iO!LXkr!Zopch! zlnN>7Tr|*8*ydoO*trJ zzG=9*`PL^)2#c%bqCAjiHpD*a!=v1KRBrr)80X_T%+DS!1eqkZ+`XhskH-v3@#Y*C zgJ~YY*=El6LRt7tX}JxgLQZk|WhoJ?ol;FW2-c*6UH-`K&CQp3TVE}$GDZ0TD;GxT z+fhC*mtFg^3EdnuwSUoAju)WXMGe56@eY{S$%R=ETTp~|j)=YqzvWTJn0QvV&obAK zIy!zA2&;KczB#K?dsWmT6@gb14$t^z!A(^tw^x`W^pq*_`kQ&+oBYkZm{s&CR;GX3 zPK!;Plq{ogj>G;Qvqx+Cm>003taslWXyf+~J|rMY7N82?W&^OoArVFdIkDJ&Yi>*5 zc?8J7$&L>ifBipYb(9y97_}xgACH@O+qf?dyS{tp#w|wst*%`ExZguOSYp*IYL=bd z!ClLcquHXBx#qN!&Nr9+`4uzt_p`jP|8PzI@2hb*oflD9$=EmPKRcPplRI1L96-ys z5J|bQRn-MeRk+4leO=b0Q=Eh1*-qqk^_MSQfJm5g`8J^8Pv$mgB36zFU%F#m{ta{W z4J=nB=9qw>QaV$j^YyQ@whC<+Sj385AJT7F=T&zy%^v-S&Ap*GUA41hZhVy1NE&W~ zC<}pB;$-C5iih`}dw**>9kyDsZ4p;r>ibIn8J;S{FK>4Ap@?kb^bWe}21q9LIUR?Oa^7OE>YZfHxsxosmRkwQF-K3fL0%so zvyYjq5GnX*0fQ7*Q@K;b@ka_SRI6vg{aP_Dp`7Y}N8j2}&0nExOT@wOG+?l0LUh&2 z+rWO?|<-xZ5kDw#5t%u_UJ#3Y1guH%)BLeW9F?A(AT^uTyNfd zb&$FEk_o2OV2L(Fw`Lrx$}G?nfZ1{#$`IG4bD24G_?I@>5;oKR!bgN6z?Qq$fMuSz z%3r~EY}+GKUb~Pr(fjsBtsb9v$yFs+19_>fd8Vi@t+R_4VR=!idI3l6ZXdQmZ} z>av|>6+oZozVd2s)1vusbKt>WncTK@Hk$9UdCknX<9D#!;P||!8d&!Ye17ybAPp!w7AMMjI1Y#zC_W(%1M*-{euDts0q54$RJ?ud z)K{)Kt=GYK6=&xRg3HMjvy&kVGl)rgY_wz%K^KS&h)wdplV>vpw(vCNlk7sYCr2#5h`eyv5z1$;FhilaB51JC(pyahV_Y+qWv&tOkdFy|CV?!ysAUIR zWOB$+Q_UfVPqn&A#Lifo5n2f35ecmA!1r5MwQ9Yam!3lW*B4Q_v21I^5$i_@LJ|;2 zjQhxg`w%PUg(^YTtnIS85|IdEr zvP(sIUjx@6nKv?XCU^?uVLKsP?c-1Wz&!i(ZgFnIo{#;5L%^1M)VXhXc`#(kYN;oG zrP#4Ozb0zAn8zL+Voh(2tR<3*KTBNlHTzq)D8x>jDn*y!3Nmzn;GO+@nDeK7Z^c$v zB01y%0J`qRXHD*2%87iB#32fL7tuVm)=?6L_zU4PoIIWL$lo*1m0+x8mbpks!*9Nd zB@+69bGmfEq0GKbzD51q)&ADE>=?kN_@Ip!th{w{mo`^FxYjHiiMcEVqSlaVy5N!DzIXo{)V*fl;cKwg8u`^U%k6-?KpvFk>w{*| zhaK%P|NP@{CqWcmeeWL5yKw=D`35JoYG+2YZ*6rdj+pX~?cIR_562HjV1c^`mj`b; z%p!RR0!p&D%KhF!ao+|EoM$4}sjYqj4?rtkNAeohC9BBRS|Kcm6DLibwu23of8&h@ zn~N@*XyE~R67(JpndvA|)Q)|I@I(X!J0uY6FH;0mr-0RSIz1!LIQbOCrTSXqlW5l} z#nW&@x>~g9Uo_<~&4i)A``)$zND>dsS8=){SK^hir zdZ&Kn|Jw=Tu%p&z+nD)CRgt=o*}qlu zK>y;UX3|ReJjgHOg{Ss1XO4Ww6!lXEy-ynEIxwY;Du5s1IQH512RR@Ouu5&exC-SJ zw%piseoYJQ22FXRgQpoOMR-xut+|ByNEDlW#tK-n2jhW@U5srg`*ySGW z0Z=CF`B#8Ekb&djjc8=wo4+#|U+eO_QX*T9!rmJH2Zac-z`-xLo7SZQ`At%ulu!3sRFBi8Q!*4T!HQS>IbYFBMsn&^KUpK zCe)iC1D(1$#HdvQB>s7LT<6^c61^g$4nU19)OmC1+-Fbd*8jk9IlEeej`votHmj?V z+fX7#7MBvQdj0jFp?Agow@AW@p@3YfE5w5iW49*7=EycJ45C_;@K)p|4xDi@9(O-s zeXvw?NFyQIKs=nN=jw0i9*Z8r%=FGFHs6KIB*MwCI*S{wJ=WZO&y#wQ((lQ-F>0+8vr4oeM50!F-pd+xOt_JiiU* zOEUH2zeQXJ$cqUF>xq2SU$C^XGHt6ItbYxiLo^0w%H(uH1m9EzfQZiLK_jK8kMjW7 zqhI;$DI?7R2h1|3pZS3&ThGv(TPX zEig_{xIvkomVNy0l7B8lzu|?jm`~N8QtS!@$SJ!)7FIx0kGu0uA%M}h%$#qgmX%uS zJ-J~&P#w~=i4|Ys0q#UM)K5kj{B}AG#8ZNFSqX(BNW&sO^~V#VLSg%n2W|S11;72} z(n(_{9^U?@sp517-XU&h@rDXBQ`;w{Yt5_;RWi;iHqXFCkjaH*(D3?3FZm}3x&KH z&5zS0Td5yR?dAdV;(vBCS6+Q|+?<I+uA(6WU)98jVq=ohr32hh5jHereZy$ zTW?z1h?4zQe;^}(Je-S7*mRd}?x{9_dZ{=Uokn~`Mn2YqwP=)xYMSzeT=}OH6V8e< z=OIObS*SW2)W5FULuRDwn=Zvsb*ehjr36SmBo4%6cciurmWsYZ`f<}JJ8CBXc)M5> z%C-|vdC&L$Z-BL6_Z11=ZOlk>F{r@_>dR4oc)Dgv7ze*|OnBc7(&P~LhmvStd` z)|3i)ba*Bw+nn?Dw`R$@kQC+$k`|-5@bh59LItn(&Yjl8^P|%SsdI^)g?S_jSPDRZ z;^H{LX@E4~a2)l{bvVAamrZ}rLmHgn#98uWw zVcF=#^m`x+HqIx;RJZ7v1(Qz4ToWS8LmG(PoXO_T6>XI0d1Gx?+&^*pX8-1G&AY3Y zN;D{xA44AKFb+FpmYr+VMZwP;M5N_JQCQ|ZKDe)0SyO8X0t_xpFeInIJe%C}=izmIJ5y5~%Q1~NN z2J@#`LRP80!dPkohrndJYR7fFI$@xh@s&(IMLaebA4(Gfr6A_ufBWa7@gzzBeZkI5-3rHmx>C9XDyCFeEtTz;!@%-2Ja3AO++^t1i_i zaA+!CXcI*_sZAgH&%NfzBfpXkCTuSKh=#>P7Wt`Z6R>Q)bN(ZI zMaLphsamWoTErdPiuKI+gz zO?v=1Kk%a7qKZ|QKQ-gM=^T4XalTDDv`nqdEhT!fi42mCFnDR<_ZQJZG7xtCa;-bS z>gp1tkT4D1p83;$dyl{D4trjJ&$FIFjI$}E;aX;F2?XNZ$GwRSu@Feq`Au+V-xvOJ zo*#Mmfj@muwZ)&P1Al$SUJnUsOy^I&_jTS8_h54S6UOC#+-4m!##NQ&GjWP!ZZIGJ zvuhuV5STw82at$EByP_&!nH6zA$(?RsLWd|(W8ddmllDW2R}2XWB>RxgxbIQm317&?q&*geum z9`f{5%c_PZ38kR?N`pWw)gca{A%{TxJW!y&|7LHqZ{P1s_#1uq!FpH&ZDO@mSX^!H ze&F9$30+vISuO6yf>}Q$#pt9Ei+rJdV=*fV=!ov2i7%1V;QS&zP!=o7y{1~WAf5nu zJiO27(~sO?z@u5AP#)X}3-p8zt<5*<%gy&?<>s?B>rH8mm8!T~Z6YReYGBe#q+3$^ z1~WA^w6GnQ;eazh48R2-CZw~d_B<(Hr4YeH5P-i`irPu&I-DN`05WKPcRXS_Eb2g< z^v6BX_0b^~sBwkb7&uJ3hO*8T8cSP{S4W^o|$f}%u7#4I7uduvVAOi>Nq?Gbmht&8ap(R27Ym$;Y;^_YLX+1`0TJ0L%hkDuvdt+1R}ICk0Y z&`Tb9j?>yPx>Nk;KkdK_yvYqx{ZKCr;q`t2?ATA^#r^HCx zfXP<$gBf47HIF~~8|wrJw^3K!B_Z!uw{-+1pPQ!q&sjo@rU$bEZl8=7|;O=8Z8eI;ym@Q8?+9PMF7 z9CMx(FVO~^0%0Ybk{XWVuy?;6FnP)CYn^Oc1_Rx07<|;-_`9&6xz7Sqo=p)#s8`(i z*fj@`9l+wW1JJaS@OkiL`|B)IZmIU9hU-0LOMmFQq6|!YSEy>lF~9A&?+zG5w8$wu z(IE-fxCdNo>H$~Y3)i8>J-~_x2eBF)k|RW13qO0Gvfs4o`hI4QJr3$x*y2e1KmfWf zl!^bz?i(nM)8eX7?Tm%xYd--{W69;jU`{mkD~*fp*|FiE8EO^@F@PmM>%wjVy(DY41klA(G zIbxG&p-(|9hN#t9Q<344#7&vk$!bZQOUAzHM5?w}A)0AMqG$4aqbqTWaJucd4Y%I& z#tK`s)h+1=(AXL#>Dh=87u)uTY(XSlyut_XHp`~R#nQ{BuU)DL4{gI{{_^JLoHIw; zn0ZJ`g0hUstjj<7%N6%L&pY=Bf+_W>K03G!3a{(Gx#$yF%1`@2g14SR70N5CF#n-Q zu+EAlFryuF|1eAKhaOVsfyn~$=_ZkT8xj+xa|nbIz^ju)EX0Sp`#%pT#D@Trh~I{g zhvjAzT7&?0HrIxhVZ8#_mE03W9!`0gLyZ~tN5v$v`VB8<0k-^mHrEP~GMEJ#jz&vC z8jM*0q%KE@6Zt*CA~9F)kl*Y=fU89yNy=IGY(MA1IlJ)HHpgy}yEf1f;LQ&(24Hze zW2@*kc$~lJo1)k9zN_C97T}3Ps1V3q0O7{jIZe6o^VQ3~`E2lHtOh&ZmmGLk&2JSk;Yo)Ioem{I3sI zZx~6kDY%Wg+C1wY(W%F3MLZCZgVSG{0ukmi>5)Pi!;WNYDw|wMoJ*Y?E;FQSNXH#m z&IJYg)E&(C-?yuWG~DCiHijKC*#i2ynF8sDYO$u_HXJAPzMK)U&MXiTKtGD4f<5V9 z-+QN@wa!A6M)ttD&$YI`XJi}&X+W4B)HZj7WaL9don^Q+mG@&cScFO)fh}deaHkME_a?o#!G<2z6VU5rqarTiH z)jvf;B`6+?0yE&CSelCJI^~XTA@Q5C)M;U|0HH=v&N_2g0IX=CEC37U%J=L&@}&dY z^c(4?&K)&d@A+wdfH0^}pga=C_&t%K-aSCPb)3plbU|+gk=2A+zaItl;65A>_UjY; z$ie~EgdamQ-T8}f8A)A-i%E!5i2$v>0QGI5?;OPXztB6I`ag)maaz=HA}Nj&dIj;_N)t}IFUjH&qF$M=lFTJD!t10#fQC9JWb_Eef zRisWR&YJ2;ww@)U0nf6>QH0p^6H4Q<$V^4JMqsg) zj5HFm^aLg9`nL7<0AaqXH#WE&#s*?^q8f)R9Ctw-I1JC)shQ$4IX?#2eA@dp3eN$d zHVeCNLcc7RCVhmz|MUjr;5L8ns0Xre_cAWpL*DHhm!9*hjZ5n+VYonF2}t_q&tE(N z0|0(Ar&5XEIM4ihX2GY2lZ0sZ=G}K{mSe4%xh+u?4Vr>gValS*7C7soO*8AOgqVt? zQbTrKU^;aXktl;0BITwnwB=K}V+5fL_9I>|r zMoxsRSiSDyvF+L&cNGzD2}4584r1XK?_I9If1>Jl(b`UfI;~hqwpzOknPpi@r~{|l z7}~PHER~rpQF#$rVK#T+xg*VkkKSvB-ZIP7U8YGfS0NToRCkcB!_xA}lh=Wp1~DN8 zNqY#houzb{a2q%N`!L* zzAuPKhIbw?sAGO{_uR~^7Tiy%4%MyNP+PO+hq5(GYNG4rDmw8ZfEL$igFOK3msP;> zl;i?XEYZmc@{=g7cFv&5wdj{@>0^g%>h_!HBHstDxXx5X zD=}ksH%LV+mSp2ne@tB8=Ht?s92Y3=UYrzjBgQ?QsW@Ik_iWw$n5NnJdyUcuscgC*B)Xje7i{2L<#oNKiSf4w4S+05%)6T zrClwt3R3X5hh?TK*}-g^?XR?|+=`}f@MVqT7gHTtcfl#IJ@L8fW+m44_93RC|Nmo% z1Mqx=D7>-N1$yCd9d%Vr9t@c3ktoSmtY~Vf_)#Y-42gJ=$XA*KL-ZC>u$*L?i!N8B zgf0~}lIeTzw6at|ZKOt4NQLIIp6$#rAN^n{2M`Jr#JOjkYwmyeelzr*SypUScdg{G z%AA+cSI@v+8+h-V;MNRJUjRoxn=}1OAv5J_2p$wLC8wQYxeX>BVk%b7nVqDOi&;}4 z3VP+U5!XRWQEPnlfv~&k?dcZ<1iHX#`@IWBrZ&O1bloi3;1p zxab4lVXWp?VI{}|F&rEd@#NIWNgP95t`&UPNBQInMSz^ zT@se_U2f2v*RzvpnG-OtEM8@@<&fu)$MetZVVV|InEqGKR~YB035``Z6n5G3wotpY z4HKb>7ZK==ye+YrQk_QTNv12Lk$Jf>_uVqgJTzt>%ff;*U|*p`E|pJ31m(JJ4`>co zhwHvNXu{S1Xrh?U6-KMZEQ>9xiK?Y>Sc@n=$=0UjIhFcn906Z<~4_ z^vm^snfkg;ef@*>{xSHEU(&m#o*UElG_HvnEc0t}(9NyNaCIH?38cZBm{K;o^vxyT zlzy@NyH!yI%4gm&pV%uLXWhm94n3<$c23s`%SuHLY5r?lzb@CTS=GWEcEwc1+L1_y zL|wDBq@~X=`on4}qkF_m`>dn6?%Jaz#}P+@uT)e%AKF*dWSPEwmYA~?n~g+dL4_*` zc2;Lna0pgUBF<*D!ukB;#v|2!rrM$BUa?}T@_cjr2~*5Ldn?4qQ-T*q>v@oA)Ju{e z*q=f|nc_J1J8-&b(W26nDoXXjg)L=KnPGBr>SQ%WUlTXZ6r;IBEYk10w2!te$P28i z-0=2}FI|3qSZfc%2iBdp=C-GA@8R*-Yx-Z=P1Hcz1_7oD?wmV)_4g}^3-<3DHZ?tn zNV-rdE4y}CX?h>B*o2p76-m59ewH~# zp%VHkpk9t9!n>OI4tWHF5t$SAH_H|^F?(My!{qKS^TY2%ZM-SH!AIH@e!%V}D`g*@ zuV={KJM(ODCZ`1~(zxly;g-A66?I6+OB~I=cJ5_b=Qk4K5}%=xA$jqPb<6*K`^nk;=dq~J zTy(*iX2q&Plbx;gB`$-A3Lu_J0s6i6{@xt8>vZLy7vkvO0OAk_5NH`SZ@e!Y4MFDw(`Zw7^Z0l;g_i9s(Xk;s9wV}jf)ieexEt!*yBF8 z@Mg6T$RZ(-@``LB5cO4S8U)ffC&&D-c7s_|Qx)i6nEBMe7fUV;1%z7l-XPe#wFg18 zeHCON|7%5G78$JPgvH?g++)Mo`#S!LMjCQ7KaDuO(C zBVuhsuZc@gYERQ9ViwHv6w=sL!z){boLmL=oWd zn5#ZBnJdG_#;s90OIHGIM7<2u9PBUfE`)aDX(z=)x}!kDOC4@wq!eZTI8oe>WeRrv z#=Io^?l=SQn)dGj_Sy`4yNDB_l4j6hDlXzFX0`ruM(j8DZxbDXzcc@Ty#2j_*xV{n z&n8F&XXl|6kNUgn$>=$Q*vwu?VXZj}5rdMW0R3XX> z%;i@yB2wO4dTc3^19Hg+h@y5f!ngv^MOwLa%{!3f4|-pB{AqAx$*SY-Qo4C*JpPtK7nqa29-b=}MbZ2A>XM zv0+7segH)`VbP0sE0Vfhj{h%~moAkRJbFPp>-vtDwyTfz`d zf!U+YIuFY0e8z&d=GftXw4DP1ISVL`S&tW9^oF_Y_b-{6vjq=MCttj(rqFNL22%V( z9A_GmjKQ6uYRGPtZPP#e~cH0YwUw?4_ ziyQ|d6u_&`b?nnLa_h{h><8gG3SB@Wy&_nvTa24c6aNgH5*R6PnFcRWC@(9^+>Gb)gtXcuyah&U}P2=Qmb2 zo}zk-IfCsCDKMOLMK275!6LFqB1OHDnDAixTxcme{J(fgbIN`nCaX8e?I`1OQ|AW7 z$4%DAAd!Q`xhoQa%_(!$j9E$xP^a~iNDF{PqswRGj74g~3f?Kdreiv`uteN--^?^* zg={M2G@jq&(CBx}0u#PbVyu^>U_V1$LrIP(2{guD3igNpvagLj$J%p9Ls#OZsuHcg z2BUl*HXSbhUkDzw>QaiU;&*xn=v}OZrk)pBB+;3oZ};!J&^ir2F8?n~`SIP5HdK*u z13O_nP+FC_(z`p|Tu*w)Hu(8Js2q21aiR{oDnyN^>li=()0x-oe8hl{S66m{bEvG& zFz>xF$PC_drfGZjdXw2-0m!;ZhI$bChNvkm5?3NQ>I={BW&t{4s`A>f8P=}QoYASh zCRrq!osp6K;fk5}{IGuQ#GMM8AKA4@V{>?`BC|SFWxiQcZP170ikixn_G^8OU5@SYyWmvbt`Oi$lwkIBX(_(e?Yr7jSp`c zEnh4Z<1;ZGkE_2KP5*zDZSV%#W)zr626MMh%PyI{3fqkkb)Svyu3J&#z_8}cq|=L< z>1Aa``L0Bb3*gG%Aw!}gMRc;~s_G)9WkII-%Z^>l#oaqagHmoRt*kb0FJB{$Kf{FN z$1!_WYjeWolf;2Y!Tydi?2*+E#Waq&LL5Y`egD;+%s>8qglSSxYmo+AMo&)&^ zXqU?&aKvdcrl}2?@Q0d;G9a_&y~r^@9v(ec4^5_gsd~IcAZk0ZL1Hg${SH)evdJCI zk8|3J^H5{KP;ry&!A~zQAG64qbJWcCyQcq#5eJ{|9DV1>N)H%OaF9L*NiY;3 zWSF}L^e}~4Vxhk9&ODHeY#u31cHLgU^F0)+DK^8 zaT8~pwP?fp)o>f0HP!Z~JfpuqzkmcvB71fGcblfU!~fi_aOeZI(W1X(1Pe|L1hS81 zpApC(S=e~!xvdM2_)V+)gJv%;zkG@Ai6NVx--G{eVQaqu4{>0)^4fx_D=+MQ$S#dC zbGovgA_|F9sKAH&X#MQfw8-R3Sze=j-(oIAfCWv{oF-O;IdfV|Z5 zt4o_85OPVM`1-An;5_E(Hhyh?3fH4wdJpg~iR|3+u7k5Onm#E>wT(x`Qv(6nR>w*- z3Qd|QVN>?t)MaNwu2H-X=pFz6|Lx)p@Lk7dqnpFGNFj0hoX~OiR|xjV9Cuwrk0&!J zYk=ZX2N3OoWV&kI7o9jJ9j{JN<({z3&k}C61p_quW>cU)6EAx2%ci z={gGZRdHflR<-8gTl@7KV9d zAV>p+zk0mEyIvAsY_9%)|K39y{aXEdbat@#4#wkJvJjcx^?&`~xrR(aB6+zt*fO^Ma6~w?MymDJ6pLJo=th{D$`mC?7*Oi%zzg=Kvm#(#jELbe1D{va?Yig{y`(OL^v_v6w zS%a*-zs;B%cyulq)nvS)tfHZ?927SwiJEebAARgs=D>r$GQDTw}2hzptGz3z;? zWmvO^@C955)6#_;@_h~KeAqE+&N%TrGx@{8CL^cJ>;QT|g}>Dzf5!dOZxm7ci-r7W zC|jkZSSVYi-Cw2=zsqIH5VPqX%L4M)V`@CG&m{*O-Eq*fu)R<)AFNsvSXmQuY0&kZ z3Ja9fD6f(zwAATSu*HkZge4GE6G zCB##-G5ShnP(1cCo1xJlv8aw3;uZb%kLOtgQXhHLP5ENkZA0aM;^@9)fEnwS1FmTi zL=3QQ6=3StTbjOX{+mi)Gd>=kk>WY-x@#fbxLv)iGH&;<*q*jMvs}1mxOIX#;&J}i ze&-Gw+M@I2MA}WdsoqbwF39*fW}nN3pU}DAgRC)+3kg;JW9GcPaZA?M6Acp!ida$T z6Df#^M|Ep$&hOUIu21guBP`$pX2OrmUuq_;l%`&V@FAGaqBPIUsWRPrF0iKdBTo9r zG;dO2BJW8LGG2NRS!V`&h-2DM;;bIJ5!nt1L?t4Gl+Gv>50BaXaMA1P$TR8I`* zAQStmPxs7~kI@6ueH*WxZTa6#A!IgKq-j~Z2QP7 z8PWX1+z8+_ZhPn&bI9>46guK=EwtZwmm+ITAooy)GjyC@KSPHOIS2%+46sXzrsxS$yAfu z-l&N!JrR4CW3yQ^AP=~85C=guK_veidd5D#X}!aKg_(_d3ZP4^Z8`o`R+)SfWeTjEf}}{zzE}UDitilTr$DluSukG>J5gcnZQ0u`}zfZC>%& zt{v+7iAxa3w6#?h@i^UNd8Ig!nntEot2O2~2TnC7pYpMF7>r7n9*;k_qmakmGLGq_ z1~okcjAn;`x!|PC47N4~KfsV%Uz0<1j!N zIzDCc97T>Yrh8Sl$~eNHjt`-v9}Sb=<2oFBJm=_JA1TVoKhPlv|Gj=>;m%tmW96z| zK7r#W-u4O;KjGn-$VBLZ3W7XX6vABe>_H|VBY(Cx5QY)gEQY#c-hF)u~I*JY4PCw&OSWkO0q6)vYPvG4D_Te!8-P|j&t z!MtICfC6qL84sjxqW;;asaq2X)J`G=^P&~Ek53?xRAZ`t?-u-u_1i-p5L|A}I0Qml zAQ69?E+2_o!(3yHrOHHT*H}z6?4$)e=i}IMGPp=fQ!GpE!>4g@$^Og}- zM3s|~YhK=?hk0-L7gCJhC(Q|E`<5uw172Q-x0C-dgmB7dvkMOz+wCNM>~m$Y7pIuy zkokpH*&oijFYqJWM;wu)@4m*G;5raS$#12R)ewzwi$H~%Jg_+T#Q+4B?H`u zshk%IZy5FUO2xoPwB^6mcWj>pmttfUc2Gt}qhm8nBTsg3>Y7R+y9O#h6s~=%MP}U_ ziT-hiAJOo;p^}&b4gqGG++qH{yYcv2;d-j`)bZbIe}hC!)eFVJ>VJCum5K0~ z*I0iLdC59TuEpCBGODSqt$cCG%Dh*Xt&WSa(1TE_EAx%)U=&q*kvZzPNydt?ntKK~ zgckbOZAX|1&+V^pBo$Va_Q0-P&5)*zt-drtAkKH15!>eW_K!uh{goKfcz9H_i^PyG z2w})wCw0-R7f*1Lo9p3(H#!m>qJ`O>mAWOn&dk`%ho|zun?Mcaq>}Tn#@Wz$xy`&a3O9 zoe{CP8lgbdoN3E%`6fXnb7iY6cJ~OkPXZ*Kh$MA?9-iju91;L8)(G=ZpRy#lOPlWE zHnI}##k%mH@qaMA2K~lF=Y1}>`5!&d@171=Xm)|TfXA8Z{`ed7)B`8WJHOnT>jDIm z#8uSRCZy5!f^mq$8~{xQn67#Mb&hL7s}E}!d03=jeNQUtvLEz|++3UfJ#B`f6%Q*B z?=>GSIAp%__ijEU5C|6AFlEcf#X6VilkjumSe?O9l9*B-Iz0@ zvkiHaU%1|iyl&XJgE^^ldoyS4k_)=OaLGf!i=P-mDBUoBk@MRh;_z`A!yfJSK|@Hx zy%C8G4>;@ozHV269Hq-~51#K+Xg)4cv{t-0iP*VaQEF~5%AdjOg7 zNQcs9%mZ*509f}d|1q^3@ZI=&LrV9=IGl3d-%eGPXZ?;I#($pY@otKO<--!(M?*;7 zdk$QN93Yi*GOx31kGAMDh#@np&U9|S*!14@d((Ts4AX9hRmxS7Fg>r53u$##mRVcc z*!niin!cl%E5NpFX&aicVn5fedk=`QY9r;>PG51(oiQZ0m5_&hWQ+(&tQ&i_-ar3( z@Q6UaUJ-zgQA*S7g5ijp>fP%50Ww%oUG`Mpm;Zd3fBiXP(pCNNh$}Aakl*Y=5CtM_ zzeK`GBZ##{L8tPvlnJY6V8`M-LzX{ftJ6&eTJWeTjzA*pQx&IZ_pVueM$87p1OzAsn`riM z?sfG+94~z^TBua7Ha6zq_uCm{K#hMmjfBSTpXYgL~ zvTOG6I1e~iPt3ygMDgA`;|OLndW`#cj=N5~JnOI%#%COP^rxP=Xj7u=b=#LeOnpDG=5#F%4miPvAO~Vko+9SOQq5rD%Qqw2L$q zKw#cPu|%q_EtuedB+qh%XS!q8PxqT^oQs63e(U*Kkil?DU9x_IdYgkdtWA7wRDz9M zbLv4iTRn#Z_&g^ktE__)136Kc>l31!7A;mQxz{)wy|_uCN0HB%(ZM`9=1BALd%Ihp z@A~YG3uH8VSA9>n z+0O{OKVxQm)yCX<-Rbrne!BSUXOpK0)c)VvnitF3mcgne1zlj6nEp#oW$kD`ur> zpC3C1!l2%Q^3pp8K0o>zBoRJt15A@@-PtC#hks1^?Wg#38wwvYXG=OJW%(Uv+!wgm zaV(p0Zwx?soPa|h+{Z^`Lb*1aOf}({!;SpexwmrdbWxU3L~oGs8pWor{?+17^n*%s*S7}>LD{@{30aUpl%#-D32kw z@u@ftyTp(d6bH=l!>_kK9Uu4 zqNw}<86F}EDk1~~luZaA0z$xm0tp0!n1zsi-?zy&$z=AK?)(3~b8mIuzH_^$vyu27 z^_!l%Rh_C^x9WU#PMtdS=BuZvWW#3xwB35=cc_dKG%~G%2hBU!R!gX%uD~Mr-SO)O zW$f7toV+480|21HV`#3%DrR)2=9saXb07b${O)>gw{*p)?3a+n%DMq*UXE9pxJl4moNPGWjOx%rCg~EjjJ{sWNELS{(s5!PWIg9~>@E{{9NtvZXXkhR*jO z`rUe}98)-BK){PCZJ?ZW4zx3cic;cbsdjLz`fq zX*r-lP#QAgbGiOHfQDf0N%(qBjA^h1nlsYRzC-T3?>->L&Ed1Me`I_U56){j&0TV<(Nu?+lO^8dK#SQMp8`;J7WXC9TGQ0 zF`5H7ZO0rUJdL*9pPuxTA7C&EBNj4r$E2R1!5nXx_Q<3keUdljx5r#Q%*>0@n#)KY zsBG3|U~numTk98W+i>4W|NQwM8OZ@L&TDd`E9D7+X%D8G2QzR~p`y}ORbi#aqCKnF zScB9C6HJ32Gq$HdaFmpHW1WV1xE-KU7idupl@ZQ5jbMRoD#K)K*bQCP0)`}+kRL3L zKXIP)?t@;RHwx|aUYMw!j_6<*46W6Y)A2=g_#4%!+nqQ67$aH-_c#{;Mm^rBZde|# z?SDhFRG@KpAej;6m1}IvUJz-meJIhAsCP~{lu6E_!AJ%VKJ#li<|HsKs7NIG9rxh| zFy^NLZaE!9>|zLL~84E?An?ftF%k4Zio{o zaUhwht5BfQL#kC}XIr%)%g)rgc9|2BW*x&Kn^8J}_m~rwfZ1X+9+@sy)1NV{#5qHk z5tw(s8O(iy+;Gct@Kbc8mf3lTR|GABY`h*Z3d46qk(GXHOM#sC)pr5rV8o55i&g(U zNH8B^h~LE_amcqZU3ItQl)R_$sIp?2$?@CLcGkCqLb-oNy=XbGL!E6vdB93>BUG-v2Z*Ah^`Ojj{sls(&VS@&DilsiW>wIrEZH zvTe)n<({AZ5Zj_w+t{u(#vJWX=pM}NV7*5rQJeSOmSHkb;M02qKP!~|LmE&x-`I_V zr=-Y84b9oxu?X}Nr`+p&Uk&J$ZbSVxwaoOc(Tc06Sf1VB zGt|)dL+bfmf9yTJKDdCxUFdg>Wv#&E_;k#Jo|EpIp~k_n_A0myX0K@Y62|~T85k#$ zkLWz^B--`U8furF-IJ09nT-JpGBtKeFIXHpbb*XL^J6*l?CBn`xJ&HT%a9*Ni5#G- z(XX35R1`Kwv{E-xF8Z%gGU>JHu@N&mYY9iji23``y~@k#n*Vs$E<67kAeKrvqyTTE zE}_f{0CGh}sN`&Pra?230Gb=PM7<>rUP4|okXq-|PAMvtGv2eGP z_dizt=aJvYw=TUOcJ$5z!#HS43h?@MwR=C73@22>?AU>!dJpLAQv?GXx!5SnA2^z& zVS!O0!6`(DKs@}|*-*`l5^MYKU@P%(VzL!rpy5YgEpep`J9dp6G4eCkq2%V*0!uTa ztj7jOh)DDT!IvP?(Ch#czaJ;sM~+&8$33wx@M&=-ZgN=-`m}NAa^g;?8eROYYj+e|YN6d26WxoZ2L zY{-BMSLJVoP*wky*xmjPmDQ_q)wLJO2md&R^k?ps61}=;e&{BAt_bYLz z#0yup@|vU1#K8G92Aa^PV$zlD1f&WKARI~um^qy*%E**KQjbUY_fvi|^#$|(}AB-`);1@CiB+Zf;d zWOVl8{=o$tcoDZkxEa^)(4x`;4hV*CVjgEovH4i*KfhB9Em?PdoZy1|t!d|;6UB6XgTvb{;^>c70>#V&!xBvcJl zXK|9(jA%JB1|$8XzB&6Pbl3_onFvR)OviF)di>)()1f2i@b%5s$6#VZGVI)b9P5}- z@8#c`ppu5&3<)Tw7@LN?j^X1BYDj}JI%K?gKQpK7p&p87TXX8<(9cRO{y;Tkk5 zyb}R~AkiLB_{yV~CJkEwKL{m|b;HH(J`2s{GDu$&RQfXQ#FUrD8%RMDT{1tW#s_mi zgJ#2+`*|CK5Un4!DW)TU8#<_suxW#M0c~5L!S*-;0P;4B4(^%ls93=kD*4FmMLadZ z^f{KHk`jIYZ4vC{<_5==%1lZ{3@D>hKIby z)z@*(0#4sy`k4S0{WhwaL!!6E)lld%La@NdQW_?SRre zfy!m%s1Fs4Oedu(BqNmb2}iK(tQj(bix8EneJGB7GZHDqUEl`=@_ zDAeQtt;_ZTms|jnPpbO<{?tkw}H*&do!A<+#)Y!!*q`87J|y!BXjgmPIUg zD9lkZm^-9Kk=~H?RyDee-lUYCL+49Q0S2f$5RY^5e%cxnWUxbB4)&eqcQAFrN0gFy z`%1qA>C2Rvz(#;@t@ilY@pDvc8CJ))DeakeWc?BRSUA((sFI`+Vq@^efO5687CY9&tf`JPd zH_GP8Hvk;^nHYC&p1ce|G9Cc(a12296L=hSz@e4EmqjIwv#cKgJfQOpUe7^E17A|z zj_hxQH6N$_W2JT&>T;p0eVC&xwg`3_lhzLwM~$ALE}FR)F?He+xmxU&s}a2q65;^X zlmHgZSP*VZ_xaqflHkZ00HY(?9SejernF9~*_Ce?R0*XW(~&_zC^ZlOy7$~BSy`>Z z3F*0?_fnHlOx#j6ftRyr*eAizmnG9S&>m7d@QtOVep`08aw z9ZO((>pH&E1pa?uoGJz3l_>S~8L-lnTVsYoq25&6ky+A-paF1}xmSgwB#8nTRGRVA z_FOl@fWZ6C`Up}Ik6Gc8dyHz2*BRIV`=0T4ITPWWyry(V&`>sv2!Q~_lzSKqcyQh$ zZxS@4m&utIPF4xlP&Dm`lij#C-LXuX*+TUlrP@T$a3nI$FHw3i?QQ$k0&CWce)8he z=dg|~N??XAkIs4SwXiCi=UIG6MvmZs20=C>T=*#45;b}l=>X*8k~GU^uf1GpY}2n!KT zh43}V&_idMXw*~k$o>_}OrGr@od!&^QZ&wM*&MtLm!_&@YE)y4KL7o=KmQVV*oa&e z2Mdmo_%o6P^vu%q&*Wg?XBO@?jLD&jSpz~~yuRRc#IRLVSO?Fu_oyCUC$*a|jl~?> z^H(zVxb1{+}GRAg!k` zp)XaJ#6iPPdtY6%J#m1-3HPGQW%$T92=M@kx8*YdM_ zq2bHA4DHitZ$+JHMDb_2=xevjq&J7l{dZg^8@J?JtP?NTXN3yx#C%vA|6Vjx&VZRR z0Rt7IjM!VYw&$VVQ9E-2RA7gBRAB8h@c0WNZVW&O+c7DGQOtZuJbEfm5Z+j+&jAY0 zB1RBsn1nTa&Ulp~SD2go`grgH2c(Wl+l~-Ct{H2sz>CAK&=-iN4EsqO^X1mgr2`sV z0A^GRCILGON7oqDTM4UqBjXe-Y)Te;3l=6b&rv6gF*mTYra+|)KJt!in;J2CefBOH zc02|qoS&fGKUHC|aDL2WbpF2w%hGk7v?IqJ(juwl$V4X!h*I9tc_=C%MR00Ag z?9&HoIA8FV%lAmOZ0_j46?~1+JzZ)L6uk6QpB@dDFcG%`l}M(JM00Y1G)R*c=Y_R1 zH|}|IJo{xlILvYcXJ9JgcSXv(Z%_CT+ zKg@e+I%{n>iXSws;?rtAV)WLPBAaGPm##adOYsg1?EzrtL}9&Ju9SpH z=N5t<2K;AZnV{W@lZ-H&8>1gk(ooRI7>{w)^}hCoYkNA}=iem5j&!W>Hf-&r-^$Ry zv4q}#k?ZY7vLR?-aPXiP9GDj+KMvH)F*66!XgK7SC*(>onSK=*Dr2_-zK{Y46Y*R- zfNS3GBSZ;vK%sa8nfAYXeNDub&@1Kr)mz(=Zj%Jj2IpRNKS=Kw6o>Kt(FdV$V z!Iva>u=@cZDyJxGO?Y)yX2OjFcHx2sbiA42?Ehy*JS+|y@QG)=Be&i8f>qwX5RU*B zSO})J{QChcR9%ARNnT9}0K&OU{?idcX~#@Rn~@(^8Pj}LZT~rB^ z$4o}Y-8@0vmLn2&LUTBfVFoK#mO0j5&{(w_z<~P>+?4=8Zkjb#q#@KMCW!*CJ7cCrExWH9dy*HhMMLu0cJ=BZsrIa?$5ia z1DmJ|76Q#Gj5Z~d3yZD3QCYR1lf3-og~Ewl1~NM`A_gwhqk75;%>@&H%EQc?@FAHV zOjIp;o-O!^oN~tH@^r;Y;Ruj`;V?MxfR<)iw4kSqJ$*h?r3}iTF~TqJvR(4?8!=eM zGItL{H+5%dlNjl90bW`Ge5wTQs|)fPEzak7>6rAq7s42%2+wvEe;`BFCL@xlW$rTWULreNWUmP05$69$LdW4b+teK8K04 z+;;cxVLCho(#$B_AAsK~tZ8~2ec=_k=eBEQ^80Y}f^WoNXi^1+IhmK;g@;-kjj(tB z(r8`nXHYqYy<0<%_G2f+fJh1`i>FU`xHlL78NjhOZ@B-{qLEdi*HvOhA>$O&QcP$6 z+0OtPX65j{1Pi_w0iyvOj?Id)7kq(oeOVZb-5YB&W%6H#z}L`~)D^4#+;kEiIVvvi z3h+Xwl6BXB7Kj+Y!rfQ^cyKhxk?x@5rpbcm&XtZG9j3`qJ9Q0fmiE%oFeU&1nSe#Hy$`=ZHw3%?&hzE5-(99jaXWW;wy(kP%T96fT=2s9&}OF+vxOQ+Uz{01Enin zc*_dD$7J*>ZXJeSg~*}}UFH6}FVIbmzWd)lh8m=cj_yq-_9oZ!tyss!hYNM?yVd*#;FC8gfF=Ig%nv=FjV?gAoZkqjnRC8&q+jC8dqn zJ^Inzl_R50{I~QTfO$03q1LyzjhS<8gLuvr{G4yYKq1J53>iJQ#HAMm=EMHRMWSE5 zbczES8;%g!d>0IF(cfT3>^N@ZqSy(D{jl6}*XuI&q|c?U4)2QcnZBXxtXvB%L}bf9 zD1t{#zjikZr13rJcQbkN=wAXy^19irCtUpr547kOPT-^*_dh@n*2XIyFq41%58jMNNGb{2~C)zt+mrRaTj-k^Z) zV>hpYJ_Y8eP-_qYuT)j5%krGq*uUggc&3E^Uy}b0E^q*_yQSr`IVBwgY~1)@RU<;K4Wq z7yId%WBjGkrlySli$d*l~B5o=EDl17; zavwCZRgLuPWa6|^hs03-qOPaV4$Y=$MpydK^Ur_<^x_mo&}&l$?SKG|$sZ1uvrqiJ z{P?@ymyf0%u4%{woH+!CQ3MepgPT3GZ`;YzfXK?=VAe~U`|?BTl=+wr%Oll7>(+Dv z2qm}N@ska*tn$Y(*U^?jOzvl;E-UI*N5lZ7?85B{jLpz7#~5HCu1#$lze^fH=|f04 z;k341X1&SjFN;CrC!>w;Yk-4uIDSAj^mtzvSVqP?yx(7b|EsICJuolB z)D!Yea>2M}z`=pYjn{lzCck%>%tkv=iT10vDs3`yFJ1GUIL8qUHOACb%!X~H@1T`Z z-V5KP2JY zZ$g=BIuV)TtbYwtLN=I zZds*%i2~D-Sr`V&MRJ10a_NNJJXhLF5t;jz>~3J$lc}q`v;zHQc_ZLl`2cuXV<*X{m@!VuV> zM;AP-%T8W?Rj(cd=NAI9YOy(EP06kXu}1VJLY+`Zm}RA8c3nFAJ~W3ae7w@5yjKL9Iq!PwYm zd;=)li3OXp;#u9)%d6>Nv4=P@o!5V49F7{7uPDWS)48}n+*ETDq~$Ii>)C%blWQ<^ z2|{a^^;V0g5Se?5GHXKcby`++>aspI;v=n~pOX_-k8nOF%{d9RXmS(!X&QQIO9du@ zp~re?b<|ZxVlsJ{s9t|r=3d|tsejBu*r=B4@2k)75Jcr9eD7s19MRl}^yQ!Xid2T9xXWeE12Yn|kMcS?1DAYh^lg z4oDmqJf1(g-!ALYldeFg?T5B_297^)kHc~Q=E^Y`a_%Qd!@M_|?w4WT)IjfS?yT2M zTHgh|Ye|!0`uO{=kSAWgSHgn<7E9fnFnCr^M9>-2gtn$8M?S_}#fSg+iu~grj+FAw zM?aF%Z0tb+9em)R0sPC-$&frb=C}nhyL7_<+??7l3qFUbK2*O@h13?xs?}Yjyc@P^ z--dkrV!k0_j^I0k2Cr$`nK5cxxx7^0qbSqe8$5}0tnbnc!=Fwquoh~NH2~4}0zt76 zCZK5rlu^CjCW(wy7^Vu43b1K3q^C`?YF?Afn?3@bgSmH0+e9H) z#MPtyo_yAaGH3`?d8np#=^HXR@RbHNGSd@eSzmlt+YY_;-i8~OAR2mCWk9ZmzyUnE z;K9}4)>wNJ+|QM|NNh#v!T$ z?>Atbs;iiHI)Mz740-utpjW!X2dbE`_QUDS4r5}6nY2N4y;4cg^JMo399(5xRMLpKj-@&=Yx3cdQV8=;D?mD< z8EG9?Z+ilnBAITVK}!_W>7L%}ao7{pX&(p!g5Ed>;+%EC_N9BC zpncKbS4uS%&5OaR?X72ERP&zh8p*n0U8D+Xt%WFQS!;oi-GsU>TqDz`4UDN=4M4)p z)$>kX&YWecd=Ka|fP(RUt3W}QB=}Lv(EIxtH2Ci6vWx>-PyYd#yTiNQIh!^=@lnt6 zpUi~8t4ZY&8Q6fi|Ca}XzoifzfKib?3IO^b| z1?v%@1E(&0*35nwxpG9E{%4*4*&xK9(yp|jBWO_mG`tTN(hj?G=ExawHF|9s0uEcjXK<=g9ej? zZD7cdjSyeZMyi*Y+lfcCI{hyA+;6>cR9i_fG4>aF#Q_l2NZe0`1_12_&OzYM&glvD z?IZH~>o+HTA8l{-S<|aV8`>bBig>U|%Fx6E*99a7YBXzI?5j>h2Iw*ips-P6Y zYk~!T9I-PVe+&eYc{2}#TUangbrrPW(1jbFd%Ca0e0FQ`9++8CQKMA! z-HIU|nO%G|NJghtWa(lSn2B0ep$zGSWQ*k5q;(w~QYtd_*(MHdq&*K2kl3iJMjW+V z)m8OiVyp}1$8V{As?>R6Kw{sm>TQLwk+1KO96n?vZuP)A8fZ@fc(1Cl;e(3qL>A2+ zppu}U#=g2X-#XdRn-AkOLc-|Zf0MHb8Mbz8SB(UTBU;yA!rj*Cyx_c9hikt{_6=K_ z^5lX`KG8i-C;{p>@fN~=4uQr-f0A-b-gsqHOgb~sTB1$AqjN^6sK^ulGl0Vs{s0`m z1de@J=~a^1%#CEmuavir>J(j6+tjR+glzomOau@D1&_Sued<@e>LtT`mM-lgiZ%h?pCM#oCNMwd&tS@9 zp0zomE~~0w;1Cc9>RfQipo4=T;Gjwn>dd7}x~c?d+Emmt!NPOiZ|~xkQ-jV%?TPdf#HiV1ZQQx#; zd*fwiE{Nsi`%v0gQ+4mNyasT52^vmCr2LgtVEKkVP>;j?<>$mX4}c}IgMK=^;Wzq6r9e>^vVonsf)El|DH-r5LN zSJh>6SBj&^7YRon?!3?>O(}0(GNAu2bNGX(vc2;-Pxiik6@yBcP<8zZY^Y;h(=4D8B zG1vbB0R zb3xN*I&(pWZY0_=VTY_jCI2sxHpmnAb8uS3e$FHv@(LJmlV0i9*|8Gb$(}aP{Dj-9 zFqe)$**>~P6FnE3xjYS()vLKjz4G+)>#lnGngIoyhCj8UPQk&SPlw!WIl4=$oLycj z+nZbDck{QyYpa9hWNvf?O)sBn;tGvbkh+5RbVM5JDknjo{Pyc(HJhN$Z1OkHm=hTe z7w--G%IYK;m{jf&%<}LfR>qj6G8{beN-rs`!I%pzt}rO4WfdowYp1}45de&Vle-)R zCIo=e4ghS-9~OCAvaW$=ocQhlCyHx8GcPU-#7XKr1n8v`$an(sa@Ns^965ZY^sHDX zYgTsGIw;72g)}#|Y6m!sG(t%V@>D`esOIT+*m^02r(fB=3E8s{ZG)jfNzYG%u?=W+ z>ryQjfBj{(h~xYV*Tm3Djh=E>t}2mL3lCM(Yyt`C6csgTTGB8Q2G32q@gMoj1e52G z!#AkcU4c9L5F8_>4EWym#=|9i`Yd_(>0zoyqD0ZA9k@htvTeDT4iiz$YMqwK8j#

&hxD_gaC>e}?RY0beDLR7AEf_XK36%V?GoY2G5CZ!nvCUru-}#ys1sP;|3|?5z@xZVI(X zT_h`O*PxorI@&fHfN8g)k^#(K0}C782sFo*ForLUudJQ+qZ0YI zNWyl1PqYX^*o8yfOs`D9?EYNVIaA$4Ncq!elAF-N=u z)m1rVEilbpC`%UgkgV)hxOE5P%>bvuU$XB-98ji@_Xv`t8e#cU)){RDY91TL50skQhl=KWUG*S5dw^wJ&DJLzFho1ViBLmk`aTUDIonUZcLTj}CQOA|~2-q-lj^iK*9{%J9 zhZr!Rn3X|20co*gYM(VzWKH1nee`+<9ynM@=wTy2pMS~Xf}OWzlDL%(`&#T$D2 z_UK3*9ntN-@xfm{I<~a`js1$sAMOs2IN6^O4AiluDc-f!?w*%x4Jo!{+NOv~9aI@q zRh7tefXA8V%u30KL!l_1XXs{1G~s0D$nbOyW*Y<=yibNRcP{2q$X77up-ef5Q6a7} zLJZW)JMWU7-5X@?ykgCV9UAT?5F<-gU|uFI>4lxT=?ux~0$Y8Un;vt@Yx2hz@0D*} zcB^cujsp^6X@~%%=;$y9`M6ESJW4!9Q5Z;TL0(n85!2c>mI=5J6QgFKfD%+MuDa@l zXHJ!7>>X}rK_@~f2f{+ifMOaaeqN@}dV~}5*q-Ia_`y$0>j2-5{+u{ZmF3Q>FkXzo zR_v1BJoW&r?nZz)KM0jgCqEgC9Jax|2exfJbOzjxzb6-6@rbNiQYz0rb*jAn@`(yQ zCB=?(<{gN%B^1BI_c{JVF!n}%mKeVj{__KR0s%sK z6YqIO9F{0QOT!%!D zsU~M1@BYWa99ZCRIlzcnbFa%NZMc(Q(F!Rdp_U>JNbsHk47(*1Ux#Yh&_`g~N@yt1 z3wmhU`cSRvW1DOYQtbw5jMgv8YHnDRHLq^uoX}R8Gp8^>EqfH2hRAn`76Mc`w1MSVvyyUag6RoBR zVuX6q$qQx1CquMzfP=;fB{?I*sov1dS-h8x#e2yX95Oxf(dX#2ox86Unb%bTqp?08 z53xf6)n0Qe0_xdL@<*U~C~8eNh=E;Z0=dITA-Zj7!L1ISQwl8a;+fYl-Fpeh;w)YfI#1PY+aU}zWy zYjzBj?IW@B{M&9y9Jpx#!NHz1=mdBlmu&q9y}>(Lgdx}yrOT{Bs}7npiHQwMvB1T0SDf%)S7T&kl8QIU6!{rr>;w@WtCx*+ur!zy{x8iAG*C0EB*XM@^fF)(sS@3a4?+5;3^&=@&?_K_JKn-nwxOA@vV;jdXG z40xX{BzRbvQPhqHJWRs+OlO=IwHs{$Mu-nAC`3#M<&&}CUTG*~)p0a}T@)Iu*4Da( zxh=H|bLT*;wrjrvSN)L%3p7uv!I*kCq!lz-j$S6hP??+>lK=of07*naRH>zF;_666;@R2q#U_@{NbU} zxC1I0xCr4cbVjf3O|J~Sc@>^@)d@+a3+i|YX>ehf07v*MmX)baI;DyUX_R51)%1dM zMFItxIvGX(f$L?|F^hGrib^kZJ)%|Z&y_?_J^VIJ)1YqHq!FyV<8d5~k?Om`5pJuG zaWpk&Ni9~`)2(^CdTmh3D@;D*CxbJVPnvnMfA|I(_%1;!;rWV~kKk^Lv>=)_^BYoL z;s8N1lCk@!L%JK;iMsbn3+8zz?jYET??^RdvR>-01EHjolSi+`4zo23_Jot>0aJcxQBAF)sdkxuvc)xnD?r&e|c6fRNC<{{T+x=`VRmgmtyw6k zzNPJjb!YM+8Gj&HQ*}qxSW0gME@P*^woqxkPKv+t+Gu6$LG+pL4yeygKX0l!Ote=g z=?kVnd@q7Ar;o}-{&?pZv4I5J7W-GUwdn~bIv4M*GBxAe+MWMifbar>_uNYl@voe= ztZ-3LOMbYyxlqADGRnZ4N)fH+n@x+l*iE7CQk&n|ieS@UJ5+$al+OZM(U3Dr@X~Y7 zJJ)12=k5q)@e*T}qp13S-on;gF0Tzpvd6cQHOW0DxZ4RWx!I)2$g~nFC8n%B-)oSG`c$frwj4B9V2Qo*h0cgN!f1-qgc+pJZ2h|jdiVT5eawYg&|H*c} zuFf>K1CN#X#+B|wc~L#V+Rz#6Bf2_Fy*_zoQ9yxNEMDtuQvmxrk zs>uE}90!T_d(yGww{qP#ZU%T@pUV{B!9k1q z*MgeLhMV_fb)fk&>+NL{9@!-CP8=r7SC_=34ZmuY#UkwsFP^URIw=Pa{C41M(G7T2 z2vpo(9qbG7~pUbP$$E)ck0}QA2gDc-bft@&#A7mEwp?$ zgsdD4_whgNSf@AiO$ammmyClOr>KSk>SG$*%J zQ5a^}(8!tU^n%x=h+#q*P!E~WY$oS(b|t{Qac1{pxVQVbbsfUoOrgyrG;ks&h} z2I(v!Y=;iMR|6)CP2hVnJ%L0g*ExCaVnc$DD+3rNA+ymRz6GE0yYUzPyGX|$z@7W= z<(QMcC)a)Nb%5j79OmvrHP&q{d~WrE1s4}a>P~-2RCSsy+ZuYP%_+^?&oL=}jsgRp zneV0X@Q<_!hKCQIr)ojb1%>2|Ndn)6?+u~N8Yc3WJ5GeOny=+{>KXppT3a4+QtzR( z;erEc_yHn1XHLPJovZ@#7OOd$8;OF)C^V7(C^(>Zu>2@!W)x5O)gsV*H~?Y;=q-Q; zX$OTM&|thCwYeECXlOEg&HgxfUoZCYKbH7_g~f$+ea&Pz3ju3x>?|DrC4dQ~j(rrM z8EW%ULKZ%Bx`Dvgen88h%BmBscb35eoN5J6EkhAT^sq8q-5i(^b zOq*7rCn-J8f&tsjtI!6!IwL+eEor6tFVIpLP99^gDAvc+$ z!}_ME#7t)6RUBM8^gQmb{mFFnKLQ~^&L7Ycbb%Y@mrglj7S@MQH|A9v8Rwtp8|y2W_+OXY%#KGrz~N9t%xthFgu zhGTa`x;R%Wz+}L|q^L^RN2;2N^A8_?c(|(D41j8RJpcIp&p#h?8=MqR<@d^^ZBq>g znSSH?B6;oQV-uu}EGz%5&o_Vf9SrO+N}1VSEAW)UJw^Ygs)>NXNovkTP~}9aBHHTX zBUFVO4Tla|Ei@1_koAx@QitbO!YS2NDZ*iE3nE1uL!pL_QG4rX_)LT30WNiRiX?mW z=zstRMJJY;l}w=ExjFLO8xp|7`(Qtv`#(Gz#GYqWiD50lV_Y*=mG1z%C4d+ZA&_`~ z%!j_Num$HFlP7KJ7tQG_8&^YTR^)g~HqR1{==4Ti#Z}~-MC53eqqSs#&)8Af;h6`$ z^m6o{5*Nu-Tp!s6B&@nWIa`|Ucoak6x1n-++u1uJS;oHm_HwA;Mq$2ige8xRKV3(M zLFM+2u6-mDFTn~@E$|EH)?uv$K1-T`Tczrr=ebA|AgE})yXw2XeK+ANC$DpFmK)cV zcrW+aIR^qOR(5pg0XU*daLQh0BuW-9og(sEGak3A-CnBJbR|$Da-B)C!1)lqKUGOd z10O+C7~RlALj9KMN^!QqpkUf)+LPigktjZcHNcYRo;^vWc5i!%wAQ-PhDJ`OCW4B# z2ltXo5qm%^AxV#IIodMohD59#BU-icInNQZs!G|Z6G)|Xk-P<@m3;3awKvL71}0Qj zF=x(mv?&4SIrc$Noh0aRoe0TMSGi|o2_BVboJRV{jDZM&#QV#Zq89qP%8nFHG&SIxtpIGnG40JuHqJ&oO=iw%^JGwNK`H4Lzn)Y@4qe&{NXVvqFx=$ zCE0>AlUCIk1c^p~1c8ET4eH6GE;HtCYZ%L=6@XP4S7NvJ<1*!cZn;b?cxX`-H1bsU z9ESO&A`Z*2jwQ7*)rUW77^}Ov)`RK{zj`_$E}pYaW_{jOKATmcCY`!HYeFQK2Gl2< zU(yL_2n_A%_F2!#q=i(BIU#Gjg1S!e++@8K}NORk6;AQUI9WkYvius{=s6um2Nj#w7xE(8#Y#RL#X3ZW$8{ZT5>6xd0SM=$f7Jo(W0h>_M{u)K=>T5*ma zYgN@%NXu2^$$|lmJ{4Q##lPJvx7_tQ)=}Uy)SeE)XXxJ51gMlhSf}Z8YVA0_AwwrK z;t}d6S155to`yO3j#_4^r9==OTqPgAf4EMHhr;w2z=~`eC_#BA#oNa4+#x8fg9>c0$jbl?4!XRw z_ocLv)?m_(dUz1anVJvTW`f-FO6{EGw6* zv6~;TaL(o<=DwLTa}!pH_l*|Cv0a8V;yDJM{DK7e-4+L&96ui)@g8yQW^;u>0b>K0H9Va2+?#G zX0&{k>fM>|maQh>qa`3=F%*#5ZgrZJQ$fBWk( z3ACvKp0~N?pXh@aWmTp*dhitJAU!>Hbur!t8pR_p>F<6Xs;n^Qf%!)nWQt9-70)Zj z;7g}7vM~t*jt2%fP-vrj8!>DCb5_o-`{ALo%27=vN*e)XPVZKNWmS?Sy9pYk!u1?U zsO{-(58J9lZyN!&ysDAvs@71G0tcD=ij}2~S?-|K655XM-nRd0{vmo9-MI^^$g8E_ zpp{to)K66xW;91;TD>C=oqUdCskQM8O~=V>u2PQF)=-m>I*`FIQWdt{{1-R@Mzc}} zX0+2$5l9y>@V@SAIWkm?p6wxS5q!Wzayqw2d5=x9aB*iT?#SwmGeIUKV~ zM0aV_Rs3781$U=LJz_`lD6kvUDD2h%oAaA74#{-z;_L!3z&_oxbaXBNNO?+ zv3kQixm%Aa1qrIC%y%YW8u0k)1wVnM-8?zv({NuBU508OCGz(-M#S1vi|buFKhp7+A~&Ot5jg%s0@iVK z+Xhh=Jq$K;-6&n)JYwcF_!d~Zp=zpKhefO~24Vz{hHegUBk~x-Yn{=ID+=OcR8DbP z=$-&c{422pUtrL}BENHY4u0^>+}UFzMNMa+*`O=%ml$H}IoySSW(9d-tW;OVB$r~M z(`M`_Ox|=+lp}F)B{?a0SCexPrwafZk-OgCa z-c~JE@AxY6Xdac@ab_I0;au_Pl^CIcDQ#MgMMX=s80_n;9qse&v<$Xnn>>CK&Hxml zk*LoBC~hQQfZHAm?OUUZqUkEJq+M6BIb{ zy|N17uL_P1x9!NqnhoaVFgeB}gJn>V2?8KK<}U}?z|G07I)@8#v!pXGn8l~N?RpbAPQ#4Qx(Dq+wZ|=6eoKKk1 zc@S2B1IiT?v_nztlq%i!;Ssy3Qxtv9iPhA_83ow39MR_`S^M<$_H^rdc`I_Az4X0t z%Vuz4U}fM}N|j6enYT;F?|up9Hoak&3Ov#CSFs-s#8+SxWftVkf)%J7*={fqp^d63Ewt*c79j++B_ z11fb;UG@HZhsyQeodn-P=s*}rTNpeOM0oTDy|>-g5g^k!oiffiIeOQPj1WiamP)iE zR9{WxlnACp#G^a+egADfufPiTpP>HpEI7$4m4)+r%DfkQ%DZn5SJTv6?)aP7E48Qk zQpYc~tf1xH4baOxOiVIZGFtj~3WKXNe=UQFz$44f`;ZjqXpocOBBj_9JkFRHO;?p8 z9^cs!-g(y-@Ek+^SYSO){cxcAaq3;XRqRc8#QfZ9V?=G8?zQ)v&rINbasW;=({Uq% zVVZiuYkZ&8WYR1nB*{Cof8`{Js3#DRTEOpOLGs zp5g!@$FeEHd`Jk%0;L%SN=RNX^~NXA(*)Oo8j};(RR0wfI>6?Q$8!ge^5iUcrFdjf zuzEI@4oxGv5b2H*ne^sx1yb|QjFTD3{}bjI(OW9PC@S^y#M17A6Jt!X4@gOVLuMIG zYrShSYRaS0)^biLI-#l5X`Du~FwzE}53&sbTyMiG zo=k!KvFIP;mc8)&sQ$aP!rZV4=J&-17d)P)*M7_T`p7wRCg2O-Ai1rB2o~zQ3f<9a z4Q)^tBQ7WyPq_pH?1HqF3-}UzPvu$gmgHc|aNPDRdG-T2|qES!G zpmkL_)Kx8^It31j^GgAVjjuVDx$JzbyvCRy6a?9Re`F&_=pls5!_-kjsZ8` z4-70TR9xH*(2TwVTqfZzuMe)sb`6ImYE&10pDuB(=u?xL&67cM>#z~MY%N20po?MZ{=`?q9E!9Yx`P6!J; z;%Ede+zJhVR=o_@Wa`NRK?Mw-KA#9oWPoOb7l|~=`gI+2T}UCB6p9-dOzVS^(Af(3>&^oJu^p^ zK`Nj$=&DQF(89YjH0Ec@gb7E-n7eZ~{@>8mN%7;BV6P76Sr8cMcS75a%!MR+q^%~% zoYynp$dr^eI1qECjbP3j&;E-&YY72n69ZO`*G)Zg>)PezbuB|zbnH%3+mcyft8ihS zF7DfKQIo}aj3BT`q=XUqfCzuFhL*i8Wc8Skt&)g|OUc8Wr+akuJLyK>Pw~j8@zYs< zFnEehGY1de$RE$uHx%QL`MW=z@NstwH0jK<lm=6wW?^15{0iTR1G(ga6)42G%HV1uF!>q|tvkFhL4fy@uIYzQaZ4X{gDt2`VuVb;TV%RH@5*~LU|6`ICvPYx{TE;65AMQ8 zZe)GuhFz16+O+nsC#+vdRTZU=@_%Gn{qM?)mVTIqtv1Md!G&omev=cW`icP#E(kW#4i4aO%NPU@F%V!J55s3%@6Y=z;XL*GAFNN&o1V_{F9yua zY1C0=&GsCzO3-1*kPS2P9kl~v!jr4WyLYcrhHe-MnLDL}*IqtOzIw(FWXh()r20Il znoci}IR(9BYhHoUSK6kA41LeF4gEShHZ7vq(M@1JWHKx1{|YN|Se9hvWEzf|gXkD~ zHfEGblMGQE9deA8iYA{S7?l*yNy7x4-=QgP8Z^jY;dIg@)%TkGE+qWUxaH=f4-KtY zOq>|-F!y-Pc$lN2g_5Z=md*P!(dklOut$qcZ?W^T;;nr}|gtdh~!HpDiDIjr~j&TcSeC1d6s1sy!9RB7tNl#53O9Qlp8 zmc;5~$ty28lj6=p=i3;XETd_kx~KR?H$7+vfs&G6472dzu+oC-lBpjJh)KSDmMCom zYvUMicLMniH;yx&vv()$p2S_>snLFX%<3&~kJ{Es0O9;cpQo~|ipSx{6&pyT3Y1I= zmxQI?L%BB7FfHO&fx%qA{A+U5HGi<)-(ApPeyMX!Rigd*%mWZH5ZIsj9h9``d<~ri z)>Z6O?4$+oDnL~PcgwR%@z7CKx9L#kbvS{`1zE#~Z%~G(^js!IdK~dltpC>4H^|u0 zKa+D#x=YSG>sEPt;z%R}!!pd!Fa#1X_i(Dfh2vp|K~L@mmequLoJ=*^T$3)~NHbmr zT2`507>So2nH?D}C60u$`DmJQ#Z*#;sP_o7S*2m_d1>HY!ZTjuy`orrKy}r`H-@4f z06cs*1KvS&yfoc&rHi>GHMccs0*)Lc(4{_oWpRIzSUv$X^_ze(N9XpJLH#z$s}p}K zzqt2B1&~Hqg;9Djzn#@Z3c$DC_PSb#MHlvue^W1QmI(s`N}im^o;9nhf&|+QLnw@S z570jJur)#lk7_Ky2L>#7&fs2CDhPG8b*DiZ85F`(t)b;abpErBIp`RD!eW(%qL5NF zkWRplgO|`Y*pdwsnehDa($Wb3rl3LEkU{2j$dQ*F0{eJw13b!TM*27A>u#h@K6~(= zeyY+4^Lo`ZK7PXL`uY9qnmO-5^;On3Eb8PyDj@JarHp>R%hk9{gPjn5_s+Ow1HbVH z>oF!#ZOv{-8YY|gP|Do-@_3Nc0M%6^GL3Z=*!WO(2r|!)J{T;=9J|C}C}0?>y783S zFg>c0sIKBZ8E?FCq$h@R%FdOO4+S@Z-I^u4xCR7a&b)3IsyPh8(9#F~e*`WtPW8`( zQJUNb3BF0)|J&@(jD zO$V7IgE=}^&VSFnMo1j0ej{*TjYw8bgDhTJu4@p6m9Lh_BD|kBZ93;%6XC8JH)YGf z7A=O6@|c(F%pJ{~-dD!-o-ZvkFtOPODm+iw+GMq5skClALb3lGc zTN8&XAeks!3pI7awUAlVk_wf#e}Y;h0cJTjtD7$&8x_MTzJ%UEK3(w6V4}&ulJ`TIpG#y3)JpheVS}V$y_V`;E@mL0c|yXYbfP=&*$(4x z14xt*Fp{UIqc{HF@TA}6@F8nrb1=yOloDVFdueb|oU6H$ePg!2`i3l3tsZy60-?p2 zh9EHF1HSJDNE=s+JbTBfvI{<~3?LO^Dl97!9q$m>$I^yFH2&Y6A20v{ro7_s#h>@V z*4BOPR;yP$V)|!oEwSQhx$g$AXldo0B=<@l228k`9FmD9CTJ*N0LOJ&AWm|(&kjyi z)o#DW|JDSKx=LK%Rb^xMjd_5M zT2^7CZ2-t66+4jOD5x1%A$UR|$NUH;s;^&;2Vk&OF!%H`DL4^P2Z*{V9Qm5G{-ZKd z&w$ulZ=^Z-{ee!oSVsUEfBIzCP9kU3ILl(fsFDscrX)w|aEsCh>wxN<$x{aCw+;;h zaLjjDGijSZurNQ~I9L;ae5&DerOj_@ebr+oh>$+p@ z*t`KHAoE>V7d$7EK6EgE18zQ8CNB+hPFj&QAqfw$W%9d2bTzk^mU$0zq!e?;nTxO! zAO<2(wUUlM=sg1HGUSVTq3iUQ|9WJCw9!;obkEe)-*%;qJ;HW>w#l!}sNERuU=HNp z!-g%HF=WWwFadns%CJ`h;xJN3?WZbv2Ek7V3MLRVU@@h08B|Xh5aB{Vs;FRo+vUmY z?LK=87$(0jfy30qL3yMz#1ZPdiuzg>k)4(!tB*c7Tr3I(Y&+~+K|kD%Zg!XrEnnCv z+Y6*$wY7t+ThmEBjH+#X5N+JUXi6rJP$$dDI0 zr3xKy$shl4hBU?T%@kL^QDJ_Al$2s?+U?Fe@?io!-ryX>F0@`uiof*Ys5U^(DBeIY zRZGClxa;O?K*$^!pHhsy5hl2(m*<{638vab+Bf)pSZ|#&nx6I2{X)(OAYKr`IW0qH z3>`WN4l*ZL8PS=jA#B*>8dt|Qo8t>%2f$>(w-*ODY+_WiI-DTE3Gl&p<8=mt}=M!Xp9T7?*i zf+;&puU+%3u@eDUg5!Rc^+z%3mIs2EdmQR1#naJ8Q!7GSoNWlaU5Ylt2;vCsq%<7M9k( zI_puw*EpV030zELM#`j1@X5)=IuHU47-t(GGr-1Y=p9s51u;(Eqq<7U9e_zn$It^g z0t_eAIpMvdIxhxl`2dho0LKxXI?A!dorS6^Q*MsxUx8=dPu}k@;Vba1r-BCSTqdn2$iJ(hb{HER?-$H3qP5J(~hKn68uJrT{0ybAE&CXsLl6xW#t zu_A!N_5)q0n^olm1qL$#&T~i?nv> zDrVII-ehUzvUL;8X3Nky$&lE=f_|{Rj6!w8y&?wo->5odcGC93ytx%>hNQ*9i zJWNba#QYwtb+~9T;}Xo#;2zB~A9-Xf9346<(F`4?=eu*!B7q|nDDoM{WsM$hu!as_ zlhOj!RdgL<6{iMoeMc}>1#yfOxxQsP)}t6^$#?6Ng`qye)xEn4frNqinLromP372T z_AHpI0wfiLC>`+I8*tj2BQj#0kap-ye7R1Ua{n*SG1=?U`~C?Jm@k7je_YztC>wm4 z5#*oz z|1S*lQCi1vG*4%Eex_`gfjN>Cnc|9-&@Vxf2y8??v@1|sO2!@Vc7{)+4Sj1&4tN4sefPq`R-c->W4rdt&_p_R?Qu+R=*MRO4zufE#N}FsrcqaMgQqaY zapv6uX@S0i2WV1B!SyY*?v}B9r+zsF(mgL%T3cG}le>17)5{K#9dNAZ&1=rwa{1Y9 zUz6~~sFN|M%Zcc^sB-AflS+iiBt`#ytqv^0RL~#*j}y7?o=b#z8VNz;c>eJlP->#| zL}^h~kq-9Z10f=r{$xlSC&Mkx!mjeh#Gwl0Y`;N)^~<(tOtPc&xXj=IBZ8z#MYAcz zV69MV4t#WtiVYALJ*&0ki32Weups{61CYuw5}9$>u+L@=KkPT5!lpZ=u=!QXf*K2Z zjdNl=zTIphA>$R7zN)y6gC@BI3DoNKSjcxC>5h8@E`R|dOxf+}>?qxhFwVZ*5%5dk zNc=9lf5nl+ehtCuDrPx#%1~z^8Z3ScbN3g;Cc`8Xgq6%uM=$n2Zgb5JOs248QJK07 zp}Hyp>z-7B6WbNoGL<8IFJmywh3W*-@rMKe;X?@P-Fku;f??D=uLVQ-YWFVoxm~)+ z)~31`pxkrM>2l%;x9BEN+z5*2KfUz=Edv=Ig8?7Cz`qz>16a6c%Hcg~d@y<4br2U} z*R;&MpJ8_8A%4izFK7w*CrKHHLqA2?Tm zl4*j1_ZuD383+c8I7(*;00(ufg5-M8hl(=%HA|jeyg%(A{NC5?Zuvh3B^E2a$IE}`T_u&^PF8#uo~5Gb9RNoy%J$;IbA zh3hiZVrmM8JD|PlYjP361AeJ2#&tv4zS|2Hts7Rh13Vb0wu)fX z$%$(Ic+Pu<+19l>KxVF)hVRF<8Lq`^AmGO85exNH)rNEiaI&#Mkog7#O8Wfbs9V1Q zCq)8+oel7Ib@l>FN`5zfKhn(4$d-RqMIYVXT>CnVso+69YIiTpmwN^cPzlR0ZkC&j zoDBWPH(a4oLFS#9zgh1veVOIt5vyNLpXwBY0Po$nA7%saMu29Bs; zOkhO0DbYXUIQQE0L^W*d5IJ^$UFFRc?Q*3GlmWM^Er|J z7hC1^-?j2urbA9BkVvRZAcd6e$jKxS7>eqKWJl;!uKqUbGSq4c^mzQ|HTdXFH+AKz=^hGIc?)WGr(C}KY{dCUp1ten4~s*OyZ5(nvD z+^tk9upGG&izP{qBVI1j3jr8)-2>h;MvHVo&#J))dM5U%7!C7QtfnW(@%tG@YT3<; zKiahPRTfCW!&O=RuwQ@K2|>hs8v`DcJm@NBO;M?2Jp*?vS7Jv*00;b6J_XXhmaA@famG{FFMXq6+qneW3oq+tN1BKlXm@80ue=XOWhU|KEj!7go> zm-HVEZ*lobn552Z5zFKRgg;$2_s|$<04NlMoQDcV z1R`kqF7|>4INKn9_Iq+2G$z>-I{z7IyntXz%#X%kj^;j&1P5*vYdrOu{l}vVKF@!% zvlB7Y!i_L7dd$jFTNkhY8iEHKfyQLs0eLu7+WSv+Rc~;FRgIaEZ~dt$yyHQpAQPnD zq(RqhOi4hQJ0?Ck&(XPTm+G#`487rq!VdEJuAQ-wHJ{OC$eCDWELo_Y07=2z;{_Le*|t+^LQSzW6`2LXH4&pri-jZi7gny5n>TOMk-d=` zXz4X}7#7tn#d~4fR1@eKn3JxNg_dOfJR;LEe_@zB3(B(4WVX}RESV0PIbnPf1YM-} zfOp^w26IFqPy8JaiI9=r_Sn6TsBeKL-Lkc1~D+{j~aq`!Nv$ysOJELVTy-*WY}?@H+JRWu!CfF)CO zA?hnhu!_KFAt4aRLMOm)7S=)B^Iw<8Bmz!w+w}C6J{7AZAu}$bv z_-_v!Cl5X}Mxz@#=IEzkt|`G0sJZQHW_gRM&%%c~-zNe+y^&%l6%jmH4<_VB%io%{ z>FT|bHrU?{y?wRb!O%wvX88A!dE zeBp!S<77Vcn{@qkZ%c@i&#(jvp=B6`&a&~GBj6}3T*A;DdxPo796g_1UMid5UwcJ$ zQ;Z?bpWhY3Q7{+sEbwO1@zRdb;&cM~a7Ay39&RwS*}32Qu$N4J=P((2?R;sz1x%E> zepo_jz?QRQ)EVE1K;@I8s-KuO6jV86n8yPI>KYqnWrs75WEwJ6OeR|dkQ*>3K=lsq zbF?1HaGNylM_XHUZsboJS6M5n>-D`X%-^ui$ZRu)!l%(o4)bSv6Rh)4z7du@b_qPK zx=fyuOs|3>IjpF_h6R*0e&q^{&i8wFN*|g1?_M(Oy4BKj6W(vV0~87zh(&)&S$ANP zc&;-^Y#1KvC^yn++S;ZqJF|21v;Mhp&J&mRI`;g`P$&;?WE=1(fyLEr3l?a8RBaIe z3$cqKC4vVZ93xNv`A9kY%q4Q+#na_5>@BV)vNd2Y)c_Jq8R!JFrbZndf)jjJngw&x z`Y(5!C@;M-NJsCcTy9jAsygRl0=zj6%;uT*$bHz!$X|GQsP4&bV^^aZ_{Z|o^QH+p zXMJ!&{;4NUk?U`H8@&uFSXU|vkAy1i$0#$*dVloe^V>)(fZ)oMt8%cl5tqODx^4ef`54@WD8N{TJGIS%;NSs|<6uYeF__2{ zjk%Zaq9dBNS^fvyaRGwhU`kub(R~tdU?o$9M8;0Z0U%IDaDWY4Y0&b1wQ4YXl4GMN z=3%y%6jXEQQ8=%1f| zLdJBTFOg>uWjJ`Kcl<#aN#wbUOO)|2Jp+N`!xN5^Cs(bLM^`RaW=*EV zIg9r{`nhEN8>7GFP_+P@{J^201Z$V9i=y(}t7CL>+RrcytqFg5NP2hLDyX`U2)}fxo`Xgh&WhNFbxUF8v&4^ktovonKztv~lYP=iPtP&`#Ye`HtRqcn{LmZHt!3YU~N`l|EP& z)-R<`f?^LWprlDF9Z!~b*&&?{slmFHIOC@(kfzpi!Jy|ZDARNVY6JA7$H4dHeA2X? z)v~$40bS>b)8=^2{AfCC@-|@Rr)AQmdt`myd)FjqXTqIG#rE9I(zPr<{N9za79I(h zmkBCuY`FRyuvv6~-Jjbq%-Mhj>Gtp0y`!PObj`XQt~(Lu)?PAQLwC21$dkN|JkA`` z<|S@<`JPOlcDfV=jCHsaaSq%gzAyqS$`qo#7iZ;6EL(U;3>@HW%#K7$(aiC)^USJE zJ42U%fh_lnQ?Exj$Bu%$1AQWoIDvwPM+Z1~YQVz)2k-gSRlH|ZR{IV($Q*lvwXJF# zS@z`Rb(x#M^?(QHWTS>x$;)p)Ag%Y|4Y}ZIpz=;WR=|kBL0;w$BC_O=u5!WoHzhC$ z!@%A>_IM$4y7sf#F^Pl8Uw!Ri8PK#rT0et23iBEM5Ce|00UU270taa`P^H6ilBwNM z39qc@%yJyqHQ=*iO$t>LH2-|!nPCYGf$3ix^%Y$h_tLW2*M7Qb;rw5I<>GgT{c-{b{7d)Dpo9lnIcxB$xYgVh;%nKkE8X@TtMCi7} z4w%P^6&5FC`eeQ)oq1-y**${?>#dtTfNN-(P|=|Fd@<@NpE^AD>gRW!Z9(d+)}*;{rCtrX&>8O9Ba|lhAwqfnWlm zBmoR07*kCz0VlK&ddFaFT)+)C+6d$^;0x7U{ueqC|2CCUula>^q3imgPocY6!nZWQvN~ zq!#B1=id_o4LiZ8(-Yyq!NF+Yp};|zN`Xg}UfN*mSC^Gu*t~h;-~QJm?diuK4I|+_ zcmK!Q5ejb<1F5KfyktFQM9jwIgh zdLMe|Wpnb-Z%omP0!R`8jAx5V9e{>Gq7jdtl3j?$@r>z-meLf?{K=#I>l z@c?vv`>r#jJtx^8GuL5c*3rGTOGo&qoL>KV=IIxIdjE%y9e(ZD6Wb4b1_q8TKmmel zlwh_=@&ffdQpcPv+s)bE&9u^$7d&9F+}F#ns7D#RGEx8xHC0itXmxTRxh-}6bJ23+ zwLbtx(3sIH%&=k0?KTYWlP_Bv7@^ilpO0xO05zz`_bs2l@K}jLv78g|;G$t|u5SF! zn0^9~sqGXXc~1LWqKe~Lp89!>`C!v}`~K3CQ(QpgdVLnQqY+HnOFSnwoT1IL%pKi& zSg;=Z^_QZ$3`rZjyJVTi{T~m%YK}N&UdS%BDO5usOP;%9vGt((zgtc&#n`D^``o)t zJ97(?O#aRW7Rabg0grdWJ&|UhNI=K+se76nJ7?n+?+M39lBM*>#$FxeNBD^H9WQYB z0fVb^i;Bd#Skl!bC+|350R)~~CH_MXgeaWD=+Ww4SL6YrfkR$$XH$@zWeUSpOv>n) zc9B3D;cg;H2mu%npaD7gVZtR2PK1Mp)+hhMs8R=4DR{^?Y^4-cS8>iOb+BJ17*e2I z@~Ep?J@Hs>^2Uqw5}4M5fB&~RyYwHNk3ms4SYq2@~_-ox!HNf%wkRgVE zwsXFoZ9dw()~ZUUF-oD z9&~)y+Xfwfd;Qe(vFdF_JxVa!T?M%xzPEPitH-zPaanpw>L6?%Fx*S#{AkrZFk8S8 z(viB3WN9PE=pRP)5BKY9p94F~#y#0zc52Y>g?S# z(@g0*P+|{uJ=FQN+plkAwqyu=737)hR0WTJ9(GZmGdqkBfGhzI+N$a|wpZ`mZ5;&O z+qTgx*}luRm*Wuafs|p}9p{HWh5!nPvVF1|nycD(GKV#5V%2+I=~Lg?vrj*3ju3tP6biW{}xItzhb#*BKi4#-S`|Qu_eFhvz z49ueCl^i5$vbU&`B#%Q{=U{%IgAIVek6C<}-A+V}qyaI>Vt#bgN&tqIvB1GjB=D#p zaM;VMLuFO9k4xUyVBrWS6b)$EY;b#ubY7k+e;SYh&(VT=&N_GQ8l#V)~wJP^iT_Uk-S zWImbS+x%wyZ`@He=e2H(ymu{J8o+*{43_g=V&n-UgHhkwqlY=WeQRswt!xM>nfi-x?nF6c%h+v3uL%Hx7Cfr4uwz@&9%9n(^hh>Z}y!1A^LiQ=N!13oF7Fj^l0R-O_ zHld=I#U`{ZWbX>q7WyS}KBcvIYKi5|JAlydQ@=OX`duM;PI}@o(^L{A2E`_1C0S8L zVZ2|rA~Q_A$6cr^y{P%)Yt}tLpeZM^^aJJ_5 zQVk3hL-EO3ZLFIuZnU(Cb1=ubTUJl#|K<(%);B2)ENk=F1H5V;-A+z#n2}yAoY|oz zXWsj9YEp7Luet}I{Bra5dJ6?ee%h5|w&aEM>|D~lLArIj?cYfJR)thugu3kfPapbh z{W(wkFC(?iAdYih0SU(a&DI@eUfwnv?an!Z7wd@)XGlh)P@R&<(1^#^_PpI6bb9f^ zGbkgDPhypDf;=UuCE&p`0FaI9G;28hdQ}>5gmUr`R|qEBq70hQ$HGRuDbqY zcMzeV!M*ew#eVVf>kpdDoqJ6F`yp`E_8IwP(ad0#);w;<|Geti86sfQ55W zI4MI4rH`&Cqa(4ZXBhL&d?EDqZ18z!gCH;d}7tt|i&l4rd=u@|-lmyaWQV&LLN zZ5IjcpC$kRKmbWZK~%NM&EJ@52au)iY(aygNF0ENrWZ!yARONT54@sa@;1+lNAf6D zVTBI>WW~F+UimuG!@xu8!6VCS@1SZK5M`*!N^hm^xz;r|P9u@f=yXEyNv)@T-KJiz zUtz$6_>=Pog8+%TqIypE>;o7O`gI*i!(d=SxcAQ3{PP#B>oq$0vM%k~q5dFNL8geX z;Bm^C7n%TuKzY9#uKe1Ze)bop=~;r=60uHz+y^qp!W|RFxu6jOr#y3Zi#8!f=EPob zA5mKcP=(CP-W8aiy~}JBriQC&ugv<^egMOQsVZpDuDqgxRoBkk@Dj`vc8E$xwB7}I zxjTd-rdZVul1Rw9V61VuP#A8W*`3dEq>fd)H{aX2L5qLbhnFAf$3}u0ZHyj_ux2E0 zRYL+^>vFfhblJC0PNUAZS1+1$ddEJGa|vyvKHP)P?v&x$ioDgSWWX`Xa?J;8=RXEu zAZ^IFRiq7qJfXKt9aF&bi3FXJnwyl9+x_J$u6p9|8$Ld%ea}Ckx}p?}-b)t5oWABb z_du!vgiDe1v5;*y8?>*WxM)>wVg5pEl$SP2Y)k+^XA&#EsczlZn&QQjE}Meujp-$7 zC(^@107bfG@x`G*h{Nu0xcP09DX9Vg4I5{Kz04s#MgXerDFx=%+y8COIO_s?hPuQP zrCRnn`u&w8D>~jy&`hbMf!aH0yVS01MFIp6Kw&Ed}F+xCe_eP11*Bj3*9*HT!xV zhNx{~6umZQ`@cV0^Y@k1184x6EHK>+Q!j@FaL@&*gJY~YhT3Q7>({=JouB&w3{s^I z?n8UZS`;(@ufNWI?_t`2By-`Xe|uxYp6r*R)kpg|r;GPq9OK$6K7Ha{z))3GGJ=-( z%5s7{Uur(j$1@;x09M?y>nk@M`RV$fuGn3W_r11_`e>K-8QT!&0h5T&C&y`%wh!s& z=IK+<3|$%e%_$Zp?NCGccci7syL1kzbA+B}t;bMyl6@E{m2byOs-i;L7;(r?rs&Ji zS+$u_2Mhav3Fnz28I=|)Q>8$l?kL@k#~Sd!UQw00(gSJRbA$Pf0FY}|XCFhro&^sE zivWm%NL6mKA6*;%W~;ejk(ejB<&T}+wB#$TNE=l0@RW5KyysY%o8^K>boH6mYvVwi z9WQw3c?FMnN*hwQWiBmDK^ilh!B}Cu7`XBL!4nC9Kvl$okr}V4_ePAefWau+GBRNv zFq;q~6~Ga|AdZ047cd(}su+bK1rJ7^Y!kK2qJRNIfB+4op8ID0qEgTZf#!KKoXxTfR+%h}Ru=^pu7UXi9$o)^ z-FO%-%#!*;&m96Z?(1J@4`oR{_~y#l*G^gZp9LJlI1eN5`^L>T&^~3{)W>=4Q_Hkr z+?Gj)&QX>&a4m*#+825rD{XMSEEDYeb*QzZurLXwg3XR*N(&^KnQjeE>p1N6+iNO|>rv@xW7}uB7CY0lFWrwHG}6 zDk`tEfoe+CQ+jUzgT=c)AT#U4YgX+z)~do((@=xJW1pz1L^f~7zl5Cf4HhH^W#aX; zRatuq=e64cGnisYAW2ymdv{29&J5LseEt z9ZqaVc`7SBtE}ELO5K$`48v?;`endaMdyAfo^9b)WkYroJ2B#l>AO#7|ISs0OE_`^^a1jGIAxI1oaU9a(l z8sDLe*A{So6f^-Eo(V~aQ_eHVmVF+lG;Nu{F?r6nq>N00+b+1UbDz0%fTBmC~OQ)R}fsk(u#M zcWYbI@5C>CG;1o4Z?hQKPcU@7@7ID8{){5Q;I{3hT(hlRXg{pqyhUQ)7N-6}Ab{G+ zv~APMy53TW7c?SO>IDq{`Ru@+4t3jRcDQy;_75ArUGk$1B2@5DF!5h>fb8!*;Gn}) zZ2O&Pb;V(J!!h|LuW3rK)%&St%$%&`O%3z0cZ96D(K=AU1F1v3t32T0zpNbafP3sg zWfgMIMP)^N2P!Mvb3?X{usS1vhn}~oN}PytR8~E9W-N6-mbiW>{9y*$+e)1B&evCc zdp)k3qVRVOz;2raD0Ca9sEm7oV9|iLl5D2_BbfEP_ zdS%^mtNPOVSYrd}la*y{8mOmWI$WoK1cRzyr&Ut`?yX zUz@Y#iJ|Y@`d645WkMr!wFCH#p)T`)3%SoK+p<4Fq>{G;U^9is<)l)d+6#_p-Q^5M z*t8|QPl^rterdzMN56IV!}JFX8}JIXgZ7w$-6p3V^$mLM%G=I6=%km&cR%FlE}6|v zOi4;UC^?YisyuNzC@d~m_}!KjPoMVb{r?U8gGxj0gWoWD97m0=Ys}u$Zu>fT0f%L4BlAy9NRo!Xdby@lzi$ifI!pkh z?@gSe9c2-{^*2)sg) z9M|%EFaP4Y@rSqU{xI*G!32@<$4vXetp*#z|K0GZ%^_9vh=7MSM@o=3CgoR>8FyU3 z2AOKkDlW#xh9tUfSI7yHdTgeH|J-j1|00iuk5X${RC-}3%eLdWmvUFJ`Q=eJnT0>s zx6+TC5#vn*k7t#CAVG;Lki(}?G5NuxJm81~8e*wwA_}>!tZ5b7KWtw233G7RRvw@d zh`hPIM4lIN%#^N+}toz=3h1WL|7Fkgsl;^N&Irsk5uOPy<0twrY0*e0`RdS*X*I-L|_3&$t z7b){!9JB9FBu8&72ghOhS6(*FTyf1irtWSDlH4qy0fco3rB(UM?PuGxAnMr%Xmk>` z`D*`B=6CacbiDLJHjk;VJYo9RSz+>TaikYhm%&_;TbyR8X8RTYn-+6F(fWf_@fkvcuh%Z^whQ%4*eYb1VXYSxq3s%b@ zQ!9_(dY=Nv{5x_2%$r*zvOg29Gr>BuTYc1jOHnj?hYKFc!08JGkIG6N)KS5}Ko^uE zM3hraQgQLpy#N~AN+=|CU?@j*5;`XHJ0E`KVPdDaSXD8493Tm)VYdI9KsN8l-m8j% znZR5^Qq0J=Rrd`rC~?#2?aKI(|{eA>6+02H(IMD>sdK-l#R{RPZ8qT~gY(7p9cxa7pSXAZk; z#5tV~{a8!r;NrL$)9cOKoNb*RI0txW4yi6O>toLDx;CY{Khhi97iy{(2M@P4FMn*% zK^=FQsc+qH(q>5l%|}ClrFw5G!CYEo@&|_EIK0vZWsa`5ZREs-6Q@-haBve3c;t57 z-BYFvYr|nBuWiE*8h$B5uko${5B33&ool!M*HvkA@Bjdhy$&3b8@{uo_gzB&C~&Y1 zc(i+|4)zW^9pW4PHWWm&ca#DT1r93Ohf;@0E?z&QSO3{@d-3w|PWUvG;L&=dmHwdQ z{e`3sm;~UVqg%QHRm|{~J$tuEuWNl7H|6eFj~YfjgD3-|4jSE6|?w1U)Ib1n%{=X`Tcq{P&iXP|QUJ3!JxKr4G!!@TrJdHp}O6ULpmDPDa z%rai^02DN^RBIz{1E7GAH1Mu_sLvpqss$A$o?k~y|F|BWc$5QxNN4l+iO-s*4R@R3 z8PXk+g+Sa_Owx#eo#F5LtAArN9;mcIy(hJ7yKvI~bv{0D))&j|&EoTIgsSrYI^Y3_ z+_ZXkpB=&6-s*O%Mg5?`aaBuc8C@$_=)QN|D$wNh%%2)ew~jR27b^XK_g=D3x1A4f zFSNmV3DJNe^@OvMwX_piP-=m}=2Rs1Mn=kbA^KW#vj8w!)Cg zN}>WboVc~$H21|<^`%RHk&eafm)x#mOcfSdYSNaF)ZtZ~pc>NaBB@O{SDLA-#}a4p zMhZzWfCrMtiERe|Au}!gCCog zV6K~2PWHW2ZO`MqiEi8ffbRI#3Rq6Nr=$TKNLRDYy7zIf zT}#0OwdRdKEUrfyc?eL5MCxJZ_pYNXP7|8mUato{G*{J-gBQ!Rzq?HCo;qgs%r54+ zXNJ2$rChJJlE-^>ll)#MiX_`n217p+(W=iwvG|jRiHmW&FW}+5NkxGJ(5P$DHb(=G zJX0v%4D}W?4`#l7Z@cH?Y-yzuwB*%7T5M^x{;?Y4IU|q`44j&6$cmJmJ{{` zB6WD}9se7?C8~?AN*&C@%an@kw$v?VB6olSTM3Ov?WJ~;cSo)HjAK;;4r=fj$~lx2 z+}tB4{VP}8tSV?ol{SEgx`i}ZBHM17_ON@D1`o zr+;2+zLu;48sp(@6!wf?H|t?8?9?WwPFh+$^{%6g1t9?soySDMBa-w&dA|fh-IIEX z+UvB`V*|fF@;ygQ6^o6CYAa99z*i!}+Y{tRMSjqTBxytg3T+60QOBfgVxMi+0La|z z?Nh?+A7TG@O6^;6KJ@BuL`8suR`~55FOOaq=Azp?J1svNP;fn90VwID?rcAP^s;Z% zNKTomfrk$`#MaRxH|_nnfQIvN0vZGldNb|PZUqnv9uXxEN`=%9sxncv5N8-wvJM~J zD?<-slJZ@YsKBTL;81mvdJjc%?~E?VgsGd#`tD+7);v;zD%AtwHZtC?#M|7i*?;{2 zg4Dom$TIw;gu~*G8{dzP4rVddezzlnERZjKNSIOiTXI9T`+*RNw&(rmywp zyz&AF;1L-(Xt<(c#+WXrQ6zz3XT|;Vr{< zzNoj-M7_0gYtBo@Z|VDis|M#}Rd@~8SCR0V-m4^TAKkcNVXI&OfDq^UQpB-Uzsd`w ztgCC|JC0qK<*Kv*13*WCBClm}Ag4o-t&56Kbv6AWm1cjf?1f>=&aV1yR= zo9HA#j5BE9JHDVGr)wa^?9!Z90Ek!mAZcQ^TxR%=NCE;D3>XlI7;izuXAtE&%9IK^ z^H)e2>Ie@&69yyds8TMF8DY{4!FuP(Qlb0!@0-})dp#iUnA})Xip0)g10)#~5Z5CS z@tcr5XbSc#1r7F5L9zA|?%GHix6Js@| zu6zA@Hq|>5XCdVPNUL^ly78kmo0ka4NoMFQQLozXTrb&sYZ$hG$IL)r-9g_heyKt0 zM!(EUD(K{m)u>2gP*0TwAPO3+TQ*6#Vo{S7V-KD^d-C)^;3o@S4uDnUUe!?s2D4X4 zB@R-mr{$VQw+<=_F1aE%5D7SFklH)iOsQi>s|plI6zamO4c9tSb|sl!x7I7MYYbm! z^9xZ<4caPo*keriWH%%o3FMvhsT`>zIjP_+>vmh!7wBAXK_fk-YHUbRzr8<5zpR1cJ>t5oVBh!M{_$;dm7iLgi^Pt_V1 zJ^xz;584bxvul(G6rrn2{~~n&Ae?DovfkLUI{PJ8HO|3(Absq&z(Id_B@(uk z6ex6G*PR|KQExqV#Pa3#cx7Wdq5_A!r#gl2%;-H}mWr)<|H`fb)i;~W9g!rd+Nr}E zOy~!XUvBHath8rUW$zr*bq;`(ca0qhMjVlrcV*)IKIsAHy@p5E!}zgbvHtsr^9~=~ zvi*@n`^(qwM%jzrW(&zN7wy>i^|>EE`ah!WRo%stpuP;vWH|C|QoCpt0`F5I$$0m5 zTS0~dnast4=ht?4vQ@Xn6ga6>#((XA2mjyoT{fS#BWd?g>>1q14<3LKn3hR=Z{67TaO%B=3ITzyB9;0S)KF8#HImDCSKUv4|;e zB?DY!@TmSYCT@?Fx8eV8BL4Zyt0ZxLzv%&apQY_tsI64`prz!$I<3<%>-odJPUVYT zO94ZjBh;g>1Uy31;HuOT2{05aLcxaxtH?@x#;5nct?t4h4?vH!;o&cPlWFqoF7Y3R zglUrvcYR=6Db-v>K*Oys!UkZG8Vm?-mJr991T&^B-MoFWtNGycUIGt411M=(Rkrkn zI-WluV*6LjX!$U%P70diagmJ|Z~z(_bxxCU;r+2ww&c_l(!jvVN*&Z8k_QP8?c5!8 zi{GEouiv}z1dSo{W)BSJB@YWEC)tq-w^Z<8Q>70i4>xHdClZwCfw=ZSX_szg{^i}q z?--%wRrSSrKjNXPXUK%#(x`l{XH=1-!D*jv&^ z{D4Ej!Xq-Fw?BGHSIL`XE)51ve~quexV`4Qyd)AFMpHX!2bHx3H0o^e*);}j%r}~j zM1g}!DhnQ{teCqa)qFIgfA81g2^wPT>Rwcwd?d|N8;q4YH~@L14>$i+y#5%}1rPSE`fA6n2V5082dl9U!kGs*i%&swdMaamlz(K(X;Gs;qTthi?cF5cv!8(Q0XAbN$*}ZR7UWoH? z*#N&i!C!^yEI)~2+yV^seR<SR8m{YcagV3c%8>K_CQxuu@rJ9) zQd4=WSLq>E@SqMafV2%ZeMY5^xD0Z=jr43+9yol=CXzae`>5;e#-j@Yd08QM{;EhB z+V)6x4RTv)M7b+M81<-&_FxJY zVU7_V01B5rsKp-(G_$^(bJltuE~Q+!pA72ZO`znf0#sN*u9B z8u@{O#ynRfN(-iL^B-3LLHby|dDoq;?V~C@!+#TJze>P?D1>y895hGql}Mdo(#7`v zg=X8Z0yoAY9)Ll+BiS`Ho30BS6m%JIacD9Cj#bo9F0%#(>*s%W!j9he#D%HyF*!7N z){mEn&7?;#h55}O1rN4MN2Ui;17B5n6yk$s#i;SXv^(zsqeZ2dA8K zJh4jjfb-pIV5z@DELd8dH<|6D@S38$A3P#S8D)Wn|DIkD zQSe~BF56sCWxnCRnX~UQvnc0FA9gy#ua2T1={<~ElzJdkY)^p00GC1Or ze9MCuENH2~;Rg&YmxOD(WUD@YWB(uGGVs%iV_7@@JN{3rx^28brU4%3ce(Y0Ml66q zQveOFi3A>aUA@${<8{@cvWhu!+`83@deV_HuJZQd=3@&2)gfVc@4m!&mJtU6g+u1f{e?*>7-tGncUdnj?k65w@*8!^+CXaR z653U1az0-B@x1!U6sadNXmEo--~j=bw*p55mR85d#w`+5D|b2CVV6@ZZ^h8}olzY6N-SMLEKSK2V33yEj6$Q)( z#R2o6Y;Mrf?Ov{9NQ+KP1un8gaw8$I#EVdO0Z!OXFuD&~mRYvc#2n=ibCfGFM|mVF z3^Wa-6|e45T<5lUNg6tO$L-dn6g$RnxjCL%vM7Lrz=K9%_kfZzaM7)*s0q+hTkyqC zj+T`KaFs)W!0#!c*OgN`aXQfhvGf1{B8Eu!& zjbL(yB&M_fd*Y+sZZiKQR7S4a%B^rOY&dO(4?Nnw*~{y<7Cv0oT@?r@16b(dy(ZEz z&U>$A9{>p!6m(@f-V`%%*v^+$oIfeB?7T^VYu-C=NsmHf#wv)Am6pkvn9Z-#eUj?D z8bAaf!krh1qxa&BwBD=gmm0kwb(HEXFL*d7B@K@)M;U zKw5A`Fe`X%RY&+#ZOIX<`B)d_Kk_vQ=6Aqm)QdZm5q_*Fj)r3LY^R01x&03GxGm$a2J$x7-okoyx+~T%$MaOSw4`( zv0=$pf~wX7&i@L}siZ(5?c@ZT7KtZo#EddN+17Vq|-MTb;%S77N0OEKL1pR-2 zNcWC>OgqZ~5DL*TvML24qANLEK%{@_Iunpo={6Pm=1~P^?J0R>tC=F-*&YQvHjgd{ zG@6rQ)31-4+amSxLsx}e;o3U9N0BA$3889=0t-s9yT~{Aj>C3P;Qcd1E?ZNMwvq?A zLYAXs=^+aM5i6mPZ7557=R$yoIw71M*2?mUERV@z`&iZqinRwEW_-eio}1pzl8N%l z0Sr{WCASbY@SflW5_tQnn`PF=+)K)qvjyLSPskcaAyKk*v{wYo&*ujM%dF%9fcWZn z!K0VWu6uc%wi&mrPul)VuW_4tkTw)N{Gh>kjwyIh&MTdG?HzcRQ9j;OX~rF~A*DgY z7K0fhiHPiR0wAJM5sn@yy!U3=Jf#l(kw0F+TL46;!AD{2T(=ruadp_RaD<6L$*Bx5M zwb^pdLE>3e8;s)zNk7~n%Mr3;enwHp>B_tDF| z5=JS&&_d#fV(p3MX9%)B3R~0r7|BQh&$psE}P+0*SNFFIg>yw-A zKBGE7!+KC<yW2Odc&1rNkEc*pr@9CzIRNfRQ9$0BUoX*nzPXR=SW-~S+C z-zLk2va~F#wKCb4Nli^PX|klq#6w9*Np?w2PPS|Dz7w7hbgL*XlD~JcOy|Q|mV$x; zlP`<6j9WN-12vZnoy|XFc_RE&VlQG3INvk2!$5w~Sjv=uhEKw9E5LJ6*luCK+C5BB za>L?!`A_5OZol`#LnDVZajMP*g$xm@s2TZe#0pzW^HD?RG)KA*F#FUXFB>J~l~p@?XzLefVx@Cfcn zojr3<@B5;TR3cSckz>xE4d8x$#i|K%$pxOv<_c)sNdTZegXdgL*u+NhPgzcuB{k9m z0SM`J>zcZC>X8(HVPWMb8^h?UAxTg-MdYJOtHErFV8Od zvRwv=0@h5GCBP6MWWWIp{cE zmW1#8hfqzW1kDnPmqkb(;y`p_ng3t-0tfriz#|fH==HldnsIR* zfNI6EF2!Iy=iN8wd~_ugVU+opEaXf}_CFE~KO-Z<)Jsn{X=!Qx)8+1`*Q;l*vyzEipDGIy z3U$?U>dh0t*tUJU*}iR?*}8SB*|TSlU2<||8b<+_C=v;x3^pzRBw-JU^d_8dHI!XC z>2l3?Gdu4MR}Ng zbyz_|fj~X7@|qSKombpH3t*8<6o`v%=H2NA7u{7^dkQrT3C{s&SYvrg@y2Qa4Y>y| z|7|npugU4bZiO=CYgqp!2OEeX-r72XfnWo`Bam90=}I1AG!N#ceKLJe@6gncQ9j7;v)9wtX5khN>qnhhH_nj%qU0U$^vxdJF25Me+!T$bsw%#{WG z_m8q9$kzi*H6Y$n9?&QQFw|)uNy8!e9&*k0y5|o5eqP2*V?v|-C<7>E{4xSL9AvKu zVb_&%AD35_y6yjRK;S3Q3LLv7v*4e(4GYJ5!2^&`@bCf#b*p^?&}bU0H>+WO>O=B8 z)kb?AI8awT_o`W+k`rCWj5ML3f!%`G5InMU(8w`OZvv1o?>JHk_7dj#AdbZEqN^TO z!B#s@pIKR>Sd`abnXbI}x4!@J=2Usvg$2RgDX9UEH;1?<$uV*Nb-^Q2RZK@4>3Cd^ zA#LC-#h*h-kLmt_z3wN?rytvU9|Ic&V38@RCDc*{GLLn!*d#b!5lR;61QizLQ$(u3 zrhznp>M1DoL?p3+02D0i1T17EYZ^6bWLmXqWjc51V%Dr#V^*$QX@LwCSN6`GW|ye9 zu$6d-=fMW@l`Ln=f|@r$&LHT8KpHQz&c(2 zm%Gi@v~wkgT-FIY`uxcPgdaSdeVDs>mCE8zdS9MN?lb8RvMsN{q)JESBml8qL_O6IJ}t(L1`4W-IpS0nBPX2f`kNzT$grwnuA`%9G!Kh#UNM@HXaYpt?0u==fx~WKj zCPx<3QBYm6hX4YZnVF`psJfsXJ9e1t>})Ustu)3vv*Q=0kNl@kvC_Af@j5`o@#ik9_+Ll3oS-~BE zf>-*WF0Yiq`NAD3AFeaz#<<0zmC<1L4^~E*_?*(0AnWITXTBGSV?ZQ#T%BJ-K?D7u z7dc_n?O!$R$(1E|dXNo|&Cy3G* z*S8B86^bc6)`P%_<*B0JMBv` z&i$X(N%;i1J#d6<+ z?UgWls34^)pw~q!UD^P^4l3(Xu z-jD+KT!anMFp-u?uZvKm+(X(1)^9id@obY;bacziw5;{n`CEc}l2-*%f?tG9@vpG$t+pCIArhe zH$(tpm#C-wL|xcr071O701*%UQnok90=QyCueC&8w?K;dr3)I44TBD`b_`iZ0u0W# z*_hq{hZ@yXpvmBPDRR_E*dWGS8vL~|&ljXj#P1VV+@H@dHG@FN2E0!r$FMDN*thxD+)W$ zfe0C_U-Sg_3fn9PI8ax4fg?=Xpr9jhuo>J@=iP*~K~K1Jp=?c*CBr@9*#H=Dcg5`$ zH(1nAsB;+A^DzSu>0)yrZepXTi71aPfpYOAY!s-yP)`xdfm<(ug51v~0Rw^nu~i^B zAW=X&1OVpFmC%`R8-{yXSsNJSk)SZ{dk9??c8?c5$7;`}^M4%t{g1bpovEV*Y{ko} ze88|BBq@h3{-jeUY@*mkal{dMc%Ift-2^B~9ZnapAD8wJvx_y+{@*sU8O69P{528%I)7(G>sjTDsp$p8HK%y7-?T zi2-9afB<0l2_RX!PVzyDU4d0!u_A!hn_-$hql`73tz@$AAYYpc{{)mowBd~A$<(ShF(I#m09gULmo zNxc8)@+1t~GtSfsqkqgwQ_x^OA*P0q&!#0>3nYt(;NeIf=Nq$Jc+WLb_O>z4bZtt# z=RabP1)z9Pn`+NCy?-StQ8377OP-q$~2qisq^ns=Iik0aQUaZgrFPK!O zo+#H?gqL%{;y{Nm*5OfCMN><8r47fnvG+WwqCC%jaQF&o15!qqSU|i5Y8sfOpBTXt z1Cb&One&YJQS~t5-y$ROpcs@1&;xAZNdN)%3cvx7;@M0Bjh}LQ#$6Zf)gnAh{6zjva?M5Qly% zYwZC{dEo;;m&r4KPGC7Ul6B&T1tWh$6g9@3~kX zQ=cP{Z2jtO(n4Y}!oVX+rCP?ZZPaFIgFh;PZK$X$0R~wzlJ3xewRL4(Cn_jq zwpvctTAoq&R>$R)_y;ORC8Rl|v^;CrwvCez<2BL)URJ2WkQO4T!MxX&w@pqe4B{+G zX##=(U`tUisd0R(NJQ}>Ko)0!^#V$$$s9UK*3Zg<-J@2}1ZTh*s8jIqs5z~#I%rd7 zUw!aZ^>f{h;h1EVNNTsGZZTd|Xgmy1fzu*@2elFouRKF z={&8MwMr9Sn}_$fZr5^YgYRyhEZyl32s=P)VXg$k!Tjg__@k@J!KId@ff&3QS@W^L z@VSOSJnRje!`O@`6~w6DPZ+8h^%ECiV?0D6;d%h5x(GGZdXY9*FsLJi5bLpY$r3B+ z#N)n5NeUi-p+o1&8icw=57g*2|6%zr&j)m9vAY0dJf|gTZ)1_H zu*uN=coFwoClTl#$%CpdlI4kb-DAJ5$N5iU*gp1|uAj-L(x3J+X&kAE($^%p&9AdL z$%4ejqYDD$y@LP_?-UITY{f%r;z#E#ncHZ|U357QgQ^s*+Be`@Plh$3F{r9ID`<_fQbgFC#wCQ@&{eS(f zH1S|z(DUW3^Mvsd9LLBWeE}a79#~B!*bkKy_74L8)(b-= zokv4)pN%Jxw+ed(DkFeRL5(Q&d;vBHDF7)7prb4xVgnJSyfC47HphYn;Nh`(z!gcD z_+4CYw7*v7fCqz985+C}cwo0!e%+oVe}-)y!JB0p;Ha}D$<33;c_+4GgMi3)BGbGh z=JOAnxG_%GTG}_jp@@xMa^Hc5zVyn^dgpwk4tQKBfq=(rrQS7wVZkFW<&_x&B#6hk z&ReFIY(Fp0`D=Yv4B9;;V=V5a^XJd65);KpuJ#Q^^GG0MplvQ{A#5PTT(~2CZ9p8> znF2gi_K?WdifU>Xv#448*I8fJDFr$`e}+X-8J9SYb9x9xK#nc#Q!d@wT&I6GBbqp=q*B z+Ll^DRRs^E4+x2bxqh0zpBilXMTvS-UUAt$f}zW6>~D<$4*gJMUhVtkZN+X7tje^h z9`N8xVWhJ#v%p&5PT0_MlT91IiC962Yib7dk;j-Li&ZjPW3EUU{lpNCO{21mnh`ZA zI8Y0r2EwJ58^Ex4h-wI9d#u5K7_b2wq=HEC7nOM(cvca;j$s^$1RKPPpMN$>#6XTz z1ffogck)G*!aQx}e?h!VtsvzIsB?p`SFE!+*E9C)= zf}puBA#s$^c?ZlXhbaqid?9THYKA;ccwaGchfxC>cF+hXMvthN`MiQvn#H6Ip(y zdD0yW*2GS$z%yAFvkH{kzl%7a!AD{?e$uj%jjil;CAU++P@vE=dR+Hw*LtcvuFJs* z?5o45TbOQnpaEboN@w)HK^R~(brvxg7}rrxVN<{;O;*~f&<0U^)e$eK?%lgva6r98 zeyN_ldfD0hBGxU88ub$fdF&cQu%jk(NzQMRV=RpXK)OiklEH%q+xq56-ApaZOn@y! zy;ULAnp<(?4FCuavbF2itGxqV3jvoSB41I%j>`XVg1F?P0Z5u+&LY@v)ma7Bd&+AR z_dYeC(cq_K(`HH?JExBThAFIPX3ML4blDjWU`RR<1tjmawQ0L%0LT9J#%ecEc;5!z zJmd5LkN7ZC5&j-FQ!uE&OgMCK6hDg7uVi~GdtD`O zS1T@iO`j6G1_=it4bszdVQU#B_ZIhDq>UeiX#*O#yt0o3AbOmz;{F|STgBT}!0deA z2vbLT7<%x*hKZN3Pml|1fT*ufjgj#dDdlHLqrN~q#AZyNZa)9)GqX(8P)J0?s1W$) zZ$E*7-%Oik)o_Q78fByAkrYt70fI;`RVDhw2SAgnTIYU$y~7WX3?zZbrAQmQ`xXUo z$yLBWvLG`z#&135eJ*jqeVKVVIA*mOtZQ-XhPQ8OjKra%3wb#F)nm7D6q@(E9h2Cu zau57LYG|XiG?5Xtx}Gv$cSHg-diSZ&O-wMBlSfBFv5GK?BQE@+5LMDyMjm_m3GHH^T<*50iAmG z?}y#*TgQNeS&2kM2uB=YK3l@i*(_m=m@RDhiTL1eaRC zg2zM^#ai}T0xTLNsPhBm)iV>xqgUJQ8T65#YKE$crxMWM1(QNVhHAI@AGC~p0szmm z=M$h&MmNQD>K-X=L4&IZzAKL!ie!Pe(MlOG*LP#NJudG)?%|5 zF=B+3mKuxA#jlzwr&_a9k}uAe2>R|K(cn&uw16B0nBlrhWO`)@sn0|8Wcyane$Cl* z{>M*U8az^RRvj+@5hN2g^ZxLV7`yY+&86?1x1>j5z#IaAVAJSyU)^HtAEYNqP}x0D zV^mciL({x0R|(#*K(TrTlXWbg*mos-`;#D z6C0u0Q6f!wf3YDDk-bbt@wmqN)jV3(yH1k&Hj1=@p*og04!pcDh7SjAOzaH=>a7(6cA4=RP6dFiAe$us06+jqL_t&B8JGpaY&5)U!ka z!9G)w`clX5WO<}Ab?vX$OmI@H3rM_` z959EAMeS4RyN7L#DWnl0tA3KahOEy&BCrhb2-GvL%Um4&)4xd4^dkG~BkuEd)mUV; z9|j%}@}WpjU}u?mudCbJ$-yO#N-OmI3HMpIYvQo6P3o{Z5g2A=7##M4A>#hZC?4-6 zd4~q+1Llio7D06A`WG%-XpPeTHsgAlEh--Xq_L=HDwWt!m_9ZP>i$g1A-9dM1@*1AN^I2f={O6TdXaKc9O234; zd~W?ICtg(#CTtw^L}{vV5{EvbN*)trRAE8Fn5BA-wf$J+oXGs}mjuP92gXS?t|FZ{ zj93XHbzf2OVBcV*Pdo&Y1v#B8$-f%a4fcgd0fa~zL}bHUd9i>9Aj8N#CX#w+1IG8Z z?b?|R9Xnb(3-ft!jQPX&CIP_MZZzvHQ_>PI;u_{-XbgSn0gm=^=|EX##Zbk8QB($v zsI6!$U@;+zDq4AkBYB)EmJpj&_rQ3_ebY+*Up1dR9}o}gA92+D4%ll?I8W}>i@Om^ z(Nc8uu~H8Sn!^x`4xgxTo6axDgR2uX!_hDwvP z2O~c@rvrgff)c9f5J%f%sbP>8!2cSi+&#+f0ao<1iK7%F?#2IxVfSp!wW2yHpki) z>fbK+;g8FL-6UpdO0J`yu$wqUGAl{8kswstwigmWQRc^x0FE-dCvh@{9(YE|{)Y0& zq8e%|(n2gB7b>b@!-mYt8TOdC`3H!*bK4 zVFMYd*NaOoDF6Mj&FECLHvUAwt2$^UZpb1@A$5?=SKW4Fxfd$0RU*B3=zQ6J+OuDK zHysVd1W|7#RN0X~gINCCk!wgCP4qyh2gr?KjT#uEF-pfm%%MRfHmN(RLV(7GO&d*G zO0t>u^i8I3*HG{}(#TV9er;}g=ykJY$8OWCNkfy8CTUE>=zgFP_6ZE!{CQb${jH1| z&KD3kN2(fdp!G$fz5AvIDj$ZrZ`zx<>;BmTW29LZY15jDEdZ$_7Q!~+ce#z_dddPk zFvB{jDdydWt}sJ;cXX@3W-{oY_U4jPN88wrFJ>(^Tet6!QG1aoC@Qu_=E}rIxHs5~ z8^mMa)=O*$z`-O|sLWz*Kjl4n!z7WGxl@+vH`eUMzDnGxdU_zXe|Pn?AyMmr-viIc zBXr;~NC#di_tz@+!4A>;6W`Fbc_Z`LW7nG@y=-$z)mk?#)f_qWAam(yqfJ)B3^RA} zYO`*mxVj1>7GGOo!V&{243)saSQ&Atn^ofhz{8El5CFklnHdjbAw06MbvT6POMIV= zOvjj@L=TkR0}NOal<0w~^Z*P;5;Yj>+MQK}_=3tbf(ey~alnIW?7=N-l9Q86J@Hy%Ob>&FQIkNCZB5o#nfAu>8n3ORvL05X zF~QB(q0eP~nC>Lji5`g70}0@W)-#FY743m@rQov^W`y2OjN*HXvD!q4JGNVfKJnT! zL=82n%2L8lDHh1^*{nRYTYZ3`vXst8kro(2BcLst^gO@ zie`RA${?-!9+5Hz_v~O^z2{=nxeb}ZtB1B_=a?m{H=4yOLknPHw^wa6+jqKopX|*6 zPt;s^SK%g$@x8jh1kWlwqcHp<_K|`<)}TwA306y>rH8u8c37~i=Uiel(F3*z62Ou8 z5USb(_?%khI!1Bg8)78@0Qb;}#C@QXCmK9eyr%BG@)UFBnMVp^-glqz=Iy(zyDt*T z$KNe77~OOBguCJ5D8RERki^9206-kNSJpS{PGX(tfk-{D z@BVR-T9Y_-p!LA7q`@!H=*p_8urUzm#~k5hd15iT);Yz8_330@y6ZyIsde>98I^qz zjQ(dWT4koZ^|g8J!|%yzg8?6 zfvJ=0t#bf7#{3{lKf9IqN%TOJ9!LO3l#WRpu22trEu}_KlDtWkQBx6*fV2T{M58>S zz$LW@<^FWh@#aq#9=A`WjA-qQbQ}rfzUM!%hIb6^M6jc}0z{ZnmUx${#FE%KN+ckV zKQc=*Nx4oWdn}}BTAXXhei&QGe=Ijkl&ujxU_D`K#FHc*Vqf&YAiXJbX2eRklkSmV zHfFtxMwG#xky$_8+A@wB)-zhs{qp#zf!z$t$KNe9mr3;cPb)T907SJ!bUbksFnqwI zG7<>V1=pc!q8`*%u>uD!)E)wL5al*|jwLn|JrLFdi8zk1?nvy!&;tbhov-DwZ^U8* z#(kE!3r5}~AdIA@!efYhO8vUGGv7?P+4S$$R&RH}tviYF{=$3!tcns5OJLsNRIClySSQ7?83K!fe8&K_f?{`FD`#5?fv zNk!`q4CObUcdU8oFBe*)xs!|47H8H!R8L4+Bx&?W0MV+m$FY?_$P4seMX$3LIX^x- zOE2%a#CDq16h^TfY{?PPitmLgju5BIb z^@;Mes|OOmQM=xEyq?ze^M~2{m`<7ZKpmp`c+^ykuo+!5;XVKj7FIi z)qs=d{&KjP{C~d=sjEEC6A+$Rq(N$zT=(<9&ySKNvcjF8#$V0L)_pwnj?@WG~W&9BDR3eeF0BJ#aZ zvh#i}Zo805V!B49M|u-gN9lF`HL5*gUAT_CRppiUUyngv?JLf?uVhWq!vrOIpi~be zB#u&Dk~mOK4>XbUt|}uIH5IydJcpDiV$cOd6hO{6YKZy!)u)wn`=L6(8?lj zo-e$tDnq_Fk^?JXrZNwlxTexQkN}QKcU`T$@N|9hSfmZE(Ydnqdd9`UV6kbH)zG{y z-c!t#QCkVmv8jKPJ`h)3Kifz0AXdYZ{=8H-g~ias2RJ&Fx=G?dq6eHFNB~FTQ;4Mp z$TWaQm8Dps#Zk5R)h&#YG31hWs%fLxlOt+7YRbB6yXNMRn|~EuWhD{x(a0;QkcOl( zMZ#6Tq8(QY%O!xL7QXaKKJpm3&UK-R#V}65pP$Y@ zaikgEx3m9nx%&hV;>OEDfLu+bt0mnEY1kuyM?@pJ2Q2*8RJ4zLHV!UpQ_*V^mX`6Zb%abOlhp6bqlTIet+KpDN^Q?u zyx6?`;m2mJq$4Sd3X2K_P$d1jEX!7|bc>Qgqf3VlWmF(jUGU);w zUZM{*L8SjU=c-B!2s~MGyGnf@RkhB<^);^t62K99r%%Z0d^VBIPa2+T+R7B1TP0%m zZy)dAa2HvaPIC@BwU7W!cebTifkPP`s7r{!b?1zY+J%73)c?I_rq8ZgSEC+Vuw;o{ zUi624AUSZ!>XVFn4H`_h8Y6a zZros2u32MNtXV4(%0~BodXIvFLNo3A@6ETfXPeQ(hME({jy)jMSgo2iG(9`FGV_>x3=8L#~c`Lz~c@ZV1dKi z5B@+(d(LAV_m+)yJ1hb{Wao>uibVNZ&;ti5aFCg`y(}24H&x+1O^|ErFsyp^*}K9( zgJgV<{nyp6!_h*+X4$A^L?Bozedbu)aJdF1=LL`BN1^cxrx|m9FsPG`89mC395T2{ z_6XEy!v_tp%Pxr>nLcN(1&bX!v)!A1F@1(Pdemr>Q7_#+7O#z6yK}6qW#!tnj_qZe z*bItHeqn(rmMpkL+t(Ao1Av>#l(|itG%~GPv@orkHxK*%v^|Fo=xR5^)Kwx?(5K$m z4IjhT%VS=9>y(S#Iagw?C~-lJ?tudhIQWq7ljYa4XfE&hvi*`QFUt~38tA@K-lk&x z%g#5uhDCBt5gMh@gg|;7qav$m3%y#m#_^XG)7$Selo(ErM zexj5y|CZ$xyHz`XWOD4#+~P3erapizuS>8+Fq0ijty$v+X2bh`b1%uyFEI0$EH?dn z_6!?6y9MIB!6^Nw<;!KZ!7XN(NF~0>izOX zQP!^0_7^vqwVSqw**RK?%dvL?Ej#HG8Fb~_&CJX+jml8-dGF=lW=@W6CDG}qXS@5$ z)R27?4gZwoNLc_#5PhyJ&&cw;EFK>L*-KDZ4;&~G2LK17?@5CvoZQ}=amE>Dndq=z zeRZmtDh@c?Lyt8~RxEeR@{lYOWr<|e?j*;pv~m4!dWV6A95-*j{kDPzyMO1WmJ;3V z4$EWprlQYuDpa<6i=o#`X_5^WSJ}NqfLD*so$V6Od%peA#}PpzH8sUFYLF?+zrL&+ zmU|S!p&Q@hS_2YB*^jeZ>O7YX3a8Z9)Fw}*0+;+28`=0;cWUAKJb7lscqVHgwx=k$@*cTC{ zGVgpG5sl|juJa%E1rOHspRXbNbmb8|%k@WOn$e?2n|15fnK$2@Y2FDz#c(7l_BaEFU^us-lsd=Blo*owR6Ko)w(ezHPr3`H~ZbMwt-l-sJFqA!2qiOJ^M$rr1RB~>o^mn=h^i?5Ki^{2V~^2?n=C98=OAJv_o zWdr+0ZKgr`@RdN-H$ORD38QhZr zmuSGjaZ=frMLvn+Kp9w;^+?gqea?wD-dGfN{+x5pF}I)6L64#7uqtgmkXVO$V1EY= zKHOVqY71E&eDGD%W5^|@i!4KjUSeSUUw-)|r%Tb`!Gp~wZ~V!044vVh_mC_Y#IEDe z_+crgxwt@ji3sQa%yW-Sk}VX{wUro#xg4vqz#%#=xBn8r;dVuZHpstq_P7(x4Hx~^ z)K5<-*MXq1sLGN=>WHSQ!hW%9XNfo+sS!SR+~i1QYRIuyc#h8{+yC6TbHg6#=9_Oe zho-xSZj-J3olm-r-CG;`bBEA2)Js+eut7F{SZmBdq9z~QSvZ=ov?snPFr%)1&Ws&< ziCMaIX{kPI)25C2$L%NT@e#6tSC(j_jk)#KTlKiRo<4oLSE2cad!lx3AemXhHPq|+ zsmCj__I_Y^RV66)9_ZS!qhu298fGu?F?d_4b(fYu2FCGdQU}07d`mR))$4tI(Jnbq zkE2akMdKfQ@SkDNKtJAj=dbiwAK5rbcVbv`9ia2EEDL0LTb9byBbV)ev_F3s7fN^i zf-V~(gVqJlUt^Zfm@J~@Wbve$Y`*$xvf1#_U(Ma8bu!GF5PA%2L#~pW^ z8C-HyAV+K)V;Y&3qEq(MJc%}T2>oZc46A2q&w8XjYAjR4>NW1#BXOjOmr*=uj~I<> z8x85zQPfPKPy>E_-cN3KVDIBk9Vsmdg-~bVZfl(u+^b49d^U~}aj~RGP1!=5U=icR zITA&TE3=0VJM1v8)N!NdR9TxH<>Vc*02DvSGC`IjWI0Hd<75G>o|0vM=DX6o@@ap4 z08}J*(fm_8N?!BtCYyr}qVL10p?I?(R?d3qdV^N-w7cFjH{N(-sXxsrB|1xM@w(@p zd%`Pn_BNDcVqG1vKQrt3+! zn0kj^VFIF}WJw=+xk*0wQjO8e`Faj0}CY9;gCqZgTPzx~#%TD8jb@892g zPDOGH<&SXbrPr9}<{NXE=%QYE<6L{m?;SBjJZ;6x(SS9iW^8PH5Q zug3I9MQi%8SLFdu=ONQX_0c+lbXL(0Aa~RzaW!RxyJ+g4P51VpcM|FP+`Izw*5`A~ zv+sOk-kUbh9brc*8|hf@F0IWIx13w438Es^w?7?Quza2Ab@~MBRb{=f#N{^{ty;ZW z<|t_p^*iT%04%M1?=?kI(KB}n*Lw)hs(jCWP1^)KE@0rf^xH?mRI;f1dPpEJXdv{G zEUx~_9x(=G0S9HHRO5xLY4}jURuRc{Zffz(WDm`FFA$khH%_ z90TahCbArR>Eq_|r{|h`Kip=1b>F9^�@-XP~Bj6QQTX(O7dL$A}d*Gp$l9&e$9ii?A0 z-ml{JrMaBBkWpKs)c*1ADtihn6NYLx!!=57E?A`h@%!BF(y}=aEVZ)?~8ksul8t@4WL)*mKg)m!I29kDVqP-aw>*vOirG3mSc8hG_Z*FO5*?8?mxtA_KVh7U4R zUwPi-?A&Jl{m>O=;uS}jr|!JK{OjQx%uBbQY@WI8G;`X~L&6NlFaB@38Ty;M4C=0$ zLiEMKy*ruIQ#aMV60b$!aV=PyK$lnLT}yx#*&cY!XX36p_%B+% zQlu*{r#tb8`|`tk&G6yFEqb4L;)&)5Q8isMG|4>qz2qMmdz1Oszy3whFd8K}e!hP3 zI)je!kFWo1vzOg+%lTntBJCuA!}iJ_v~N&}psI>Qdqf3Q5n=?Z%qWy@!ZE!WyP za|aRLvNdem8aO`LBnA(k?T5Ty=Z~tVj|*RFF3ZERG^S%deC!en zE|J~|YQGOY_`uwI@4eO*d)Hle8NkEimh)Sw;(#QW^!`SdN`rdRs7Y6hES0Pc`^2P4 zlgv3^ePu4b>REHfy&swrp8L@J^PjhvcJ11^&(ghnck|klzcT|ac*MTxVZ+L@ZG|pV z#wL5USygp{c49PXgY!f*6HMk!b)naJ*H+>X`v$ZpKcuQE5ax%zK4(vOH)HfYQvhS~ zQ_s1RX>r}sneSQ9V7o;Zw3s2&TDjS`Ic#tbGptXiQYyD- z?W8Q!0F_la#AIYJu1Fqn00SVAC+aG6@5=PBaX_5+s3L0vaD2dXBk$spfB4~tv+L4L zH{E0&`{Fhu@@oS*_@OLlrpyCZ9%2R!8pLK8F#x^qzWdBX8MJN;JF`vpR(M^i0HXI~ zc|WY!0kE?_0>?%4o5bgt-~Ki_ARltbA!gRsL#-<6?zh&O-Y4H_?v#Xu1O@6JVe;h3 z_7#jLS4jm(;{TMwmGOGC=C5HAt@SY@F&#a}I!{KdDZZ2~-t%lDafD#QnB2S&P&9AS zz>GVrzj^7s@7&^tjT~xTo%)t(?l?5KCuC#k%>TK&?@3OwOZpvQ_uqT(J@cQ>7l~9+ zWX2!YUl^X~62|p0En2rXFTVDcE%V>6el*X#JhPde13*9kH2QU&F}@V=exGiKJSWAe3ABNdcmBv#zHON@O{ z2&n`+2U&G>fS`i_-dV`;*Iry3fMcaRDO|nr;>C+g0SB)8=Z{D;|CnaKUke)On9e=- zT-!n3pM?t-nlsONz^2(fvY|1TU3Qc?^w2}C`~PNfN|-ZejyUeTYBeU($B6T9%ECZ- zxwoGEeS3dXRUrmiz26`Ic)abqTv3Uv7B7!T?uDpPZoBO^Gh1Rj28c9ymAEX79C?|U zIdi7f@xC;@$kuV%Y1p;Or+W2V9L*@dbd4-=tv(eDP3MHrWBzqndUP!dh==3@0UD2u zW9-2_1>p6JSPJj?dqmL4%gHvowyx9a%$@g7maG9o4e>eS#*MSbKlpCBjGRN9w5VW@ zdHBKm&G>W9aId-eFVCCoUEyjO_hg(m@P6uk%Ad?BBIz*Yt7qgM@lFKmQSQpWy=)pE zezm#g{(qSryCSOrn>MO%Fp?L@q)_D%QiHnYMk=dnDepUUB@TIK9;yw%!Q*b`Cz9Qi z;}1UgV3=k6OmXq|sr1Zq&pl^`3TUj5@-JO~g!$;B$p+q|F=I`eHnn!v#~zz(=1jRl zZ6|oG{f&DZNEG&k><10+plxU@`Fc(~@e)&Cyr|lpbcbm?{P%+JmzZz9`9_PlYhpY; z`|MFO`QpLmCy^BnzT`2HRxa06>!wQ=Y+2=#XAXlBWqJ9R)ua+<>%*jrXHHoJLoCa4 zC+u280iiwOZmV?uxI;t=7^%DFl^3SC+un_$f;{i8sJ9C2z<_MXYLg-`PJ`npTqxl2 z)N`+xOV2;YUWx^WY7qntQG~$y|EI z5oU0&j>c=>0az!#_@QC`jmM^b5fOBb9^T8WTrX+Z1#rrvvgRAXeg%1fgLyz8Bn}T% zOkDR|aDZ;wkw-M3X8<(q-?vy1fnFk~mC|mB#2-KY67!n}zcf9Cqt5!*&E~AL&eGFi zYX-th2SH}{V$gEmP_8h+noIW?Og|a6h#+*(t8aMdP46=6KPUZidaEJ>?lo8 zlqLuY@(BovqNp@MKv4w54+W)H{Xlw^-g^iMy(51A|J==HZgY3JyCjl?d-+Xvc6MfV zc6RT*d3C}-@pmJVp|dY{ejma{$8H%HcToM%PaR+ z$|ZfCsU| zwX5>cIJ$7CeEdvlq2#vxn6*;yzHZX3TQ}Lg8&tvxxpL)_e*LIlM;LEs8DFk1z!1w$ zD1f8OvP)k`!N*?unYp@(OH4&#;AwScpCirEU%ql(ZI+_1GX%->p&iue`HPq3$w!;& zOV;tORH-Gj*xlCob4@A&@#eA4!$Px5=O?OL=Q;BimrU7mTj%o@uaLq8@~W}6d;c4& zJRvjBz5BI{{&Bh0C5gcNUw@X-|7j;V(_EG`=`u>`+D{0dB}Zs6NmIBUHgUpS0B-$# zQ%YrvmgC2cNv}6vbrFC3zG<&iYV#i%IBpK~Lk@1Oezj6cnVuy9-RN!w~2i6$tP~D5T{R{ zF6A2al2M4Q_gEPi{j{qhbug>+O*0@_iN})~;b^HRa{S;Hu_!miSKYgJmtAYe$UI!X zuORH=e!nbbp7~gwc%q|FF-7?07wVftYAZDsOnN;;&{dU;e}+{SErCOfOLs!{8U2t{ zifd%A%j`!*IBbPy&z-ZCI8OCSHVc%xc5>XjZbj++qJv=k_t%9|zjk$r#8$H=5a|Nz zs-nyp(#n9B?~^aOH>eb(iA zd{4T5G)=ynyIOTaWZb*^YZ4iCR_>` zXXW6QW%A*tqh#sg1&AjV!(map_ujbKQo6;v5MwQt%o)>3?aIaFNJNy?UmzL2Uqw6& zkr%~QRGL%2Wx$<6IMgG@wHP8%ef7l(w6Kz=5aNjZ^6y`Dk`^sm7*poRazWd;aYt$W z;bNuFSo-lZa7G@B2p64X_Uy4TyiF<72q8392T8cV(?e?o@7-U3K5z4F_jWfhTU?i|^$ zqh3C_uOW7MoU=!MS$$k~oVX$Xq|Yt|uqjmjkSri@RyR`azSa_|%ynbRm|OG5Vypxm zTdRKb?Lya!@i-%w@%c1|$f7{r5QrZ3%g~QMS3REGzsc%(|FLLk+N`-uo;+Fl_U$Vp zMvRanr_RfwwFj*_5eGJ_eEo(GAmqm}Jhv+zq4QspTIJN7Ki#;7oIHIFVh-{QfrI8O zlxPYQNu3cF4Vut9dyZk>0>4#qXc?!dNy7q+PpqUb`$*sF0F5I)9E7SFQKjAmv;n z!B!|(iK(1{@;p7B(rtiHXvD*M-uAiH+>5CkxA)!q#U|i9n#j5xhh*WOJ7m+YBXaue z1uz=$l*Y(z-nb&$_eRU2Romrc)OjU(DpoMJR4*SUmCA%mSjh^KCIoT-131nBy*kT~ zPrs6~;i1yM-9u8T1U@m0U4cn;jCQ_cH)4FReK=KBeXQ97^3$C8F7t8qVvHE#D2T)w z?B+)w0TYf#U9e8C!ZTh&ZfrSw;4mB*YgUy%*EtBvtYw>|MBzO0>XY@Q)dSU(w|&-( zspZ@ipCl~0YnLMl1Q!5&Khy(~aPVj&9LWZmxjdZzCu$L`zg2I|X{}ZZYpXwC{I+4k z1|i@B{@A^zFCbVA9#Jr*hD_EJQPk^U(y8M#O;g9X?P`zwX zVe$s&FI`n$=j%aa)@?r|lV`0!bljPs2k%LateK>AvBFZMP=49EV~^}TbV6Qxs(}pa z+A_9}gu=P_cNfw>PS(XoV$$^W&wzCQk*=Lymd{2j$77cvr_V%N0|yk&mrZd-nqKMh zqWQAxtfb3GrY{Calvl0YBrT!$`DyliMVN<8o-ZGMvp~8%bHChwPZ{}h>jBB0GsG_a zi|GV8>MZ_tzAu*xI8lTj&r5DGD}o}@VK5sUY;A-iW{~y{Qr5ZRtf(XP1zNQ#FMnV` z`q^i{!us=3wI5KoZXXJS9ZJga+xw48vu4fW?23-c&9OvfJ3tGhAmLC`;rqX9tjg6s zSv~FrPGXQ3zrVqVSUY6y5P1Nvwn2k1sa30%vgNn$7f!P{c9IUMSTRM1)Q@1=w0C6D zqD5Yb2AU|KhRR7eV%*T3*HY+#w9+wI$oOJSrA;_ZB1}gzO(5*^q|3c=9QHQe&Kc~l z0hGi{8tD5#Lb86xVcE3%h@3fdT3R%yBriSONlF%>dypGYw1WSTNIWzOCWco81V?_5 zs*0+N6PO`i|68h-DI%M9AC>7p{v^Hnyd#B*hT~ccgcK=forLGlAx-WnF7sCJb17?B zEzCO48(zuEo0&1N4Et|BD)$|w#S4YVpw5rWOvLt@xAHGoW5E>ppHyZOmptDQ=l`bR z-Kr~4gvfVE0z$$;%O7$a+7ZxMFN3b1f{$FUDvFUOPmJM(x92Tgx->5TCCkr=+REY6 zCFhj*Y5;=bajOS+J~ZU$=FFKR^XAQmzlcbQ61i2lk|&?6BeO^TkGCuD?Vd^LT2kUT z)?s3(s!KI-;zVV-78Vu;v$wIbYu7FrH*TE#xcs6ln0ZhHDYZu?CIPE@|%(i%>sVx6Q#a5Za6Vikn^{YQh_TAHHmsFhPWP7FPi9L{1J!- zxBM9~!o66E_=}?QZ@$W?s=l_eD&_x+nb)3<8M&4XbC&8116tqSS-|SjUh5pTO`_QKbigoZ7W} zP>HrE7Uv#A?b{EMvFq^tIp7QqNuFqMs7Z-%a6Da+YD4E#@R8or<)=Y6gl_uVw;zMp zDzl6m&=C8JKcLuYRwi(}*pVaW%kTJIm&EyMFB>(f266n$PQeXcv=g`#xL2PTN3KrR zAQeY)GAPE?sDDJy3?5pqPTxmu3d}3Q!8c5T85cxHN6QZ|c57KiH$2x1I=;J;wibo zo^1!@Iu;S3h4aQa^kM}=gvlSEh1l{9yJXg~%_`Vo)Y*%|=)pO%W|SxIuO{!dYwoqX zkv*T5Uw_{!XP|8*7pRGV*(e(N4O;JL!of|rGCFlx+S!xDoqJDE49RzEi&qt9_LlgGPIXdNAPurk zm1P%HlNa$nNH~0+J=cnRaatGYd!#yFgSyYarcE#0n^wi6s#K|xRa>#zKCBX~25vIk zC!&7)k7NyG*$TkASGl*Ybn5#bN$325>1I8Kek%PtJ}(hRkLaQ>WR@Y_hm@S49|o(a zA(0KmR75<~Rd@r+ZWWPnR-%}S`#P`>n>CKr4T%atd5&A9NgzWu=`Qc%h(LU+)Yx?| ze*qt{iudkfU8RNCBlRk)6zif71z`npOT8*3L40;g6js6^FcPuDb#RH~cBsd=c;SM> zk_zvO+$Fh0ilj(*xYtd@$&)HO&qrTK*Z+JN zi)dWM%KFIK<(Jr7 z$x)C{Xdv+?r=dlPO2>hBYd~%zpIo!l9W+9+E819Io)48XC$${jfo8bxKVDb{4H{%s zWQczPB<3bgP-Xfb=XlGOEoy_O3JB6#v-1S$GGc`lo!Ian$&5BGldt2l)#Zm3Kyt zmrSriaSQlS=E#ys8aHVSg=C}(P&aDSXkE1xGDDI2=z=7CtckH%OK4i%5HbLv*cGVi zg7Y6mQZ#$k9Ljmbrc%TkNXAo8L`^io`Ad-b6SpK?$R7fQ zJFKp5VrRujY!;Lkz6ca2-ZHqyD3sH~Ii1t;ja=YmaF4X4BT}Piio}K7Bu#j290!pt z<%}_ABT08U+>I<8g*%Wm(Kv;CU!(;{KO>bu0^!KXgI6e6u%Nv2&O0u3DpaVTFg<1L zRFadpZ~;aKX8MnPJO8vY!_`YNS{i)%d^yE!Xz{MGT?7}*?y0}aU2pG6QYRdGc8(+S zF491xhmhJMH3Jutnx<@H*L@{b?+NDdEVeOSi3c)IZD{cPpoX{J`14v_aK@vTFsK-TmO64!0e0O!Bi%96t= ziN-c0O*A-Wil)XR5kXrI>I>mO{a8Q|U*D#AWbnL5DfjFr!mphC+zll1snmEALzF^l z0|!Ay*yYx~dQr7;<3{-sz93GZOG1(dK38%A&i^k+k06C14L~A=mJLWfu?a`Xr$3T% zU-PXEBY&CTt+#*Ljc5EEX29)o@xL}(-+8crad8_nC(!VEVDuJPSyaWA=y zOHR=*MO8MAgI(0q{UoC!jaEoB$So;Q99Ilcw1@^TYEhn}rhoq_y6OTQEVX(3fjtQ- zF%1@>5%UI1r-7tEluDs1heo|G|`{c4Mn9wT5lGzb#*XJVcj~7?Zd?gEUPSCZQuax6~XDkpuM` zjAulSfr?X4pb<$%D9|Yeq2(1t9aM;WGf>ckqfp)$1m@`;|5`bJ-F!rQ`X{VLBDW}H0#|}gj9ZVmGSl|T$uka7ZT6hGe%65Yn&$OEQtnepM;8L1)6B^Bu{95ML^ykH$}4N za)?jqw^gshC-UvDe>xfj_`he*o^trN_hs&&C*k- zRI#hMii$WXE9T9S6Ne7S zgDszukw5+>^_o(GW&zRDIHU)ylG~r*mz+-zgDXq2?i5!=+ML5^x~a`*b$t>T29l&G zgxrP}Q_&Z|6KKLw1>rf81ds;!K{(3YT{6jwskgWM*66C@xu9}d+H|3Y;pi66r;K8t9ONOtSqO zC}JX2u3TA#!=N$4F>F)I@EAPO$l-5rC={L0s*cxb)=Lv>)tBzrSiQ#-CAl15)K(<* zqolICOP5!r*+UO0qk;L0mm$tWu~>tCrDs1WU9qwfH*?PZGyYfM768NFd@@#De+$?j zJ<2Cd`d(&YWDas}^)ep0?nt&`>w1#Sq;$ezpZHcRAglPon>2v(56+#5mQAbvkdhTD zNr56^ZW}jg*+%H^G3y(C6AIGd|2iZtxg9bxRs662;#nn%;3iW@22ejvNyC*?qkCthskjN9yg+r)n6 zQ_&Y>=b;Ff+uVhBs?2Ti9a8*6Vn9<{u7s%|zl@ddMI?q0r%Cl`a2XU=adAKn+A&NF}5#w(_KMN}{n1$zp#WdGs-U&9p|XG9ez}FPES`W|N1przWq9v5U^H+; zKAy5rLUU)6p3gV-)WmD~{{8#qn{U36Z=ejftr+9_Peem^_}KHWNYy&^^(l|Jkk*<7w;}&F?x~)i zt5AB1Q(?ylopvA>q8-F&dRw|o8Kna`3r>T&4Fz10q91SjcW5zHDs15wiWp3{6X>6^ zZSC%WhL9QIKY&RCYMa=NmaX4qDR}MoBIlri1jBGLQ}2_6gM@`df{OvhsiLTh+y}$Y zxPklKlqH3tni#}(B#UTNsD7_htlLP|Z&(jsip8>R*B(im!;;dv9dqeQRixi%<1F3Y zTO()6C*Lh{Ti0FTNqF5ee0u%*9i_xm!(^Z<(b$DH{g8?xVI`7$i3Y|V!19Z&k|!KA zhdt!Y4stf?v{~dazi-DjIdS-))PA5T{2d%7sU9mkFTDQVP$^I}%&b-pC;v4I{^dON zJPL^HX{JdzxZUB8t4@k6XoW-MQK}?l{6M-?s&dsz#6qB#G5aC$@C2H0gyza7mkvkB z4I^-*r#6XI{?jBZ^4ufC#Jc6b((lrB#7D7#TnBwRG|-BQk#DsFAeG>1$4d|n9fXfE zcmj`_bL9fAs~oHTk35x^@-hqZy@Kl^R}G)^0mMAp;~1 z7&S?mJ{ooUBOiaQo6(^US;|utP$^DiLD{wd=s*|0<{tF5P*~bf(M^KFt#^rJcJA1r zWa7%3*jbTtLx(?4@u_rwdZ)lz6^lvEu>5lE+$A}Kpn?B3tXZ)c@30h}E%47h6C(RA znf3d>J#?@4TaC!QM^BwG>e%=LT%mWr26C7d;Xok?3BLtpmJPx|&XVtpT&U(kbX(`K zi0%A#p1y^f_b~@h3lf2e3s*^(0Yl|n^l4Z<&XzOw#gW;-Oa8$po)Y?a5iVW5A#J}{ zCGXBUBG_Y2R)I7aJjmauLh3yRi3`KrNX?O^A;qwKI7vwm_%A8>&I0AMRH7+hl-t2? zbkL{PanH6b%ATF}-|+$3jQ2z+6GNoKU-u74)#B5ypKa^w`c#V3nu_`g6Q~epEF{YU9#;?I02A{degmmtING zT>$UE3?oAwhN-(CA<=uV=+O5%kR_w$@?Goq?(8?aOaHg;GRt(H zIuac~PnU6vRYC|hJW7YX!6SDZ#&)U>F_x~An8ys*c`)LnV~x0K;W`;TXo@U_qt_Jd zzv2#V!r^ZnxRf26_gR-2dL&iqyJRzz(Mbhms=pyTwF;f<$mn3JscEu9-r2L?*(5g~&aG^d{0Mq~%Dq9}`OM0Ju{L2j!4=BUvwVP>TldRer`XTnW@B~8;D#ocIuDjB z!a*(+?~U(A@9@ZL9z>Dk*l!oKz>TLOIewTR8n5(xNA7L-pqKI7CA5~Jv){@^^Bk6A zUTWJfwdvf|)b~7Rzka8l`={+qS+f*@$06|`W>Coc&m{}wz|QSb>E1dB1ZOSMV?Fix zvuE(5a$#X()v*^)!QQfMCuIh_Z@U8-p-w@h9Z02-NX!xgERh(w4LeY*L=hE58o3ZM zeII=_z-3U(L~g?b5)SG}NPye{ITd;y6S%n(fk=(pr)CGIK}eG>jf7SzCZ~Y3qYs>v zT*atAOk8;U#U_#+Td+nPJ0)eHZ^;$vAY_G#7m$^!wn-*%KYEF<{rG9wx9f=1Z+pCrSzF#B-i{=$7$FIRDtW<@t#2u`Uy-%9G%Bo4-%?)RCT&vKT;r#PmkT4Lm-pP4c z&SQbVg#%-iDPoV+IsI=as$$YUJGwrOwUNFz&i}1!W87#4l73b4Z0BxLr!g6TxS?Rt zaOJGKdg%hWr~U(y!Od^MT`%XN&zNGa%&1caX{WoocT(A%%5ms-Oj$%tBx_j~ar`J8 z_+nPsx}rW(Y;y(IJy@OSYO#)7`O*BBAA646A?EckoRD}V1`&T5{VEDa1mccx6h`bR z5)Tps2E}89ToMTCHT1?lI8|jldg3&TX{m0%@XO$!5Zg3lGSMQLj_f?Wy zd2&c;>@!Xuj!*iIm)YMhk(v#wNZ4%-okIN(_amRaXq`1no`?o3&`DEUOYvO!YB1vj ziX+J-Qv9gJTKXMo`M!mz9c?P=w*TU>F78E3B@1715%$32t^687t~`11?rY2HWeer1 z!AX1SHG52F24iR&FiWDom8F}$SS$b-xdtG5z;aw%5Y`n!nyLo8@=7K>esJ1 z3?Nm)7kPxKzAhNNy(dS(CQ{k2aA|dVpvU=Gf6G7)fy(f`I>H6_Ja#8RFQY!XC zp9`)mO~?xo1>^ZpkHP(qsYE1VF|DXr-+`83X9(X9u1xJf?u$Y5PB;k<<>n@WBGKT! z*zO<=2u5mfAaTL={U>D1j1_VPPJ|^2C)}d1Oy%NI>7KHZzerwrsAU7GTCb9%hcZ1K z#>J58Y0{>ayahtwFqt*3Atv5+yqD7mWO(E9HJCMrO0Um;gnlDZ-7g0ufS1AK@!N7s zIGm%>d#RXQq#iI08W{MHVk>?Fe4pe_*(cwn4JfA^WGhRo({ku|Et2)&lFN9yW7l}y zk7B9}88gXW>(@%5@Z#z@%?{5aw9wmaTdUu>QN9}adyMltI;)V%9X$gv4?hK2avut| ztzRv(znkPZN#Ot7Q7(UxFcqCQ3x2c)@Q3odaUP#+2Q*d~nFxSegxZ0zi^v)5+qX}x zI+-WYuzwUJ98{{i6LqmqhO$sfbhIaElTLMle>)C3I2nEJ?~!32Dn0!l=|Aold7{T? zneoFqxqRW8zukDOpBG!&QVbP>5b8+{7}EXZUk8-}KLiB$c;s1G_$QfD2Si?U98C^S zU(-h|g3{;qBQ2>&EXa}a4Qf3IxezMMZ3Kx(-2RE!yG)34>JliAvxo-cNj=-8yI*}X zZk#*FSFo_;&KD|s{<41Zsv7s|=>1|VJJBHVy4PJlcWT+c@c|^KxowQWS{UiSlgB|R zy47X;4ERUz_Cs}P;N>JFUw-+|*eS4Ra`9}XJa?v-X1-o}Nmo?cy#fK4K)($tM2{Uk ziXVyN$HiU!>=swLjW@pyI+2+Uf;SNh%!D0Kg2xAbT)bY%>eW z)>K(AeXHzTdt6Q&JS*3(SgNY{+%CzqrO9#xOoFdLuaT!*n54ljic{vUw&ubds13QB zmsH-{_saLrg@JPV!y<#qab4eoxT;dD8zgK&eRM~RZmo7|)Ncd}s(yam<)43UNz^IN z-(Jb`l_V0T_ZML7LZG+#JMChLr`F?Akke2z6!R~x?=7b0os)YIk2)Vo%?)LsgC~5i zB4=_6_=7rnV6SA&p3|=6=H-BZ@>H_MHhJm=CoV(9CfLf9-_0#5R+BM{_oY0vSU1{oF3xJQykA?0=cg= z=~7FU>=`7yLOv;2EQfhH$>gc~iQIWe?LJ7NkrBEL0y(d(&iyxXW=O=p=}DPthZZ26qHx^yHYgshV}b|F5hL5;pS; zy89N%TIrOkP+8h^ep8K~oC0^@^aV&b4(;77`3n_=_|c+4E=?Kn`j>AfNZrQGWk|P9 zDl)E7;ZNji8Rx;Qa|YrTF5h`mMO{Z4r2F{jw{HEdLKocE^bz&(@dtJj_WmrVvO6Jw zGFSSIEdT9ig?OEPR&^ei2XK#uX!EjeN8N;7G0yEnBO)R!KMk7E((;QU3+gc}t0;6r zZo|`_;<>RkChJm0PM}#YLw1`$tDl!1sf7^iRJr;O8KG~;hY;6v%$vJ%n>_Hq18To! z?w7s)0K#tI-fQ9UKIgB$WCQk?IB}MK8Mh=WO{$^v{u}q#=_c~mp(nX`?us1Ub6WOq zjg-h^7i90|ld=Px%Z{~2WzVLQa(L%yIeq-1T)%QtGGs{yeaFA|Q=z39{an&!${?Ze zcu(&%W#+ycgC_i@CNN#vR8lF=-*WW4V?MnR4!(OX9PHnKeiK{_kw{RVp}hTZPL7o3 zxICvQ%dw2mEmWYsU#+u*%k)N9qmV43!MIV+z!H(Wb>_|+iud5)_L4wNOcf3iCWE<~jUR>fe(Wd{DeUxUkSll;k2jIg{jDbMNOvD;sxM_Q^7 z1dLzBI9FM+WlyjN$&x*XR75D~-{;S<#02QP0a7H=S|oqqQ&cX)1~ie?iczzJ0tlT> z^IHO~Xy~&+B4aUj8T2MokInkEDi)Ut@SBJal!OBN zv+oznfrAHS#E22nsZ%GFxG52l!(kAQlOQ5HVIj6+-#(eWeYe`7zmsry;yCcZQM<0fsVfITob$V(?+3pD9W~eJlp6DIjPr!ZeuPf? zBUv9BxquhmcuOeK<>JZ{;q!EJezRv0vno|8aF`x`t7oDj;j1&*{LQhu8Ay+M>Ni+! zyrke{xSavAsx|eMoFRE-=)`HtGK!W}T&+;iosh5@(Re?5x0m@L^S9dqX_g=NiAG)J z0T`EAhY>o`{DgeWM)i5$3HEPrg=Zj^8fiJV3#>be8&)ln9Ebugxt4oh+z zdlG2ns!4oaezcBE=>LMdZu}~H^!3p)d(|d+?%8MM%Tc40oEts^>V^Xx+p|Wo_xhVpxvQW%VW*b4#eR?{oRXVJ$(xp!$nX+a8_n8jP zKsV(K%(YMB+nBy$z06&+O|oUqApafSSsK+S?WrqOe*MZdIS)&zbnqL=l8+psg+CqF z!Q~cc`j$i?P$Xe=kJR$Tl)vS#2z45>M0cFJ{HLfY9}FSfS;Xmz#ryTihsJ%Gm9QU~i@fnrhp5Uh?8>Qu2W7K6> z2+Pzycgb60|B?Nt9rNt%hfEz+etZWWLWo$mB&SIO2@($OLr+s}!ci;8 zKXpBx|Gq~1wz?0Fwe6dIq;AuPJ#x9aZd^xxhlls=#`m8dd*g)1sy=2&e_6eh5-AHP z2W)Pg1v4IJAchb2SmlnsKnz$JX*W_~&IH4ay!~=(88&H#&tVJL&L3bHg)`BSGIN3h zQJ^hFic63xB5}3n4SMK{3{qz&8ob6Ily>k_`UoH{T1L@hSaS|U5=5q+hz9%NH8YkK z%QVqo-Xt7nFI<)hKmQ@GJ=Ktx0)}SyRgi+Ya>%jhv$AyLNVx${X$?4tdur8^@bGXY ztJj?~U}N37byd=3+|u)pKmHIBlI;*>QK`?BHphJih?6N$pm{S54#@ei-}DeOy$Ib- zv4VNLcZn6YH=@DD6nkla&R6Em|3^;xI#l%UNz|zOw2t@|2A4WxYYup3i8}oXL^LaxKf-~8A6?kaXU~fp?_4z z;j~Aj!WAj?91LzqAjQmXtU6Vp?O#DyS~0#+G(=qlDp#Y>hX%51L^c}XFxcVVS%V-l ziQjtV)!tKO%;IHI9OJHqXUTW(y;7)26G@L1GA+D{W7k3=a1W-WdU)26N_KkATifE| z3Rl?YogzDOXRJd)NfTxb*&yN~!PQ4zrUhlh3bfR9I@EDwLA zuVtymdCh?@G8&G51fF{XimD1>KH?%Cgb4){Cr2DRBDBQHhz*@IEd1|u`F_+0eahnvB$^oS;O0i= z21oAd_)Y;eX&G~71E${j3&b%`RkxQK?X z%=bkwod$KxD#sP;e}3dnSZDra7NGirx(P$y^c^uqij^s^ixT8`1Dqet=}n^X+YjH$ zj0rT{vVarS1Sv=~tSN~*6C@mQ&ylXdpK4j8?MNkA7=0>2Z9hAB{P&8@W?4c5_bz|` z^>(sCFh0nK!1=1j?e z)pAyFAA3rdmYk(ZNop$oQAcr65N+i|q8y*Zg!4phfg%|m;{p;~>QA@|rx`P2e9@6| z|G|Uu_19l3B>nY(7vs%YaU3*do`_ASG-$-GiLov>k6bX=MTq8guX)a;Q(UF%c~GkJ zHxLNnSb=ud%7NeCyPuDjBE?JT+a=hM5vggBrD4`LLt}Q5MYlFatrt z;lm^uRj3cGfV2;(5X(;_(C@Qx^7czl$*B{^^ey-+;}5W|E^r<#c`*@S zT&qkXeZA7w=Cry$PktNvI**h|Yhu9_u_+ff>k-*$M7JN&Xt{#!@>Bz}ieLGxxzkIl z>NOPM*aak47RXK`RNc|l$Vg#|gq4*7h(a>MsVyUv{Uj zME7NXPWw5ZAyC5M>HR5@Uu=RBjxq5Y^aoa<^1ZqNw=NhsX0qfjTvQh&*pcsvz8l){ zkD@7xs0`pMeFbTdJK9Vc|n)y zN<{J${g}Y-#}_aOhuMY;5caG0SaJ3h=1ZSOowdkU*XIln%5OSP{(`zFL601>_TAv_ zp4_O-0Mh+>2qLlca6UBP zDddMZ&(qZV<7S&a?nm;+V?^uC0_`SZo_+OD=mG0`_V*j^hM}D<`;VvpU+dL z#;O|H;g(e$cxWdOc0#}{Se0Fea{mgE6&v36Cdy4eC&UvfEmA{?wl!lCc)Y*fIdvF8)w zn2ksl(O_iSAz%NHXhcH~239-rI8u;k=!pv87$h74Oq#O^Et~E^qD6*+ z|3ZekX4ztWn&3zJkPH|#(XNbt8#j6$iRL@%x6Rd-J2PB!KwLR%9SAuGyMDv0>nX3r zRJ?A6QRlf0$*{7+@83KEhvi*l{!%eWmt+2tyVt#EADpq@O~ zkn4%~1HH(5eLBdVMy7`_$V|5U_fcS;_ zxV!ZwDym5|a^<0_F7e>fh4a$m*~jJh;e+N)uHuB^-PvYgFz^2i1PO=#b7r>KiIXNs zj^8PMcw;~4Zz{6Qx(Sk}JeX#Sbd)k+67rPSDp31J$054m>QXC$O#;9UJSamQog4qP z=z{WOdmlzME31(b3mA8*!{90EXjSkdlQkrRq=hKyk;)F7lu%rUA45=8H{jXfYb|A< zFX{VAGsOBbpVHsnV(NcBZHbWM(4c!Yxeb>u02TR7Xx*09Z?S${+^4>W;y9e&jh$<8 zLpbv2b{>wDm(ikwIza`D0zGunbjcYKS5w_0up@Ww>-Bs~<#T29z-S884Kf-;5aKxl z_HQqq-QAJRm*T0r>L=%qZ)lIsFr$soMG1Z^UGZ*trAI%rU%tm?y1>nkTwk(|RAy@e zVMqGDv}Z?Jp-x?i)^%7n@Q^V-xIee|@HuJhI&&J!4%II=#d^YTxABFx;i3ul<9+o~ZB;kf@2JA(?FwzmD zESQbQ44A*;cyx2eH~kVbz@&g4*zdjil3a&UHL-x+r9L4FiXyZ)f~L48 z__{*Xrnq*(WA+tSe&APgWb^K$aaD_TJ#BgfuFI89azmMYf4Ops<=f#zda)`eLIKgz zpU(SrYus3B)hY(1bo_r#2acbXR=vk6Gh97v{bFs1TVJ-0bojIb34oml*z4$X6;{Og zO!n|3N+0IR<$6-&XriG^*4a0e)Wasvu$0yMehGa%c5uHkkJsBfJNw^&V`-#+dtH&x zkC&wSi~pCNq#ozC4(2u7-BNIHKk@z@pZ92@nh+yxjV&}Q-&-eESH5rzrjLfQjxu^- z@J3%iI}+O4$JJINLe{&E;C(N?HxU*)uEZ;@K6pKM0Y{kj=kBegR@(cpD$f1TLy{3< zqr?QtCI7(coaS|n%a@nOt5=cy#pAX@i)&05u{G>t-A4%{>uNB6peErk%UL%aOp49- zt~n30O!w*Os6J?;m!AlO9=KU&_IOY%L-F- z8*FDs{FazQcN)jhzT;mU)zxK_c#z|GWB4>*nz_`;8tEEqZ$Ap~$hoO4H_IaoG_7x_eBa(7bV91c;hYm=M`u8W=yfFNU-aDDH zXkUCVOvJz#MM}Pn5wbi-9HB<+4?-_$is#G~u`fu^th0W{At@4?ORAJEV(;GLIn8pf zUWR|h+3QjT;YQ{nKGY%X$q^PFF3-1ZE7`)rBon;G^E7B61?$(B?C>JbfIx&KB=p(f z{cpkv(j14!n>jBW0?}BHM8*6kPd_b15CXkajgWXL#i?(4_MNX~)-o>E9l$Y}<1&}b z_G{!e>|6UX{0ZwZmXxQkeL0q)s6G4Fe)_f2_Z5E6C<_yyCFWIvMn)vR5yM1B}EQl9SA zHDT}M?CtP=>i!&{ynOYEk4G~Ol1Wf}Y;LVoeXY-WCQ{S{r_0c(QmI5Csa~$A&s`NP zl}#cKUz8kB48Q;QxXSM^Xo^f< zxX$XpP8h5U&Wt&CEFy6*fqkkzz>fJUsxrAoTIIO|n^~{sIB2CnB~@Q^{_=2Tde{+U;;)#BZOryOj|)gBH1gw76OOCbZ>T*d)_vPo^5pbQXOJ;VS}9O6 zyBynfPH`PWpL|mK{xnl2O`4?k;owezjT$wQLWtzcWCBHW4D85Ftf=UxsEZ!(c4a^7 zO_?%9rebp_a%Rugt0#|DsUq27*_Eeo;45m*Ti1`K$=AR9&l;9O_|};tV{#j|OKOW( zyD@{(RiGlv^*r0#+0RXJrKfMmW}-{n(FJKFl0`Wg=7T1;6jLQ8kZAP5CQMiG?hIIt z`~${$Fq=p-5ENA<(!`?MXrv`bFCnQP*7l9-q(I>?@w6Km>IDS!Sl6bp6ft;OF?#Bp zoA+o0!;tIlwwm?SmgU^5fyh=90G8?gn74yTICzb9b=z|nuc+-&pKVrCIkMT?x;xJb z>#FEum*wX5TT1V6AH-AZz#Z&6cu*ny`Sa(im3LTJn2W_3^*mgWGhP>WyW_UG+*5-a zS}}2##P#df%bRb$DRbw}RbsqXvETVC*!v@G`czV`4#Zvo?nO?WM%#gtW&Er^tViNJ zxSKaUH>_yZq2ESc#N9IWRjfnvXoi93Mq9p`;xgn6ojBQlc5pDJ@dW!MkSj5^ktN}v zILI0@w|D&j&VAW)SvhIp!4 z(W0n}cr$hKNshdf()bUTuU?m@`izrb|JZ6Z=KQM<#42%Q%sFL=Id3^JZg(cQBm$Ax zUxdWZ6Zc@djoORl0_KThC{nnv{jxeIS9ZcVANC5=vwVPUl@r?|{A|=|I9fh!=QP%1 zJk{-E3Z5t447mGN6Yp+!ZqIMx(MRaVr*+DJFTR$-#Y^gCx!Wo>uFelb zp^Od`;^qpRn>zUedIKmE$$3JA?AIOPV7Z-meD%)r((duPyyO#{kGdw?{}&;*ZpM(H z>sWm+Ma-!=Ter&ALx)uOc%M3RRw@dvqgBn7%3hYl`tjjoE zk9PYqmRGo^AEKu@C8GAU7d(kL72WJ;F&eu7bcDK&5=pO@Dy< zmUH`9B7BYX+1?bZnEeqUdb-AXCc+HOolRCv>?2_Xe3zSFf!J#Q#wfXX?jOlnri`S< zGm)dB#nep@2_}Y0zmD+esjTYYg2w(jo4h@%9U$3 ztg8I+dHVsH^I+B`(eOqXB2S-ICe^-*sW_k`5Yf?+j5-rfqE1s(MP1m0c`^DK>!A`M z6BTh%`n7*Xt{E0?xXoImdlKPx!7hE60dK!wADRcN_&EblqyDeD4Sxs>`+V6cgV*K$ z9M8dr!vuec2HWa3-jJAi4}0DhKLL9iZ|CMmc{1v}G=A+r#*A57A&7?Z@Ml<6y;q85GfI7mH}D#xR0J<6nLk z=IzYis97G&C*BM^jIL<`qTtfS3)1)Hrvr{_Mdv>acIz5l9@kNenpn?Y(^|Ii7fG>A zT%Zvp>+LywN}6>YDd#VF=L+n7hQL&|a-+ObwAkO0>fC-gyJM@I+rM9~P@a!fIgjKz zn6%%9?jvK?w2EL5v#j@3Y zDd2OBm^8B5u=B7y-eZ)^`SdlvHcBElMe8SR0d@Jp4Y_>&l3cxTT{4BHg6H^g<@FsJ zo<-7TNG%jeWzLaaGGzAeJ=h;~@tU2|rr&spJQKqy@tO2<+3TC<_E}^b8dT%~x1_m4 zv%Z-RM884vUH0oAx8ci^m?QHqe|X<+8Pv7C^<6q!FU7Hue?0|jC&moK@7IwSBf4|? ztbs?}fmDi*9CgZ}{NpA!-d26AYrdm_+z|@9e~3<8BC|k-^XHNU^4Yt+l%n2f{}b}m3kD$x%|MWF z-2Rtw9z!UCWZ~KMe=Jik4%9S_9be4o85aMCVx7BWb0nCY#kAwIGiX`K@rJZ=J z-F{GNwH+#Zk1#CQ?E^aWwdp%vZN6mJXZZW$vU3~sXwT$l6o5cxf?TFA#L44Q`Htw!z+kN_T1kwjrt9Iq8iD=y2)88^X@u0O;t+vBlys-W4Gtm0CZv7+U ze)?TXw|G~6SU{J87_g5s=8Eq*n%uezC*pe#zSks|nGI&Xae|@aNC*+Bz8_<)P5I(u zJJA@1>+N-&;4x{mK&#u-1h*GI9AA#L?WR%XXy9-SY15G(x5=Sm#swgs8;5((ifk1L-(qii^06V+-^L zWpW#gP@E^X?+%agd8S(+1|<5n-TmBlX>zmvh_&2y<}Cbi!f5&LWNu+&0oNP7k@{FA z!Az2yfk40WB=;aGWI&X=6hzvrpNHnQBi`vDvs`~%`m#EjR#Ab9n&^v>7M4+j>yUW| z0u-wxG?(FS9CqTtaO^aF?fTIVE>3pt+Qz4hVzFo6nIN@a{!qB_lnHuF3Gw{gUn8MK zLFQP^{7t-TQ%`1Iv*$@=LnJfHu7W8~4kz=RMN~a;;q3`$P`*~|zL@Ih5JQDc4ItM)sLe}g# zq;ZSZo~n8*-?MGA+8=!PR*R|Db)Q0JralQCllBb6pWjT{&zIas_W>S&zpzB=>kv1q+YyhFOQX%J~QRLUXRZmFXABxlx4k`u&)$BY@&)M5jqTXN`RlnQb3 zzs>t(HHd{N*ViNE{q#L`8IQcbyK=LRJ#UVg+{VA95Vw!Rmvd8p#sHoE!dJrv%F0Fa z?9J$q(-`Rw`-R|n(w%`I;YhmgMvv?_WXd9~LCVEKtu%lAy`fUMW*sR}t|Hj}1-uln zenK_IKO+8f*vo<9D!Y}GuH)@U@8--vDi>Y%OmJ!9FLHHh?BPTsb0T6B8SCoTZ`_p4 zyN{}*%K|y-`?zZxU&6ti7ZXb9>~4JVEi(y6CTtPwD;(LsSBCd_L(I5p&bC`|tc~Pg zbA9bFSnsyaKv2hV+h2iC1K5XJ+?H*-u1%#mou%gdFj*>rcxa%^+Wdj*a$k=WU1WwS zC^zj16u1qm3GNWNc|9@ndEl3rGh3#BZb6Q#VfE6|y1Js*st-?uDZWI51jFAgdjoo? zcr-FYsAS3J`i?zyJN>IKm1xRFG-yON2&ocMkZ5?Cyd+#6%drjZGS15*QF-_r zuThLLbHW(ey=AjnscM2jbJ{?-1@=iG;y*`mlc98XT=DHciI0k1fBIM$TNgEN79zRG?dGmcqk!6Np{*7^LIQ-z#{Noa79 zk30scvsE#eNwzcK%Qv2EA1(zCoJ#X1NR~WFa~phSyGiZ^=q&t&tl%~RHOu9_=o?@L z<|Cpvk)^-m(e>GnC!)cy8I>zDZe$G9u1yho{D2%-Rm1);AH4MoV>2jE;BAb$jX4)2 z2Hv;`){Tyi4#?Vy`@shqf6V-*IBv6_Ld8nxN3o9Fkc>e(e;6~;PBiG$%B=)~M8le` z5Tmm?4I9Ou+yN4sOCi=Cqnq47hLKK8c8kkooiHOG)e|=nlM% z*{tu4+u%G!;kkHEbHgpOy|+A_IRk0OKFtLOiHJ!^ik4t(&KRI^#v4yPB>Q&!6;tTQ z(H|)f(rWvK;Cb?$fgs^XzVD7Br_!8ZN-U*03r+8FB91`gPx-p3(^c5^+ldv&K_$Dp zl{68muiy#!YGlYz8Q*>P9n>*dW$oIvGH%>BtLwTItZck94I4JJ`Z#jri0s<6OSlJj zfdU0&_Uze~ILO^bT>2R_u{58bJ{u%_?tt}43<;V26j8AaMU6!Efr_avW5Ge+4T8yS zDA8I@hrz&2h(SMk>vb9X!2qEbx&fDvZ;sRo$$Vs^N-&#TXCO#8lIxp`8MjuNuhT`Q zESkuTV6GN*y@WhcBw`057;k2@i_MrZLy4^@nj@kf^UGp2 zK6kO7^s^a*ip7ln+p(ft11s`Jq4M-fWz9g4aHO2~*-t+TiG*Gu>MdatlWx2AO`mKdW9KZ9m%6{LHof9S-kYBC?nF}c@2l@4szSC+pL|9hZu3$sU5VzP zG-9k!p@I?>&HS*VOdi-)n$)XgF&6gm1auDKQNDb68QbqUIr`f$X%7NIVqCCbLDd~O z5OATh&Z!m&nfwfhDqrPm8ELk`ckBLjHS-oZCfj3dryP=C6k*?hO*^w$o(}E>)ErX zj2!uyOr5`0?t|lAVnXWFspRaHTk1LQyYD`AD~`k6=0+JaWtIvx?o}b{FFCnDHXy;X zi|`mgkY=}B&E19h;k=n9&FV%z{-Z?{iJ3qCJ7(9WNjLKrAu%h79KvZsqyw(S!LyV; z13|)(a^7&PC9gsrcs@#6JpAwz^yzcKoA~6ZQxXvwDf!{+U?N5;$;kz20!9Vv&`Hz9 zT!ov1Id>*XLJJp>9J%vY`-GU+^A?~n8RB+1W$fH$wQ194GJVk!`M6sv$&^8>vdvZr zlfQWRn*6$ay*%|)YefKvpgF%J5_aHorb(Sf3WgQ40#UM#U3|xRQ5IC_OBn@#5ao); zW=@x&-ym@|3AlZ1-p<-Ri1lJMShV32N-hwmSp#W z=&w1glQ~t-_0WsDFwQ-A3LR0O?Jj7QVL^_x3SD`X~wB#^}05ZC3PVh4({F| zb7y>~Pp#we!v`T#zbOTZgj;3y46T>Anl^PR4?g&y)TmKIKAN&nxGP{{!1+s8<)d#G zO8xrvRpLD+O`4=`Rk9rPDjtBbn>5%F`e_hZ?E^tVPY%Y;k?6L*94Vq?KUoZ&iZAWV zI@+j$Wj3P0u48G&&9=dO%AbKC;Yc~}xTvQ`;V+$_O)DK|{{KG@E26x4^LlNlxDM1H z@;eVXJCULZ+!oc8yZ<qQ#Tco>7 z(Br#fevzoN=Vjo)fmXi@7cNx!YV|1Yj}1`~CtWtTG6@I8cUKK=gzt(3F;K!m?uFtz zaxH->#yO|dk!i3I4*Cr_SR-8_c)a6gAV@e;&MT)Wqyp+R2r)l>$GIjPwA`^HTt^M> z{~5H7oJ2?-Mv!n1%E}2yi(?@1;Jr>FG=~n!&GL|t5KI3-L^q^cCy07(S{+`#=!mW5 zN&lfM7AP97tbKOw+^LJCdGqEf?8u<6=gPt3u0+eK6kuk_+MV+G4@;zN+qPoHz+(6j zik8Y(yT@(MOXmD!l`A6xh^h$G8<++I`hAhGvcEt;S<_+O=^tY1nEdI>9-~aZJ7*t} z{`3{Bn=)r0u&*;^&P8&6Dmq=c1&xsCg-qZIl3vAuzy*jwG9mm$Mh{{Tz0xIt&;*QO zD~_KyVJWid_?FA?hUQ)k@4w#O8cymo4#oDZzr8PPD^#ng+Dw@;#cIpU@ZrPZcW_I3 zeEOqHd3;Wy&tH;P27NDu3Kf!%KKjV&YVY2?au(*Zg~E$_MD}~PbH5@7(BDM^EvU?u zJ>L@vhW1U-^?W@N!E67WK>Ogm?28JmdvT6qudm|?)=RlF5F{Ka=iQcx>ru!tPtVF6sK3Wxi`Be?ldkiMR`_3A2Ku)Ad;u3E6_f8 z8&ki*^IL}43a2Ys7KA%{2K4Xx&Yp$j|MXM_Shk=<*hEAc8JUl#!%*185%x&96f=1O zB0Tm(k&`>Hhtbd<8O2gu&C-JC$gyLpsp+S%dg($LGq}HG%Lyes;Kp@FoGo?Y=3nNl z*(7_e+_GoS9vM4!tkkVrS2k|ks6IAEEPI`gMC73nk$y^jPUJ!& zLF8o;4?Dt&19?akl-_xu>qrIe#SVw4^4}%cyDqbBtACzxvXBcP&TgmLv?uu z1ST$M^hgW!EU&-*x)du`OnUX|C8yy>LLZh16DG*%vlpfF;K}lj7JFHfqi00l0p}Q( zgW`fGArJ)Ws7i=D6aC$++7XCBlbM7=dEiQ z@6Q3`1e7Hh^gbpr(E>S&sTi~|5TLGv^GZ>nJCAf<`&8cqp4|g*(qbOSL#1GG%AbKC z;Yb?qOY8dv=gR}tu`tif)9qZR4;y8TE?AnHs^-wd;ko$KH=O*nKtO+fUy zKCbxf7e#o^oIWLY!T6gT-T(jx6G=otR7=~olbo)mjt@Wcl5!9v!W=SWh%{)>K#9Uu zu3Rbi+;fj~@7`UeFWoHPOqd~8Nr*TIH4yt~aE?BB?FNYJ@s+Ej^N86p_LtwKUAuPj z*=L`r`)vimXxglqeD&2=j>xfS^GeTtE@LuJ_U-)3I@Q4t&l?`(CW_{Km>ihZFpdlf zFy9B?J4JwQ73+L9AHe)3Sl#w5o%5lKV3j*y27-hm`M=~0c!U^@tLyVb>r)c}(DH_e z*7WNjvPlbT9u4#>plHb(P`R6%PH%3IlGanOeR^2<_zPT-Z&|$(VN4Kt*BKh#T^}5G zi?$urYWv-H-&H{e8Tw@R?%k?7%Sx3hDSduiD~Hx^l3Pxq>8>wbc6{?z={S9}OkTWB zI(P0YUw-+eLdM4+UZaU|ojP@7)v8sBYbsg3lH|&hPdANqj68YVDx*;V5wqqt%y+^{ z3<&8j@Es{`!`aZ2Qk8tC zr~>>8L^p93?|>W``=Wn{C*q^I9epo%M{+!R<0gIGHpXSTJb1jbXCO#8lK=Z}>gEx; zpzL`hI!7FEb6p`CQ@=oBV(K}3vb+MKp)P^Q)DCQamvfa%s~o+dlSv|os7CxSTfSbf zQYJ23WhI_B0gwc5`-JX-ah@2=@a7GNXw7~P^So2PLF%+yw{B9lY+0p$DN>|}tXQ!^ z7&*5?hYm7%;YL}yX}{UbC4cy2wA60@schbLP$o{CDDB&~7wS%O;`z#zE2s22lP6D> zH{X0yaT_gO>Ig-COc)iH&YUOLuf>Q1S){GmYzSG^&f+GRqq7^g2Z|HP0qMR>6K8t^ zljGpLy94%Tng_e7Gu2I5u;>n)fgs^X-Y>m2hM(4W1lpd`mUWa-Hc97AbV1}{A`o&H zCg(tL56jGO+PWX}NW!5Io{ei@os8P77As=baVPltW8NIIJ1ZYnvW(Kj96x-(D)W|M zDE8V9G*y;GCt&jX$tRx(j}JZckm5dQHe0w*LFq7fid?!9+ggi6qhaSSBqHjp%$zw> zZ9^Lt7AC*^@{8R6zyq>$=~9_KeY!f|zJ0q2TKLe@q|M&JoMWYU#=N_m2XYE_&dXcR z?3eqW@CVHIO0Le^rcET|8ti@=x;zg31{Wb4b=~0c&YpoF;Yi-^pK_0JNRK0NF<%AA zzC8aJWfrco6Ax{puVPt2{;%~B6m3v{Kz)ceAmLy=lUvdC^%kQfK9uik-vX2C*s*zo zuI_RSD^*&ZAKbkQBB3;vUcjZ2^W@6qOL8{)w6yN0vz{p?G|N5ZY0gVgqwbGfkvGsB z2MLa;+cMiwtmg%edbt+7bcfAAkZ>gL7tUSRIwJk-8yL z%USsbpq?k7e4Qb@-4PCLA*5Tov$Q&Tz`Y}K!J@^43igA0c47y;%-BX1z8D7ZzUQK& zBFb#xiJJx|vE zwO87-X`^%(G~->ocrnCN<)vc9ifW$`5)wwkC0Eb|L?d6pB9araw6Y`O?{z4=IgShG z&SEGQjaCHZs&l78-k-h}dMdg@{rY4#kH&Y7VE&z(1)9NxD_W_


" + ] + }, + { + "cell_type": "markdown", + "id": "afe22cb5-f825-4dba-b5e3-3538f4afe703", + "metadata": {}, + "source": [ + "## Instructions \n", + "


\n", + "rubric={points:4}\n", + "\n", + "Follow the [homework submission instructions](https://github.com/UBC-CS/cpsc330/blob/master/docs/homework_instructions.md). \n", + "\n", + "**You may work on this homework in a group and submit your assignment as a group.** Below are some instructions on working as a group. \n", + "- The maximum group size is 2. \n", + "- Use group work as an opportunity to collaborate and learn new things from each other. \n", + "- Be respectful to each other and make sure you understand all the concepts in the assignment well. \n", + "- It's your responsibility to make sure that the assignment is submitted by one of the group members before the deadline. \n", + "- You can find the instructions on how to do group submission on Gradescope [here](https://help.gradescope.com/article/m5qz2xsnjy-student-add-group-members)." + ] + }, + { + "cell_type": "markdown", + "id": "69be5b2d-1854-4c63-bcc6-9b6258b7293a", + "metadata": {}, + "source": [ + "



" + ] + }, + { + "cell_type": "markdown", + "id": "859b3f00-a3e5-45d8-b504-22a84ace38cd", + "metadata": {}, + "source": [ + "## Exercise 1: Exploring pre-trained word embeddings \n", + "
\n", + "\n", + "In lecture 17, we talked about natural language processing (NLP). Using pre-trained word embeddings is very common in NLP. It has been shown that pre-trained word embeddings [work well on a variety of text classification tasks](http://www.lrec-conf.org/proceedings/lrec2018/pdf/721.pdf). These embeddings are created by training a model like Word2Vec on a huge corpus of text such as a dump of Wikipedia or a dump of the web crawl. \n", + "\n", + "A number of pre-trained word embeddings are available out there. Some popular ones are: \n", + "\n", + "- [GloVe](https://nlp.stanford.edu/projects/glove/)\n", + " * trained using [the GloVe algorithm](https://nlp.stanford.edu/pubs/glove.pdf) \n", + " * published by Stanford University \n", + "- [fastText pre-trained embeddings for 294 languages](https://fasttext.cc/docs/en/pretrained-vectors.html) \n", + " * trained using the fastText algorithm\n", + " * published by Facebook\n", + " \n", + "In this exercise, you will be exploring GloVe Wikipedia pre-trained embeddings. The code below loads the word vectors trained on Wikipedia using an algorithm called Glove. You'll need `gensim` package for that in your cpsc330 conda environment. \n", + "\n", + "```\n", + "> conda activate cpsc330\n", + "> conda install -c anaconda gensim\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "b4823523-ca44-48a3-94bb-f6e453d27f1c", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['fasttext-wiki-news-subwords-300', 'conceptnet-numberbatch-17-06-300', 'word2vec-ruscorpora-300', 'word2vec-google-news-300', 'glove-wiki-gigaword-50', 'glove-wiki-gigaword-100', 'glove-wiki-gigaword-200', 'glove-wiki-gigaword-300', 'glove-twitter-25', 'glove-twitter-50', 'glove-twitter-100', 'glove-twitter-200', '__testing_word2vec-matrix-synopsis']\n" + ] + } + ], + "source": [ + "import gensim\n", + "import gensim.downloader\n", + "\n", + "print(list(gensim.downloader.info()[\"models\"].keys()))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "83e4717e-215b-4c1b-b08a-9f5adbb52467", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[==================================================] 100.0% 128.1/128.1MB downloaded\n" + ] + } + ], + "source": [ + "# This will take a while to run when you run it for the first time.\n", + "import gensim.downloader as api\n", + "\n", + "glove_wiki_vectors = api.load(\"glove-wiki-gigaword-100\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "76ec38c4-ce89-4372-b015-035f4d682132", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "400000" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(glove_wiki_vectors)" + ] + }, + { + "cell_type": "markdown", + "id": "8c78dafb-f712-447a-b870-1fac6c249e5f", + "metadata": {}, + "source": [ + "There are 400,000 word vectors in these pre-trained model. " + ] + }, + { + "cell_type": "markdown", + "id": "ce2a75ac-fd18-4a53-89d3-26f1051c4ef3", + "metadata": {}, + "source": [ + "

" + ] + }, + { + "cell_type": "markdown", + "id": "8119fb78-d2be-4ccf-8c8d-31026563e072", + "metadata": {}, + "source": [ + "### 1.1 Word similarity using pre-trained embeddings\n", + "rubric={points:4}\n", + "\n", + "Now that we have GloVe Wiki vectors (`glove_wiki_vectors`) loaded, let's explore the embeddings. \n", + "\n", + "**Your tasks:**\n", + "\n", + "1. Calculate the cosine similarity for the following word pairs (`word_pairs`) using the [`similarity`](https://radimrehurek.com/gensim/models/keyedvectors.html?highlight=similarity#gensim.models.keyedvectors.KeyedVectors.similarity) method of the model.\n", + "2. Do the similarities make sense? " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "aadd1aa6-6bb8-48d7-a959-691e19d411ec", + "metadata": {}, + "outputs": [], + "source": [ + "word_pairs = [\n", + " (\"coast\", \"shore\"),\n", + " (\"clothes\", \"closet\"),\n", + " (\"old\", \"new\"),\n", + " (\"smart\", \"intelligent\"),\n", + " (\"dog\", \"cat\"),\n", + " (\"tree\", \"lawyer\"),\n", + "]" + ] + }, + { + "cell_type": "markdown", + "id": "b0331ffe-bf58-4198-bd1e-3b62a5d34319", + "metadata": {}, + "source": [ + "

" + ] + }, + { + "cell_type": "markdown", + "id": "4d528120-c1ff-4203-82b8-404b62ba6bb0", + "metadata": {}, + "source": [ + "### 1.2 Bias in embeddings\n", + "rubric={points:10}\n", + "\n", + "**Your tasks:**\n", + "1. In Lecture 17 we saw that our pre-trained word embedding model output an analogy that reinforced a gender stereotype. Give an example of how using such a model could cause harm in the real world.\n", + "2. Here we are using pre-trained embeddings which are built using a dump of Wikipedia data. Explore whether there are any worrisome biases present in these embeddings or not by trying out some examples. You can use the following two methods or other methods of your choice to explore what kind of stereotypes and biases are encoded in these embeddings. \n", + " - You can use the `analogy` function below which gives words analogies. \n", + " - You can also use [similarity](https://radimrehurek.com/gensim/models/keyedvectors.html?highlight=similarity#gensim.models.keyedvectors.KeyedVectors.similarity) or [distance](https://radimrehurek.com/gensim/models/keyedvectors.html?highlight=distance#gensim.models.keyedvectors.KeyedVectors.distances) methods. (An example is shown below.) \n", + "3. Discuss your observations. Do you observe the gender stereotype we observed in class with GloVe Wikipedia embeddings?\n", + "\n", + "> Note that most of the recent embeddings are de-biased. But you might still observe some biases in the embeddings. Also, not all stereotypes present in pre-trained embeddings are necessarily bad. But you should be aware of them when you use embeddings in your models. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "59f7ef2b-d6b4-4338-a153-77fd4fc9847e", + "metadata": {}, + "outputs": [], + "source": [ + "def analogy(word1, word2, word3, model=glove_wiki_vectors):\n", + " \"\"\"\n", + " Returns analogy word using the given model.\n", + "\n", + " Parameters\n", + " --------------\n", + " word1 : (str)\n", + " word1 in the analogy relation\n", + " word2 : (str)\n", + " word2 in the analogy relation\n", + " word3 : (str)\n", + " word3 in the analogy relation\n", + " model :\n", + " word embedding model\n", + "\n", + " Returns\n", + " ---------------\n", + " pd.dataframe\n", + " \"\"\"\n", + " print(\"%s : %s :: %s : ?\" % (word1, word2, word3))\n", + " sim_words = model.most_similar(positive=[word3, word2], negative=[word1])\n", + " return pd.DataFrame(sim_words, columns=[\"Analogy word\", \"Score\"])" + ] + }, + { + "cell_type": "markdown", + "id": "a0d900c0-3027-4b9f-a750-bca946cf7bdb", + "metadata": {}, + "source": [ + "An example of using similarity between words to explore biases and stereotypes. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "13f0bacc-ba70-43e3-a7be-07c263f48048", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.447236" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "glove_wiki_vectors.similarity(\"white\", \"rich\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "2d2e6671-c6db-4cc9-9652-faba038e8e50", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.51745194" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "glove_wiki_vectors.similarity(\"black\", \"rich\")" + ] + }, + { + "cell_type": "markdown", + "id": "19f04b87-5fa0-4eb4-bb50-cb21aa7ffd1c", + "metadata": {}, + "source": [ + "

" + ] + }, + { + "cell_type": "markdown", + "id": "9e6ccd3e-25c1-413d-b079-043fb2949090", + "metadata": {}, + "source": [ + "### 1.3 Representation of all words in English\n", + "rubric={reasoning:2}\n", + "\n", + "**Your tasks:**\n", + "1. The vocabulary size of Wikipedia embeddings is quite large. Do you think it contains **all** words in English language? What would happen if you try to get a word vector that's not in the vocabulary (e.g., \"cpsc330\"). " + ] + }, + { + "cell_type": "markdown", + "id": "464a0fbf-3a9c-42b3-b9cc-5dc474bc2804", + "metadata": {}, + "source": [ + "

" + ] + }, + { + "cell_type": "markdown", + "id": "f1d3cd04-30c9-43f4-9b07-6443ab4ecd7d", + "metadata": {}, + "source": [ + "### 1.4 Classification with pre-trained embeddings\n", + "rubric={points:8}\n", + "\n", + "In lecture 16, we saw that you can conveniently get word vectors with `spaCy` with `en_core_web_md` model. In this exercise, you'll use word embeddings in multi-class text classification task. We will use [HappyDB](https://www.kaggle.com/ritresearch/happydb) corpus which contains about 100,000 happy moments classified into 7 categories: *affection, exercise, bonding, nature, leisure, achievement, enjoy_the_moment*. The data was crowd-sourced via [Amazon Mechanical Turk](https://www.mturk.com/). The ground truth label is not available for all examples, and in this lab, we'll only use the examples where ground truth is available (~15,000 examples). \n", + "\n", + "- Download the data from [here](https://www.kaggle.com/ritresearch/happydb).\n", + "- Unzip the file and copy it in the lab directory.\n", + "\n", + "The code below reads the data CSV (assuming that it's present in the current directory as *cleaned_hm.csv*), cleans it up a bit, and splits it into train and test splits. \n", + "\n", + "**Your tasks:**\n", + "\n", + "1. Train a logistic regression with bag-of-words features and show the classification report on the test set. \n", + "2. Train logistic regression with average embedding representation extracted using spaCy and classification report on the test set. (You can refer to lecture 17 notes for this. Hint: you may want to consider using different [solvers](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) if you see convergence issues). \n", + "3. Discuss your results. Which model would be more interpretable? \n", + "4. Are you observing any benefits of transfer learning here? Briefly discuss. " + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "b7b35845-7976-4cda-b798-0c0700868fea", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
widreflection_periodoriginal_hmcleaned_hmmodifiednum_sentenceground_truth_categorypredicted_category
hmid
2767620624hWe had a serious talk with some friends of ours who have been flaky lately. They understood and we had a good evening hanging out.We had a serious talk with some friends of ours who have been flaky lately. They understood and we had a good evening hanging out.True2bondingbonding
276784524hI meditated last night.I meditated last night.True1leisureleisure
2769749824hMy grandmother start to walk from the bed after a long time.My grandmother start to walk from the bed after a long time.True1affectionaffection
27705573224hI picked my daughter up from the airport and we have a fun and good conversation on the way home.I picked my daughter up from the airport and we have a fun and good conversation on the way home.True1bondingaffection
27715227224hwhen i received flowers from my best friendwhen i received flowers from my best friendTrue1bondingbonding
\n", + "
" + ], + "text/plain": [ + " wid reflection_period \\\n", + "hmid \n", + "27676 206 24h \n", + "27678 45 24h \n", + "27697 498 24h \n", + "27705 5732 24h \n", + "27715 2272 24h \n", + "\n", + " original_hm \\\n", + "hmid \n", + "27676 We had a serious talk with some friends of ours who have been flaky lately. They understood and we had a good evening hanging out. \n", + "27678 I meditated last night. \n", + "27697 My grandmother start to walk from the bed after a long time. \n", + "27705 I picked my daughter up from the airport and we have a fun and good conversation on the way home. \n", + "27715 when i received flowers from my best friend \n", + "\n", + " cleaned_hm \\\n", + "hmid \n", + "27676 We had a serious talk with some friends of ours who have been flaky lately. They understood and we had a good evening hanging out. \n", + "27678 I meditated last night. \n", + "27697 My grandmother start to walk from the bed after a long time. \n", + "27705 I picked my daughter up from the airport and we have a fun and good conversation on the way home. \n", + "27715 when i received flowers from my best friend \n", + "\n", + " modified num_sentence ground_truth_category predicted_category \n", + "hmid \n", + "27676 True 2 bonding bonding \n", + "27678 True 1 leisure leisure \n", + "27697 True 1 affection affection \n", + "27705 True 1 bonding affection \n", + "27715 True 1 bonding bonding " + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"cleaned_hm.csv\", index_col=0)\n", + "sample_df = df.dropna()\n", + "sample_df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "384fa13b-83a5-4e23-9280-c4e529937143", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "yXKa7qfQXYPD", + "outputId": "8bbf5eeb-0151-4853-a49c-3876279bbeb7" + }, + "outputs": [], + "source": [ + "sample_df = sample_df.rename(\n", + " columns={\"cleaned_hm\": \"moment\", \"ground_truth_category\": \"target\"}\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "de04d594-7174-409d-a9fa-c2fd738e2208", + "metadata": {}, + "outputs": [], + "source": [ + "train_df, test_df = train_test_split(sample_df, test_size=0.3, random_state=123)\n", + "X_train, y_train = train_df[\"moment\"], train_df[\"target\"]\n", + "X_test, y_test = test_df[\"moment\"], test_df[\"target\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "73f63a73-0d13-4276-9e79-7ad60575a198", + "metadata": {}, + "outputs": [], + "source": [ + "import spacy\n", + "\n", + "nlp = spacy.load(\"en_core_web_md\")" + ] + }, + { + "cell_type": "markdown", + "id": "161a6ab6-62ef-4fdd-ba0d-5e7e920154a3", + "metadata": {}, + "source": [ + "



" + ] + }, + { + "cell_type": "markdown", + "id": "ec620e19-016a-4476-bb7e-de0c402078d2", + "metadata": {}, + "source": [ + "## Exercise 2: Exploring time series data \n", + "
\n", + "\n", + "In this exercise we'll be looking at a [dataset of avocado prices](https://www.kaggle.com/neuromusic/avocado-prices). You should start by downloading the dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "b22471fe-942e-49aa-8fb8-9d4fbf6b00b3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateAveragePriceTotal Volume404642254770Total BagsSmall BagsLarge BagsXLarge Bagstypeyearregion
02015-12-271.3364236.621036.7454454.8548.168696.878603.6293.250.0conventional2015Albany
12015-12-201.3554876.98674.2844638.8158.339505.569408.0797.490.0conventional2015Albany
22015-12-130.93118220.22794.70109149.67130.508145.358042.21103.140.0conventional2015Albany
32015-12-061.0878992.151132.0071976.4172.585811.165677.40133.760.0conventional2015Albany
42015-11-291.2851039.60941.4843838.3975.786183.955986.26197.690.0conventional2015Albany
\n", + "
" + ], + "text/plain": [ + " Date AveragePrice Total Volume 4046 4225 4770 \\\n", + "0 2015-12-27 1.33 64236.62 1036.74 54454.85 48.16 \n", + "1 2015-12-20 1.35 54876.98 674.28 44638.81 58.33 \n", + "2 2015-12-13 0.93 118220.22 794.70 109149.67 130.50 \n", + "3 2015-12-06 1.08 78992.15 1132.00 71976.41 72.58 \n", + "4 2015-11-29 1.28 51039.60 941.48 43838.39 75.78 \n", + "\n", + " Total Bags Small Bags Large Bags XLarge Bags type year region \n", + "0 8696.87 8603.62 93.25 0.0 conventional 2015 Albany \n", + "1 9505.56 9408.07 97.49 0.0 conventional 2015 Albany \n", + "2 8145.35 8042.21 103.14 0.0 conventional 2015 Albany \n", + "3 5811.16 5677.40 133.76 0.0 conventional 2015 Albany \n", + "4 6183.95 5986.26 197.69 0.0 conventional 2015 Albany " + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv(\"avocado.csv\", parse_dates=[\"Date\"], index_col=0)\n", + "df.head()" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "3425e59d-9580-4512-8bd2-c8c9b836df8f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(18249, 13)" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "6d0aa8d9-34b6-4401-8b91-77e1342510ab", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Timestamp('2015-01-04 00:00:00')" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"Date\"].min()" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "3b64f1d1-9614-44df-b625-52a77c00af9d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Timestamp('2018-03-25 00:00:00')" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df[\"Date\"].max()" + ] + }, + { + "cell_type": "markdown", + "id": "9dae5238-ac94-4b1b-b368-d972b6582d8a", + "metadata": {}, + "source": [ + "It looks like the data ranges from the start of 2015 to March 2018 (~5 years ago), for a total of 3.25 years or so. Let's split the data so that we have a 6 months of test data." + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "5d4d6fb5-1cbb-47e0-a5c4-34b66d026d1a", + "metadata": {}, + "outputs": [], + "source": [ + "split_date = \"20170925\"\n", + "train_df = df[df[\"Date\"] <= split_date]\n", + "test_df = df[df[\"Date\"] > split_date]" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "26a3b6ae-1406-48c3-8b5c-e7b65a041852", + "metadata": {}, + "outputs": [], + "source": [ + "assert len(train_df) + len(test_df) == len(df)" + ] + }, + { + "cell_type": "markdown", + "id": "2f5ed401-224b-42d3-a4bd-f67b60c3625b", + "metadata": {}, + "source": [ + "### 2.1\n", + "rubric={points:4}\n", + "\n", + "In the Rain in Australia dataset from lecture, we had different measurements for each Location. What about this dataset: for which categorical feature(s), if any, do we have separate measurements? Justify your answer by referencing the dataset." + ] + }, + { + "cell_type": "markdown", + "id": "ac17a187-bf66-4339-b5f4-3f79cb6948cc", + "metadata": {}, + "source": [ + "

" + ] + }, + { + "cell_type": "markdown", + "id": "a2b56b13-e2ff-45d9-b800-fb7006f92653", + "metadata": {}, + "source": [ + "### 2.2\n", + "rubric={points:4}\n", + "\n", + "In the Rain in Australia dataset, the measurements were generally equally spaced but with some exceptions. How about with this dataset? Justify your answer by referencing the dataset." + ] + }, + { + "cell_type": "markdown", + "id": "16dc1348-c2c6-46f6-bbdf-a77810930ac1", + "metadata": {}, + "source": [ + "

" + ] + }, + { + "cell_type": "markdown", + "id": "d3ab120c-6b2b-4dfb-8765-7367a9577482", + "metadata": {}, + "source": [ + "### 2.3\n", + "rubric={points:4}\n", + "\n", + "In the Rain in Australia dataset, each location was a different place in Australia. For this dataset, look at the names of the regions. Do you think the regions are all distinct, or are there overlapping regions? Justify your answer by referencing the data." + ] + }, + { + "cell_type": "markdown", + "id": "331ec42a-3093-46c5-b708-ca7716f939dc", + "metadata": {}, + "source": [ + "



" + ] + }, + { + "cell_type": "markdown", + "id": "49c9e680-d2b3-432b-884f-f05c3ed5e761", + "metadata": {}, + "source": [] + }, + { + "cell_type": "markdown", + "id": "eeb32828-c8f6-4344-90bc-7ec214e448e7", + "metadata": {}, + "source": [ + "## Preparation for models\n", + "\n", + "We will use the entire dataset despite any location-based weirdness uncovered in the previous part.\n", + "\n", + "We would like to forecast the avocado price, which is the `AveragePrice` column. The function below is adapted from Lecture 19, with some improvements." + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "87ef9e53-9170-4a0c-a249-7cf0715496b8", + "metadata": {}, + "outputs": [], + "source": [ + "def create_lag_feature(\n", + " df, orig_feature, lag, groupby, new_feature_name=None, clip=False\n", + "):\n", + " \"\"\"\n", + " Creates a new feature that's a lagged version of an existing one.\n", + "\n", + " NOTE: assumes df is already sorted by the time columns and has unique indices.\n", + "\n", + " Parameters\n", + " ----------\n", + " df : pandas.core.frame.DataFrame\n", + " The dataset.\n", + " orig_feature : str\n", + " The column name of the feature we're copying\n", + " lag : int\n", + " The lag; negative lag means values from the past, positive lag means values from the future\n", + " groupby : list\n", + " Column(s) to group by in case df contains multiple time series\n", + " new_feature_name : str\n", + " Override the default name of the newly created column\n", + " clip : bool\n", + " If True, remove rows with a NaN values for the new feature\n", + "\n", + " Returns\n", + " -------\n", + " pandas.core.frame.DataFrame\n", + " A new dataframe with the additional column added.\n", + "\n", + " TODO: could/should simplify this function by using `df.shift()`\n", + " \"\"\"\n", + "\n", + " if new_feature_name is None:\n", + " if lag < 0:\n", + " new_feature_name = \"%s_lag%d\" % (orig_feature, -lag)\n", + " else:\n", + " new_feature_name = \"%s_ahead%d\" % (orig_feature, lag)\n", + "\n", + " new_df = df.assign(**{new_feature_name: np.nan})\n", + " for name, group in new_df.groupby(groupby):\n", + " if lag < 0: # take values from the past\n", + " new_df.loc[group.index[-lag:], new_feature_name] = group.iloc[:lag][\n", + " orig_feature\n", + " ].values\n", + " else: # take values from the future\n", + " new_df.loc[group.index[:-lag], new_feature_name] = group.iloc[lag:][\n", + " orig_feature\n", + " ].values\n", + "\n", + " if clip:\n", + " new_df = new_df.dropna(subset=[new_feature_name])\n", + "\n", + " return new_df" + ] + }, + { + "cell_type": "markdown", + "id": "89cbe62a-05a6-4bed-8ae9-b1bb7299c16a", + "metadata": {}, + "source": [ + "We first sort our dataframe properly:" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "c0049d46-d7e2-40a4-9d41-74ce2e875a05", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateAveragePriceTotal Volume404642254770Total BagsSmall BagsLarge BagsXLarge Bagstypeyearregion
02015-01-041.2240873.282819.5028287.4249.909716.469186.93529.530.0conventional2015Albany
12015-01-111.2441195.081002.8531640.34127.128424.778036.04388.730.0conventional2015Albany
22015-01-181.1744511.28914.1431540.32135.7711921.0511651.09269.960.0conventional2015Albany
32015-01-251.0645147.50941.3833196.16164.1410845.8210103.35742.470.0conventional2015Albany
42015-02-010.9970873.601353.9060017.20179.329323.189170.82152.360.0conventional2015Albany
..........................................
182442018-02-251.5718421.241974.262482.650.0013964.3313698.27266.060.0organic2018WestTexNewMexico
182452018-03-041.5417393.301832.241905.570.0013655.4913401.93253.560.0organic2018WestTexNewMexico
182462018-03-111.5622128.422162.673194.258.9316762.5716510.32252.250.0organic2018WestTexNewMexico
182472018-03-181.5615896.382055.351499.550.0012341.4812114.81226.670.0organic2018WestTexNewMexico
182482018-03-251.6215303.402325.302171.660.0010806.4410569.80236.640.0organic2018WestTexNewMexico
\n", + "

18249 rows × 13 columns

\n", + "
" + ], + "text/plain": [ + " Date AveragePrice Total Volume 4046 4225 4770 \\\n", + "0 2015-01-04 1.22 40873.28 2819.50 28287.42 49.90 \n", + "1 2015-01-11 1.24 41195.08 1002.85 31640.34 127.12 \n", + "2 2015-01-18 1.17 44511.28 914.14 31540.32 135.77 \n", + "3 2015-01-25 1.06 45147.50 941.38 33196.16 164.14 \n", + "4 2015-02-01 0.99 70873.60 1353.90 60017.20 179.32 \n", + "... ... ... ... ... ... ... \n", + "18244 2018-02-25 1.57 18421.24 1974.26 2482.65 0.00 \n", + "18245 2018-03-04 1.54 17393.30 1832.24 1905.57 0.00 \n", + "18246 2018-03-11 1.56 22128.42 2162.67 3194.25 8.93 \n", + "18247 2018-03-18 1.56 15896.38 2055.35 1499.55 0.00 \n", + "18248 2018-03-25 1.62 15303.40 2325.30 2171.66 0.00 \n", + "\n", + " Total Bags Small Bags Large Bags XLarge Bags type year \\\n", + "0 9716.46 9186.93 529.53 0.0 conventional 2015 \n", + "1 8424.77 8036.04 388.73 0.0 conventional 2015 \n", + "2 11921.05 11651.09 269.96 0.0 conventional 2015 \n", + "3 10845.82 10103.35 742.47 0.0 conventional 2015 \n", + "4 9323.18 9170.82 152.36 0.0 conventional 2015 \n", + "... ... ... ... ... ... ... \n", + "18244 13964.33 13698.27 266.06 0.0 organic 2018 \n", + "18245 13655.49 13401.93 253.56 0.0 organic 2018 \n", + "18246 16762.57 16510.32 252.25 0.0 organic 2018 \n", + "18247 12341.48 12114.81 226.67 0.0 organic 2018 \n", + "18248 10806.44 10569.80 236.64 0.0 organic 2018 \n", + "\n", + " region \n", + "0 Albany \n", + "1 Albany \n", + "2 Albany \n", + "3 Albany \n", + "4 Albany \n", + "... ... \n", + "18244 WestTexNewMexico \n", + "18245 WestTexNewMexico \n", + "18246 WestTexNewMexico \n", + "18247 WestTexNewMexico \n", + "18248 WestTexNewMexico \n", + "\n", + "[18249 rows x 13 columns]" + ] + }, + "execution_count": 86, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_sort = df.sort_values(by=[\"region\", \"type\", \"Date\"]).reset_index(drop=True)\n", + "df_sort" + ] + }, + { + "cell_type": "markdown", + "id": "fbaee71e-d45c-48dc-81a3-ebf7195cbea4", + "metadata": {}, + "source": [ + "We then call `create_lag_feature`. This creates a new column in the dataset `AveragePriceNextWeek`, which is the following week's `AveragePrice`. We have set `clip=True` which means it will remove rows where the target would be missing." + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "90736df7-04b7-40d4-a835-e8eb899da7f3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
DateAveragePriceTotal Volume404642254770Total BagsSmall BagsLarge BagsXLarge BagstypeyearregionAveragePriceNextWeek
02015-01-041.2240873.282819.5028287.4249.909716.469186.93529.530.0conventional2015Albany1.24
12015-01-111.2441195.081002.8531640.34127.128424.778036.04388.730.0conventional2015Albany1.17
22015-01-181.1744511.28914.1431540.32135.7711921.0511651.09269.960.0conventional2015Albany1.06
32015-01-251.0645147.50941.3833196.16164.1410845.8210103.35742.470.0conventional2015Albany0.99
42015-02-010.9970873.601353.9060017.20179.329323.189170.82152.360.0conventional2015Albany0.99
.............................................
182432018-02-181.5617597.121892.051928.360.0013776.7113553.53223.180.0organic2018WestTexNewMexico1.57
182442018-02-251.5718421.241974.262482.650.0013964.3313698.27266.060.0organic2018WestTexNewMexico1.54
182452018-03-041.5417393.301832.241905.570.0013655.4913401.93253.560.0organic2018WestTexNewMexico1.56
182462018-03-111.5622128.422162.673194.258.9316762.5716510.32252.250.0organic2018WestTexNewMexico1.56
182472018-03-181.5615896.382055.351499.550.0012341.4812114.81226.670.0organic2018WestTexNewMexico1.62
\n", + "

18141 rows × 14 columns

\n", + "
" + ], + "text/plain": [ + " Date AveragePrice Total Volume 4046 4225 4770 \\\n", + "0 2015-01-04 1.22 40873.28 2819.50 28287.42 49.90 \n", + "1 2015-01-11 1.24 41195.08 1002.85 31640.34 127.12 \n", + "2 2015-01-18 1.17 44511.28 914.14 31540.32 135.77 \n", + "3 2015-01-25 1.06 45147.50 941.38 33196.16 164.14 \n", + "4 2015-02-01 0.99 70873.60 1353.90 60017.20 179.32 \n", + "... ... ... ... ... ... ... \n", + "18243 2018-02-18 1.56 17597.12 1892.05 1928.36 0.00 \n", + "18244 2018-02-25 1.57 18421.24 1974.26 2482.65 0.00 \n", + "18245 2018-03-04 1.54 17393.30 1832.24 1905.57 0.00 \n", + "18246 2018-03-11 1.56 22128.42 2162.67 3194.25 8.93 \n", + "18247 2018-03-18 1.56 15896.38 2055.35 1499.55 0.00 \n", + "\n", + " Total Bags Small Bags Large Bags XLarge Bags type year \\\n", + "0 9716.46 9186.93 529.53 0.0 conventional 2015 \n", + "1 8424.77 8036.04 388.73 0.0 conventional 2015 \n", + "2 11921.05 11651.09 269.96 0.0 conventional 2015 \n", + "3 10845.82 10103.35 742.47 0.0 conventional 2015 \n", + "4 9323.18 9170.82 152.36 0.0 conventional 2015 \n", + "... ... ... ... ... ... ... \n", + "18243 13776.71 13553.53 223.18 0.0 organic 2018 \n", + "18244 13964.33 13698.27 266.06 0.0 organic 2018 \n", + "18245 13655.49 13401.93 253.56 0.0 organic 2018 \n", + "18246 16762.57 16510.32 252.25 0.0 organic 2018 \n", + "18247 12341.48 12114.81 226.67 0.0 organic 2018 \n", + "\n", + " region AveragePriceNextWeek \n", + "0 Albany 1.24 \n", + "1 Albany 1.17 \n", + "2 Albany 1.06 \n", + "3 Albany 0.99 \n", + "4 Albany 0.99 \n", + "... ... ... \n", + "18243 WestTexNewMexico 1.57 \n", + "18244 WestTexNewMexico 1.54 \n", + "18245 WestTexNewMexico 1.56 \n", + "18246 WestTexNewMexico 1.56 \n", + "18247 WestTexNewMexico 1.62 \n", + "\n", + "[18141 rows x 14 columns]" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df_hastarget = create_lag_feature(\n", + " df_sort, \"AveragePrice\", +1, [\"region\", \"type\"], \"AveragePriceNextWeek\", clip=True\n", + ")\n", + "df_hastarget" + ] + }, + { + "cell_type": "markdown", + "id": "5dbfa73e-48d7-49be-af1c-dba397d9f946", + "metadata": {}, + "source": [ + "I will now split the data:" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "8e952769-dbd1-4052-855f-2d2f2b4101d0", + "metadata": {}, + "outputs": [], + "source": [ + "train_df = df_hastarget[df_hastarget[\"Date\"] <= split_date]\n", + "test_df = df_hastarget[df_hastarget[\"Date\"] > split_date]" + ] + }, + { + "cell_type": "markdown", + "id": "65fb19b2-0a17-4133-bf78-3dea9aa61526", + "metadata": {}, + "source": [ + "

" + ] + }, + { + "cell_type": "markdown", + "id": "848e951f-8dde-4a34-bf4e-b2c3a6270bb0", + "metadata": {}, + "source": [ + "### 2.4 Baseline\n", + "rubric={points:4}\n", + "\n", + "Let's try a baseline. Previously we used `DummyClassifier` or `DummyRegressor` as a baseline. This time, we'll do something else as a baseline: we'll assume the price stays the same from this week to next week. So, we'll set our prediction of \"AveragePriceNextWeek\" exactly equal to \"AveragePrice\", assuming no change. That is kind of like saying, \"If it's raining today then I'm guessing it will be raining tomorrow\". This simplistic approach will not get a great score but it's a good starting point for reference. If our model does worse than this, it must not be very good. \n", + "\n", + "Using this baseline approach, what $R^2$ do you get?" + ] + }, + { + "cell_type": "markdown", + "id": "a0d241cd-4669-46d9-bb21-1fd8006a39e8", + "metadata": {}, + "source": [ + "

" + ] + }, + { + "cell_type": "markdown", + "id": "6d0615dc-63c2-458f-844b-f17d30758ab1", + "metadata": {}, + "source": [ + "### (Optional) 2.5 Modeling\n", + "rubric={points:2}\n", + "\n", + "Now that the baseline is done, let's build some models to forecast the average avocado price a week later. Experiment with a few approachs for encoding the date. Justify the decisions you make. Which approach worked best? Report your test score and briefly discuss your results.\n", + "\n", + "> because we only have 2 splits here, we need to be a bit wary of overfitting on the test set. Try not to test on it a ridiculous number of times. If you are interested in some proper ways of dealing with this, see for example sklearn's [TimeSeriesSplit](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html), which is like cross-validation for time series data." + ] + }, + { + "cell_type": "markdown", + "id": "51fe2285-38d1-409a-9f4c-3f5dfd50622a", + "metadata": {}, + "source": [ + "



" + ] + }, + { + "cell_type": "markdown", + "id": "15ad9e61-e5f6-4025-8356-f48f651a8e1e", + "metadata": {}, + "source": [ + "## Exercise 3: Short answer questions \n", + "\n", + "Each question is worth 2 points." + ] + }, + { + "cell_type": "markdown", + "id": "972060d9-742d-47ae-82c5-74b258de16e7", + "metadata": {}, + "source": [ + "### 3.1\n", + "rubric={points:4}\n", + "\n", + "The following questions pertain to Lecture 18 on time series data:\n", + "\n", + "1. Sometimes a time series has missing time points or, worse, time points that are unequally spaced in general. Give an example of a real world situation where the time series data would have unequally spaced time points.\n", + "2. In class we discussed two approaches to using temporal information: encoding the date as one or more features, and creating lagged versions of features. Which of these (one/other/both/neither) two approaches would struggle with unequally spaced time points? Briefly justify your answer." + ] + }, + { + "cell_type": "markdown", + "id": "ef053d93-f20e-417f-81ae-35edb701020c", + "metadata": {}, + "source": [ + "

" + ] + }, + { + "cell_type": "markdown", + "id": "bc3703ae-7d56-4987-b70b-4e222f1d8b15", + "metadata": {}, + "source": [ + "### 3.2\n", + "rubric={points:6}\n", + "\n", + "The following questions pertain to Lecture 19 on survival analysis. We'll consider the use case of customer churn analysis.\n", + "\n", + "1. What is the problem with simply labeling customers are \"churned\" or \"not churned\" and using standard supervised learning techniques, as we did in hw4?\n", + "2. Consider customer A who just joined last week vs. customer B who has been with the service for a year. Who do you expect will leave the service first: probably customer A, probably customer B, or we don't have enough information to answer?\n", + "3. If a customer's survival function is almost flat during a certain period, how do we interpret that?" + ] + }, + { + "cell_type": "markdown", + "id": "9d8ffdd0-8c1e-4042-8414-ac8e57caf980", + "metadata": {}, + "source": [ + "



" + ] + }, + { + "cell_type": "markdown", + "id": "ed594c68-91c3-45d9-baec-6ac38a02c971", + "metadata": {}, + "source": [ + "## Exercise 4: Communication \n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "5767926d-c17d-4a93-b59a-7242a4c76ff0", + "metadata": {}, + "source": [ + "### Exercise 4.1 Blog post \n", + "rubric={points:40}\n", + "\n", + "Write up your analysis from hw6 or any other assignment or your side machine learning related project in a \"blog post\" or report format. **You can write the post in Markdown in the notebook**, no need to write a real blog post (though you can if you want too!).\n", + "\n", + "The target audience for your blog post is someone like yourself right before you took this course. They don't necessarily have ML knowledge, but they have a solid foundation in technical matters. The post should focus on explaining **your results and what you did** in a way that's understandable to such a person, **not** a lesson trying to teach someone about machine learning. Again: focus on the results and why they are interesting; avoid pedagogical content.\n", + "\n", + "Your post must include the following elements (not necessarily in this order):\n", + "\n", + "- Description of the problem/decision.\n", + "- Description of the dataset (the raw data and/or some EDA).\n", + "- Description of the model.\n", + "- Description your results, both quantitatively and qualitatively. Make sure to refer to the original problem/decision.\n", + "- A section on caveats, describing at least 3 reasons why your results might be incorrect, misleading, overconfident, or otherwise problematic. Make reference to your specific dataset, model, approach, etc. To check that your reasons are specific enough, make sure they would not make sense, if left unchanged, to most students' submissions; for example, do not just say \"overfitting\" without explaining why you might be worried about overfitting in your specific case.\n", + "- At least 3 visualizations. These visualizations must be embedded/interwoven into the text, not pasted at the end. The text must refer directly to each visualization. For example \"as shown below\" or \"the figure demonstrates\" or \"take a look at Figure 1\", etc. It is **not** sufficient to put a visualization in without referring to it directly.\n", + "\n", + "A reasonable length for your entire post would be **800 words**. The maximum allowed is **1000 words**." + ] + }, + { + "cell_type": "markdown", + "id": "6169eefb-18a8-4e13-b7ca-1b3539a79215", + "metadata": {}, + "source": [ + "#### Example blog posts\n", + "\n", + "Here are some examples of applied ML blog posts that you may find useful as inspiration. The target audiences of these posts aren't necessarily the same as yours, and these posts are longer than yours, but they are well-structured and engaging. You are **not required to read these** posts as part of this assignment - they are here only as examples if you'd find that useful.\n", + "\n", + "From the UBC Master of Data Science blog, written by a past student:\n", + "\n", + "- https://ubc-mds.github.io/2019-07-26-predicting-customer-probabilities/\n", + "\n", + "This next one uses R instead of Python, but that might be good in a way, as you can see what it's like for a reader that doesn't understand the code itself (the target audience for your post here):\n", + "\n", + "- https://rpubs.com/RosieB/taylorswiftlyricanalysis\n", + "\n", + "Finally, here are a couple interviews with winners from Kaggle competitions. The format isn't quite the same as a blog post, but you might find them interesting/relevant:\n", + "\n", + "- https://medium.com/kaggle-blog/instacart-market-basket-analysis-feda2700cded\n", + "- https://medium.com/kaggle-blog/winner-interview-with-shivam-bansal-data-science-for-good-challenge-city-of-los-angeles-3294c0ed1fb2\n" + ] + }, + { + "cell_type": "markdown", + "id": "8bfdd094-eeb6-4f00-a3bc-5a6105eedb12", + "metadata": {}, + "source": [ + "#### A note on plagiarism\n", + "\n", + "You may **NOT** include text or visualizations that were not written/created by you. If you are in any doubt as to what constitutes plagiarism, please just ask. For more information see the [UBC Academic Misconduct policies](http://www.calendar.ubc.ca/vancouver/index.cfm?tree=3,54,111,959). Please don't copy this from somewhere 🙏. If you can't do it." + ] + }, + { + "cell_type": "markdown", + "id": "4052395d-a695-4063-97b6-46c4e13016d8", + "metadata": {}, + "source": [ + "

" + ] + }, + { + "cell_type": "markdown", + "id": "d59667c9-db6a-4c12-a556-5b9815ef3564", + "metadata": {}, + "source": [ + "### Exercise 4.2\n", + "rubric={points:6}\n", + "\n", + "Describe one effective communication technique that you used in your post, or an aspect of the post that you are particularly satisfied with.\n", + "\n", + "Max 3 sentences" + ] + }, + { + "cell_type": "markdown", + "id": "87ea9c37-34c9-4b3e-a2df-e00cedd3e8ae", + "metadata": {}, + "source": [ + "



" + ] + }, + { + "cell_type": "markdown", + "id": "04cefc8e-cf76-4c27-9aa6-c560cbc0fc2b", + "metadata": {}, + "source": [ + "### (Optional) Exercise 5 \n", + "rubric={points:1}\n", + "\n", + "**Your tasks:**\n", + "\n", + "What is your biggest takeaway from this course? \n", + "\n", + "> I'm looking forward to read your answers. " + ] + }, + { + "cell_type": "markdown", + "id": "a2fb9e2f-a2d2-4f56-9fb4-c91492e4801b", + "metadata": {}, + "source": [ + "



" + ] + }, + { + "cell_type": "markdown", + "id": "ab723dc5-4ea6-4c44-ace9-bf345bf8c120", + "metadata": {}, + "source": [ + "## Submission instructions \n", + "\n", + "**PLEASE READ:** When you are ready to submit your assignment do the following:\n", + "\n", + "1. Run all cells in your notebook to make sure there are no errors by doing `Kernel -> Restart Kernel and Clear All Outputs` and then `Run -> Run All Cells`. \n", + "2. Notebooks with cell execution numbers out of order or not starting from “1” will have marks deducted. Notebooks without the output displayed may not be graded at all (because we need to see the output in order to grade your work).\n", + "3. Upload the assignment using Gradescope's drag and drop tool. Check out this [Gradescope Student Guide](https://lthub.ubc.ca/guides/gradescope-student-guide/) if you need help with Gradescope submission. " + ] + }, + { + "cell_type": "markdown", + "id": "1b4e160c-d947-4123-8e67-fa3c89c9aa8f", + "metadata": {}, + "source": [ + "### Congratulations on finishing all homework assignments! :clap: :clap: " + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "15f3bee4-0171-4465-838f-e5ac8a943e10", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAGOCAYAAACABOR8AAAABGdBTUEAALGPC/xhBQAAACBjSFJNAAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAUGVYSWZNTQAqAAAACAACARIAAwAAAAEAAQAAh2kABAAAAAEAAAAmAAAAAAADoAEAAwAAAAEAAQAAoAIABAAAAAEAAAGOoAMABAAAAAEAAAGOAAAAAIBJCdoAAAIyaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIgogICAgICAgICAgICB4bWxuczp0aWZmPSJodHRwOi8vbnMuYWRvYmUuY29tL3RpZmYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4zOTg8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+Mzk4PC9leGlmOlBpeGVsWERpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6Q29sb3JTcGFjZT4xPC9leGlmOkNvbG9yU3BhY2U+CiAgICAgICAgIDx0aWZmOk9yaWVudGF0aW9uPjE8L3RpZmY6T3JpZW50YXRpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgreug0CAABAAElEQVR4Aex9B5wV1dn+O3Pv3c4CS1mWvhRFUEDAqLFHo2KNJfYY9Ysaa0xMjAbLGjWa4pfYoybGijUmBo0YY0WjKCAgUqR3Flja9nJn/s/zzpzZuXfvXbaB/vPt+e3szJ05c9qc8z5vO+eIdIbOFuhsgc4W6GyBzhb4/74FXNcSHp2hswU6W6CzBTpboLMFdtoCBjA6wWOnTdUZobMFOlugswU6W8BvgXM/XpzPo7NBOlugswU6W6CzBb5+LRD92hSJEoZluQSMYx4ftsix5NNnRE5SlRXuf23K2VmQzhbobIHOFvg/3gL216X+Je9KhGU58vFhE3AqtF054YkfupcSTErecb8+APd1abDOcnS2QGcLdLbAV9QCXxvgMPW3LTnRXMM6XvLYZe6QkiOsBoKHAohv+wiuTeTOc2cLdLZAZwv8X2uBr8gW/PXg5Fn5d70vDrHj8Kpujlu5T9wq+lesj5Mjf8CTk0oOlzilD9MvSkQaVI3lq7jM/c5zZwt0tkBnC/yfaAHSPoYQXdxd9f5KXV6NCsqAAqWLqCtLyveKy5Krqq0Rv8hx8tfbdm2OTEnVII7INRc9ZC3rtIOkap3Oe50t0NkC/7Ut4DPMpJms4+6mg1+NqoqVxqEqKKihzp2+pAvtGTGRv8aqxdo2pkG/99oLau36bHFp7+BR29U5Pnz94HeXPKWgsat6B8tI+4opr7neVfl1ptvZAp0t0NkCO2kBpUmQMgyjTboZMM+kVbsh7JZM0tWDFQdyXQUwOAuA0YcgQWlj9Tm1VkMe5AmEaEUjtmWUWTLsD9mqrnru0PV1G/PrMty+5ZfPHLfPH9mYBKJ0ebX6Pj9AOhGwuWetzqjzhc4W6GyBzhZIbAGjjTF3S6iqNwF0id6nxz4x7D3XlTG4XdpgyUG7U+rYvTYOn+CyUQa/IC9TemBbVMOmsfqserd8VNyq7eFIpNa0EAwZAJB4pkhmmS39Hs90ADD21APKGkq71dQjVr1syv7p+PnzXykZaa0PULfx9bZd+eX8xuzZe8Sd2ImWI8OYEESftRG74YVPLOvLDsurbSXsfKuzBTpb4L+1BUB/SqwUTDDpkh++/cSwpwkapJ3Z2+xCcWUwHi2jd2oJ7b+7OOxe4AhVBkbwAYGlO3Q/1SWBpPjuLLV3EDTmDdpRI7ZUiuVUSByNVuP8D967vUMazQeNCbM//56bV3cxvl8XUyZ+NchBp02Y88UdMyzrpU7wMC3Tee5sgc4W6JAW8OnP45e5v2d6cAdaCFFjsViy4q3pSzY/c8DwHXyWWSUnbhkXd6HWt4b8JdNys2U4or/dIWVoQSKNeqAWRG53FF/1Q5XS0jNkP8DiUZjo9yoQUys/8qYct+f7MZcSRnJoKGpEWwUNEyHilMqWzNMpHaiqKoTKJkqLzyHQkC61P0n7XtequybMnTtRVVntyS9tBp0POlugswX+z7WAT39Iy2DPvRrgcA2Y1YfA3f87u0qWcmL0U5e5n/H+jiLHWX5JtVXbBxQUAdRxhGmvZDWXud+R590LHKGSU2d30R+tty94yDrpjQuWdIPn1B+ghrJ6To2pIELwMPYNXtPuQRvIkXN66ERBlTaYXsSF1GHlOXXRy0LJt/7S/2i61Elmw5mWa5W7ltsF6Tc9mHpu3a/4gTvBo/VN3flGZwv8f9ECpAnm2I0Fdsozb31ldGk9wYE0keooShc496Z6ivfpOES6WNfDFdJFTmNgWY3DkV7vQmeerww4SHDVoI3KUfxyXM/llvM3+I0oeVACGX5rjsNr3lt9Vq2wISfO6N2dvxU0cLJibqm7I/OIcXPmHNJeQr4gu2qMFXMS1smKxqxc3OvNMw8/7y5xJ3IBr82sd153hs4W6GyBXdQChoib8y7KRjl25kENiX8YWrWLshTNE3mpirw884TSgpptBjx0SkJPRxb+qsqef1uVtfzaGrt8j7jagmkDJrBEq2Tsk5fJOqqxHvuh+y1V29NZiOXfBeGrAw5UJuwFBcSkjk6q+znS5cuIUG/H32E1Vrc5USHa7rEmN9avLEufW7R1IPBsV2VcaD4A77UmGOJvW1YeJY1A2gglEpd4Lg9zy+paO7FDVGQmwc5zZwt0tkDKFtBxzSc+IedlcI8/OiL4gKR0CfkwfWogeA5z8h2RVUIayJfpw8mnyN2cda1RxdMB6JFDV1aR5mEytDXg2UyXQMEj7EBE6WP90fUqkcDh6EdUbQ19QT5VEPHneajklJBp+358Zcbx5GJTR0eRK3utLQOey3RxLXS5JfLuvTy/xzdXdrcLZkUIdAoYx88tGvzo0cs+diOOBxyWVe3W2f1f7fH5txHndW2oVqBtie/u5rhuyAHYK2UjWLh5yL6CUkdDvVtJNVbciZ6BWLd7MTv/d7ZAZwt0eAuQsMJLhQT8lufeGsT0b31XViqBN5JBezNlOn7gnDL8Ot5+XvYb4jlUCojwp9CK/OEiy3rbAImJ31Fnq8K5zm2I9FE1vGvnKYA4kkvwuOT9QTkADxuMtbv50HorDByUPnBYmUfbVu9/xdye02IgfzIGxHJMxJLDUb59O6qMJh0S4q80GIKtOjqUhMjKAhnQ4PW8IdtWPnLE8uXPHrN22Sejt60mAlMS4TMGC6ARnOsiJ6mdgqAR6gwasQX/9qrOmSN1kbUaNW6V8xyRiIITQSMhCTy382uP3m22Dg4gDB6tVxvqllD2zh+dLfD/Qwuwn2Msu8+8fcwtG99ZgOslPHjNe3zWlnGeUHU/D05EfvxyeQWE5SF/qkAh4unB3+TkycUHgJWQSNt+6HhGHehs427NOlGi8Q2aEj1GGaBJ2XtlfhbpHRlrGsPDoMEoVOUPuy/bpecpQcMPpTCb31PvyrXmRkeeA+LbkYm2OC3zwfyl1GG/6ENQoG6PkoamYxqQRnAEo5riNaUNAxpixaskKtXwYM6WfOevM8aMar27rF+e8bO+uNbqWn0e81DjOE6BbQPXKm0ANIwB3d2e/fTMcaPu1g7MjtzBQTmcpLW6mFegx+zg/DqTa2kLlCQxXiX89h3+/Vtamv+2eIazV4CIytQU9duBcTDOOuvIpR0x9gAK/zBzy1LkFdzCB77s+3+0HjblCx609iJE/xbVuU+5ddagIAk4/PC6sCyn/1nvF2XQtrvghmpKFkEUAyC0A9MO0pAjs/H0XdqLV50p7yvABbE79uJrARxm6jyNPC0BjbB6SpuDoMFA4Ig5teK4NW6e/ZuZI0e2blKgAQ7oGi2r9lHJiPfTdOlZlRx84OBtt97e4bqZF7c6v+Q0U/32y8SB8djlUqwTfeDTveoMWRVwPrsArFIVpfOetgDGTAmPNCBhwKTEW/qgs9Ha3QLu829PQyIHp0noWevMb53TVuAwxJ/qKXzUh9LkkXy7Y2ZqG3oDRlW2ZHyPTLEL1ZTJrN/G7C6nv9+vmL+XXFNtETRo/+02M+puG9+gv/mM0kaXBRHB7PFh4dnjrBuf7woASeKYmM1uDL6YycpyTsdro9ev0BnhlDLSSBopQYOAEQINsa0sqy5+VKtr4pdHAaA+8gDfp1QBd98mh97Hc4KG5lMTP1nPHfnP71j0knjqcpnFBSApLvNM4xfvd4io3pFl/q9OKxEUDhn0cNHYPg/sN6b3fcfwLDI4C8MUgEFQMXH/qxtk11WOfR/Bfe6toTiNbiaj49ujmjaqcto0mskj+VFhxBXaUtvuUemP7QlfzN5XyqPHgOHdyPTCGhXacSlpbD6kXjI32C4Xfd3rzmxV53PpJeNtWguPK8ZTptKUCekTMHYFaLCcXy1wsAQGPDCnY8PIzRMlt/4jrO2Rp662SeqpBNCglGHUU0zHlzR46drOViD3XvRSMOnzfouCX54Zo0e/7m7PfJ3vECSSD94PQMO1tlpZ8YPalB8TShVCoEGw8NekCWLyN+93bnYVNMkuviAQlDiFMjpndOHDV+9X9MyntfX5q2NWr08yIoVTeZ5QdMfasYWP3g5A6cO4neDR/k9y3uCBm3aSysbh1cM8jcNOIjZ57I8xAg9UVAD+lodWAk1iwn6+KhFUxy4xDwP6Bslj4sdFe1H9RLsG7b70MqWd44vhlXVcPYPv8B4lEHqiMhjPVP1BOrYLw1cPHKwcKslG/GTs2C9HZNqnWwVVz3JSH9HXIHDQqDSEh1VTfN+op6JutYsDCaIjWVVWvXsQH7c1jKjLusuti6zk+wFI+NfBb4CGSb9NUo55OXwOdWiAwzPhR8nXFK+p6gvUVskROn93QAt4oDGh8LGzBxT9fFWm3f0ey7LHum4kYlnxuDlsy+4as7tOqq7Lm0cppBM82tH0PgPHOV5I5TU/JU+6T0z2U+WsqZbZxcQyMdv2/3q1YP53pCrW17KdMmOrJZ075LOeA0Ytzs0gaFB9T7CgY9A9pyxd9vqEjVvnFe8oe2tMmRo7KHnQE5VxAWbB7PH2l675FL4ewIEyGsL3zP7Dymd8Y+8fS6/q3xl9HxuTDauN2wxoeFUlaDDAPTcug9rk8RTutK78rwEJns015vhv1YNZVcUqpCK6uc1SDtMIBTOn5OjHh52N2/TqaDbgI17FCOa9ZiN3PmxlC3igQSnDsvMmWxIrIFBUVWVGyndky47teZHwoSCCOJRCCDSd4NHK5k4V3XVvwm2CRsLEXPxeAnLJZ1ISXj2WN1oRKLFYlnjeTC1/b2nLo4Zi+kyh0qUq+7iACUYUAx5Liyrr6T360qFrlz9y1LLPXz9g/YK1vavVw9Oo8AkelDyoogp5UlGtt1vC1wY4tLY+x0Dpg0ulu72qrjKShjZwGDQoZUTi29UQrlIGU2gEDSxHWMnDsWKjVSRsLTfig8eMUWM/k9ro81o+AxZGyiBg8KAx3i+D1dAwVuN2wL9WcBDaYdozeDqguP+FSXigQfsFpQxWkMBAoNhr9Hy547475LG/XasHrw/+1n8USExDEGg6wcO0RhvO/hj0vabGIYVncSzxj98DNI5tl0cV0idtINMK9v1dpNviYFa6aPELJqJfJ666rbdom2XwaRvBY22/yqXvT9i4kGejcdE45p9v/zXgYW5DVTWA18qEm5u76AxNyNcs8GO6blw/6BhrGpD5Sqc683qpj/SQWLxMSxu2ZySAhjefwwMNfAuousR1sv/Zfc4QvNf6pdD9j3zCu/LslK5fDLKyGvZUoDBNBsDgZaN6DNcN9kjoTD98xrLoKph+Tw+TRjNnaCkXNvO4ySNKHCW7YUnlJhn/d96AFnAKxqI4tp1zCwyPAWicfclkufk20LCcA0Ti3/VqH3lLTj3/Lnn6ocPk1zddLdnZqoaGFTHz/iP73T/zrbVXfokhDUat09uqVd3FH4P4GMvwATzvKSbg35cz2zfGDLMFK8F9+Dg/aknZuDArHHreZtxWEWmfHoybO/dgy4kOU8YXjjxqauY0AoKHG8kheLgu1rv1A+mYal/8dfn0NsEDtmCCB373OPbjHlGoq/rQXqPqvXbSHpN3ujPa6msYCB70CPDtHnta0WuwxPmnOkejCWh49gz0JA+5VdLwQYNVs+xqjPyhbZI6/KbRzpFl/9mtiaymdKESBg3wAK0waJgyLOpS2SEiI7igxS38Om0Tm1uY+G6OBhrB1QGUyJLQ+gfvBcduKNJ4MFUz6yltRCXrWGZI9dTw4uVy3aSXRLIeAJb8B+P8Nu/AtTS8LOdd9p5898IXhWoso7ba6mT9NH2BTf14TlVvcz99Cv/1TwgSCMEYJn2gTYPBf6bXbfnnp0XPTmRy2c6SgEprDkDmGo1H4tzS4BNyEnYrHjlM6Yh5lzQtheTBx0bjEkgevsOQvmokD2wzQbUVAO253QEazLvlFdeSfgX//AZnR3m1+7yzpcH+phJulTTCqimWzV9+hJIGA0ADKA6pI5Jru/VzaXxvkxTgl0Fd5yqj56PLepKPZqIZJYJWxN68Z3XGv3zDXhCrxRehOtPtNtmjKimdjvEpT0p0t/7U+t7q98UWceSIW5LUd1v0XkurhbQHZ4qsqKFtwzOGeyqqSXfdLeddUaOgIXXwi6in5gQBArFkDUF3u0kWzv6LnH/SH7z7+I/1S7dkZ1TsPW3lpevxk+UGjVJAwGVLy93a+Ej6vzGwrzC0FzCS2ob0hQwiXdx9h5QmtkVKGm9+f8l5bSLOhobM+eJ0N+5Q7abBarCyOX1Af9Tbmcoc8wckDz35kocVt3V+h7H70nlI36EHKoJVVH1lmyY9ayKt/5c0+FqfwG55I9RZuAIuGnGil69KG4lEOwwajETgQOAaVFxOpL3EXJcGaLDHI2E/X01d81CugGCF0C6gYgJ+R2uuI2u01s1ixfcOE1wlWqnuMendFEgQS8hR8kAYHztk0CU9vevE/1+ufGBHqcTqKAkkPtFfoXqE00sRc6e3SuxCeTm7VOZWjev7lykRNzfw8X/hjctl8MhbxVnTV5z/XC1W+WpNzcWiQNaAEyRy2EWQPE6RM467XRbMHSk5ObVxel/VxUuPnbPxqjcSAaPEHtun13hxM062I9GxETcDbrzQfll1G8SNr2tw4vMst27Rho2PfoCyeMxQqwFnp5XtjOC3gAEPSgV0TAFEjTCNQ5sGt4HQccmbrQEufyzTIO6vbecn6yo4tBk8uK5Vdv3cSNfqK8kUm/KbMu/K864DDjRW2MunJHnJjNbWKgQe3gegcYl6QHezSSpMuA1g8BlBg+eo65a2WepgAggq+cCNjh5bKSUcRgJYMc+Ttoz+qFU6UL4bDgY8vL3Z/+D7mpMT4jo03qJrpjM335F9otoSgro7OVsFDUj+g7MmFN58ihOxzsV8mZHwXOpK19ZwU/DacZ3t4N632xLbQuLqxBtmu27NtPzsjLng5jcgig8+5OoJkC2pb3Iu/D0+Vij1GbWyIza86I5/w997fHV1VGgQf+GfN2LBoPuk/qUfwW/eAWMIwIj72WKnSrfnAImeulpuuPyH8vfnj5f8rhUKHLXO1h/NLb30XqZtVGAxq9tDTNuUgKotXhNozD39DYkFi2f/NR6v/qsHPry7O79TuDTNXvvtni5OS6WrdO/v+vtKfNPRqhANam1JlG5AY+I6dm/vXWPDaD14qNRBiaNXzeMj6jLvJTO8O0GD5ceH3gUhXQOnu9+aIvjElFzBoqyak/kh4Aetsy5VNcW0QlKGSdqOeuCxZ3nu0vZKHSZvk3a6fK1YbEm7lyEJtRnzPfKJYT3f+r63haTm77dHUJamF4aINhJo2zkiItmBuGyIsFh1r8zecMWnu4coeQT0icN+fcT9X/b/rSGghng2rUbjnWTCyndc15ld71RN9erw2GxfKjF1J2U3oNKYUOorvEP7RlmkR3bXHsXdrptLEKMn1ZEnvyr3P/2qxN9E062YIi5X/vdt4JoU3nLKLck405GH/jxR7r398gA46p3td8wuvfhGxuMcj8xoz9dMPVh+2k8a6oMF6rA2Wr0a2E17mLjQjc2si2+Z5ANIW+qXutbtvpssOaZM0C+vedZWYDfv76IzxlSY6TW5tIkJ9MenrykZ5aXlqZ3QJX0DeBJ4UGXFQIM5g6+20usGq6dOT+he+3tOUm6TBKQJte+fZ2BqXxqJb/sNpcR17tyD3AZrECUBW+LTP7Esz8awc2KXmGb4FzlrvE+vJaDss/8omHug5dqD0xFvAxh2vWf3WJhfn4vkdoSTbPF1KG9IPdPp6qvvpgEqu66uC8q6oVVibXJh/DyVozjA2oHZgDt0RR20gXpRWdisJW0wg3lKBLr6K2N2JraizCmO+pyteQ3GXzhoRI4HkboeqpmpubG6iz19vJEITMwOOfuEeWY9vI32uO/L7i+ZuREkjiTQO8uFRJUqIBPPI6qR8Zh8R+590n5FP5lZ61Q8WVr6wJ9LpQQqHuXOSbQAni0JZVqGAV0v6RuO3bsQ3aZqrbhl0K5528VwfbQgWFgLRjKQDZSVhYXBvFB9bmPFa16wztud7pNZZg/wIhGCBqWZocPWaNzNm7rL9u25snLJUHX95c0u+TDXKUDGxnOOCL7Ta92typ80emuplNXC+mk2HfjP9JPBWWN6X3uYZWUdYhJ3xNlIdZsnFa4vbfoN9Nv40b8mQIIxV5LIEpjqtO7s0zmuKIHJwYPFeEepLZbgQXU3wYMqdzeHjjY6mmP4jAQPGsxD3lb0tLLy6j4RrMM3Y+To9UoToNlsF31pXY2C2KFuH9xr+4XfULQDLMrd/isswzEUC6io8caWaOmE+bP/7S5YcB258HaJVoaYaqONoctuqSP26GRJIxk04hkZ5axcR+RNEES+9NUcalRhTDs5Ty7VrMSeD9savI5MQtnIse20c3uDmespVdZnPEo9vUd4gDwpiDMJEwPjVddlzIM30bGN0kdLCa4msZN/VCE9DsJcEt/q5v5vxJ9QxzJRrYO5EJE9Ri+Qoj7bJCdXvZ01varKLFm/oZtsWd9HvvhkpJRu6RXUwxBVRvRAJDYeBu3xmOV9S6FTcasHILQRGCLV8vqEVWa9em/DgEbx69aIlZ1agLEzcR9fqnsP7WpN2qKsIfP8mO1NIvTKKvLz2+6V8y58F8Z1pG0CXl+/sUtk9mfD5P1/fUPennqYgogBTX6ncnh7YYmTu2aXrr0ZdQO18b65SWL3nL08OV/Fte07bDAm7GfJedfCKrVfUR5Wb/3TLNux3+karYKL8uYlXrnDsc034r2vCZCEi9eaa59OuXPnDrMEzAYCmWjPwE1HnlaAB9/tWvfUCVv3frbkG57HaZskIC1F+/+Femo7EwuBRrRH3WONmx956XJPC71XHZ1tVUR+0CHGHObJgA+ku2fV1w/zcmtKwA1o8PmIHbHKNqurTAY8I/8J8+eMdRqsvGTA4GPm2f68zEBKNYiCZ8mcpv9dx0fH9b3yb42g4enOj5z4thx69CfSraBCaqpjMu3d0fLa8yepusQYc+kJ1OBu62DwYHkfz6C3EtU15JxJZMhx04X18h9NkZ59YI7K6IfWG4BjMA4TVvgXq6Vmy0bZsK6rLJg/UInq9GnjZP26IlXvNJVEoD6SquWW40yaUXrRs0gEbUPwSgcexjC+I07umSolZkxgu/rGB+WyH06V+GvYURR8ogtZz0pivbjgTeSbIu98PkouP+euQFUVtypfm7XuwhOwxtUMquVYb6bJSYOP/u0u5HA/0juLWXkB3lpWNqLaT6EC02XzmlyZOmWCvPDwqbJ4eXFIAuE3rZ+Zb289p1H6SFc3k3hHnfk9SxzjecZUPeYkEqFNKBw4ryUZUKhejEv1LDoB2FbDR7M3/PZz9o3we0jfo7h6M9UYSIz9tfnl00PaYwPNBAuHeWXeyayC21RtpcZyU5FaGMAzsUdHbsOTOhk5RPNMlK/inPh121oCv5GonvoyZ8cN3K8iGouA8eI2q96uebzGch0bJer0lTz5E1xbf1Qyyvqs3dw/y4z8Z1rWeuRfyTkUJOS8bdRTyaChi6L5ZWa8NgX//T0/Xrx0cVZlHwn5+Zj8CBptXoAtGDCGCJTYhwwq6pPRUN+lLhor9zyMqIZhMIPLxPXnIBT+8BbLyTjesj3i3KvXZnlwcomM2BdeofaZ3qv4f8Txz8n5F74Zufqcm2X5mv4REl/HkYKIlfs8JJaDEt1Ig9facDElUij5EaiP7Egk+zQDGiec+i+5+bfP4Tv+AmuCXYh0h6RPGy6wmZlL4Nk0QwbvPU0mnjFFdmx4XD58f6S8/Mwx8vG0/dRWQOnFEKqIZA6MW85kqHfObakajuU0hXCt+hDxwl2YInQWAUZPE7mDZgr/TUoHycGR+gK+FAHryTDumzDH2H1x6zIAZih2xn64tx9u4H7DVunZ/zm4Af9KTj/7Wnnp2YPksXvPIViqlIYExkL99RG4/is9cFSCzqI1KV4oh3Ze0kZVUk8GIGrlYe0uT8ogE5CdW+EecMgCgLMXktVujfYbGRuV3LFRv72wSOR2x6r7qCFe9y8CyfoND8/3VI0mJZ5NX9frXVzHcL6tvAYzS3q4wKoqtH1VNqcFqEod4NGc5AGVlRhPKze34T2smTf5mVF7ewbwr0g1lVz7DgEO1bWje9NYrcCQkIu3ax4ljgb2YyxRzv28rcz4PTAYTSrB7PB2gQfz8kVCf7b27PELFvRR+wIehYk4o5KQlxxOZUI7QyhPdBAheJi8mLIBjbaJk2ZwlDi6XDfcNWN2zrHVdVJcS28j0COoYbb3wyCz4+4zM0pXPY8BhcYN3quniqq6LucyzAHRQI7vjgd+JyPGQ3lYs1jnHHhP8L/hARDh4+Xeyb+Ui077lVRUdItgk944lkUorqxruBUxLkHa5NL91II3W3MREJIe2X8rsuTHR/FlGoQp/RDIXLktILpSswwfL2m6DOdK2N1FckNEFUCSX/A+AOTXMvGEO2X2rEHypz8eK+/98xglRyRilhtzIjbQEyBKNRyI3TmNrrFap9bVKwtdjgCRIqRKyHHxwVD7PBnWK2IBxKCrMGDk2UIGiPP5b0Q2fChWN0paXnCzBoo95Ai/vgAQgEgWHLEIIMee+BO5+5fn0XMrQlUd9sPsCpf+yeD+e3neWwoeTChVkbwM2v7f/5bjYxmRgjvgqqr1Kd/W3frOma/JtTc/bfXsCcnRUJdqbCCzukeEEuKn0/eUeTNHJdhvDJCwDpYVOS4ayT+WRTN9vBVAkix5t72G7XnTZyqVocSHpyrbtsDMEkBaBB5oT04ujsRfnjVmzLSZTA9HSbP2zJ0UmGkgKK0m/SP9akfwO0A7UuCrfkONn/X5r6yCmjMIDtw5r8mueYybtAESlhJ5gN4B7QaPUDl4SbT3DeFKxHmvCWi0s/GYpgnMz1zzHOTV6jx0wDtqm6iL3Bq1ci8C+x+xIyA3cfCpPsUiMTL3XLsuZCjlnhAralTnbGVOZpzqyjzrgEM+lUdfvBMc/XQlRFpWQ5zN5DX5prz8OKzLV02SLt2wMj3yI8HtYpWNbL8ahPV6PIOcfFGfS0dGrW5TIQl1J7HhOk+nXjBY3LoHxJ1zkzhbPoTD8Vygipay8R8JUUZ/GBAKxC44CBbob4vVe59GEKz8VKzc30O187zM/s9A+dWNF8vnM8dIbpcd2lYEELYlE6x3K3z3WG1vDiJ/IHmqKsbp0/vig6N2wVS2Icupk//OfFfiHwEH1AOfsRKDCzNnZAJUVTNGydXfv00IXGxHfiPHqboV2/AAJb1QW5MtT/3jxzK250qpe8sWO2Q3oYsvXX2V+BbCfNf3bLGHn+7VFWBpVdwi0u0Bef2lfeW3N/1QNm3q2ZiXVf3orPU/INijzdsAjKaAac+eR5xKG6H20aVYwpIjQZ7BQXkzMIWFajdZLbJ9He03QvtNc0AS7uNMBrO2tzSVSMz8FsbYVfVl2i0MPi0kPQhrP/i2ggcvCB56TqW2orEcUwyyIq8EHpmM22o6ojkgKd+JJgkslN4m3fPfaNHJ8AQtityiSAQNP+gWq+YHz6FnwSqzsfgVMKZLyWir/a5lpnHRWL7XVdXi7CU6xANCHi6P/5HDt9p6rTaTNB+p5Wlqx3foebOtLnMqCF0xGJY4ifeObfnKWeblwUCLAKlAyrflW1TJkJPeZlkj8d6xvsERNDc+Sikk4pKrP+xoULuMA3BA/QHAcKb9WNzVrwZzENyBY5Q4nXr+DfL63/5DlY9FogcFRKTMzTwfydzIfNsTCBqcG8E0aHR2fcFv6dI+uDNN4i+Pxa41q8XK9HJRwuldev8JJA0wTGPSnbtqDsbfQ2J1Ab3vhik9fQ5SwurKZHg1gRgf/COdc/H0Xw6X++68NF5VmU0VCggpZF+0pzh598Cw3NtzkdV2Zx4+eAC3ZEecpWoSYpi3EUO0NBKHAgqe1VT7lQglEHWzh5Hv86QfR1U63bpVWi5GjI16JBvcuTMPpUsXIMrDWXi9WIMvF2vk98UtuBeex0dC0rpSxu77U/nRxdcRJC0P8LMvHlf0JwmBB0sR1C1UpDZcsq3o3ACWD+pGTdXJsoYXL5drfvY3cQAG7haAvvzYSxvfxeq6J77PWeh7lJoQMpdJ0dA3pGg4VY3vA0ieCxwB5n0+UL6cu5csXVisYIi+axmJBEBSAA7quEg0+ziCMSSSLZS6KZF0zZIXGz0BKd8Zta2X5W77TxoEOrB4zhztPrR9GtV5UIa0kgfwIerMPKFsnzdLxsG/qp30ScEBVJdaD16/+sXsfVgWzmcrGQsPV4Y25tEhwKHiD4Y02NNZKMpEbnqECXIpA58FD8wqs1HnnAlzvsidYVnePuFtrEyQrg8gqiZy3fJAPAsi+BcGaJLvt/U30itpyie3NDXt7NgoKHcH3DUxIIsNgWEC5ObOOOc96dtvi6a3ZXOevPj8wfLiY+dgEMOnzLYHb3Pyph4yKAabhKznTGTcDkKPXvRA3gMeQVsl/vcjEgg0I1kgxPEln0ukpyvn/OAfBI7gXarJMBBv9rnX4H5bLzZvfXprYcGlqwAeg0kU6ClFLlTolJiPZkgT1N019CwgrOtfhQvSq+Ks+71YBaeJtc9PIL28JlI7GWqdu2TCAddGbr728oCwEgwpRUg8ZxLAQ0Lg0TLiStBobuQAXKqrMkIlBVhgVni9VCmYe2qqiPTpvs0qgErHxRAmaNDQToN7QkBeRhLhM3fxgyJrcPS/HBNCbsP3nAsCfLw8+fKtctWFP5UP3v5mAB6o28ZW1y0h81Q/PDsVNuXL1blAKtFmW4ec/Lbk59dI3V+Xoq6LwSPaOKMDLuJ8F/RQui9DcjKSYnogmYZ+8HfZjP69+Mu+MnvmUJn1n7FNgCQzC+7JkFjBBhwHLRBUkHILwPKvuRnxWxoB5CsBD4uelIsh99PG6sQk14BHoLJis6YAD+yq8fYno8d+OYP0rz00EO8qzQNgMB1ogn74asGMn1qx+BAiPjv5hAWf/dOutX4STJFoJS0E99D+UEKRB4HrM2EJ8nm8Njvmha8NaATSBh/6e1mAszoS4AFZHIGVYMN1RCAxZwMmN0zy747Iq11p0KAtUlR41Q3QGY8nYTNqld8+/Cs1Ho8YeyH0+c/qMXivS+Vnt74iv/7jrYHKSiCh0PU2VTGysjGtOT5UnEWPKmi4OYnNa7j7OBx5jjh0vs6SLq+EaowE1o6P06UxtM+R42x7aIDv07baTdtheJhvUlm6pL9eWr08uk2AaHJQjUOCneIgt85DsCCJu+JBcd47SFVekj0R9pz3YNcZqISVE/iocmKdVO2Hc8RS8Ljd41BbWDeUgRrDVEdzgKJg7leaaqqsgh2Sz+8CqUJBgz0ABCf5oCFejfF81sVLgPWMv/MtcTe8ryCZJZfKo8/eKbQxmDqybvR4alXdvOTT/ddOQ2kslplbhBYvNhEnfGOxCLCfgeBPsGMfM/3MqnXFAWPiTn9Q3DdOkfjTPSX+xr7ifnqluBtxHx5llBZdqLLcaBm8656SA48aJ5f9fK7W64U3fyKPvHC90LONatf8LpVCFSzryjwJIpabfXFVXeaHahcM3JP5dPcFcPYRqsiNvdM46Bivy7DrfjB9wHJW7FmT9UqwqgWL2xb6RMDwF38kzeOkwwnLZs6yCysfJGiEW8HKrz3O7VU7g1Mn2kJv20UEgoKwkii0p65J3PjIgAXjEjAC0DDShp+IbveKxb8mzJ1/mlbeTzPIoyMumKY5OiK9jksDnf/EOKWNiB07xyRbWZ4vZ/7Pi/B6mo+twD6GagYrsWac7B28rlssR5y4Ta6/7UGLhIgEkV5UugcE1joy6QTnyFI1wEpIi0LAMKDBwR7f4HWJIyZ+CILmmW1IZB03emCQThsvSHD4ahTKM67FxHTJOW5e31t2QLVjYZERlSpSgAMJqzmC7H0im0BYea+uVLlyAohUQwMK6YOE9f7HHlbJzRBWpsM2SySwdBf2QszKLTDXlIyCeSUk8GmOdEZzelOZtahMmr37rwYQgvwCODhHOBUQpbqncQEgVh3UdXNOUWbAzbsV+rEr5c57/5gAHjF4PNEW0THgUYJ+ysmRPeI9up4zlMTafMOivtjXLDznke3jB9PHAjDxl2mhlEsgaZhyWiKQEAzl0GaB5O/vXa1AQkmcIBJ8UzBPtJ99VeBhVOOsekvAg2vazRo9+gOj6m4rfQoDBp2DMGfuqUjP6vewFcQY8x2ant08Tp1oy5bXHQMcLJFP6OlrTBHI3Zb1hRVz8g1YJACGAY2ETZA4e9Iu4xpQ3FJRjc0dCh6qx0Z9w1xlwj3lXJo27u64Q2mjxKExllKD4Yiprz7v/LeBuL9oNGjDAOyuekUP9Tqqux/7QExXLowcmIKHnXltcqm3lpFVXYFZz3D/9IMBDP1pCCF+uGtcOfCg+WpU5jMQPYlGMo7WeB30j777TIrl3VGeK+vWFojVAzcIGiD+BIkw523AQc9LAXaz8blWIg4Un2mJqwsJZPpVKn24OddAXzRJbr7z2YCw4m0NLENmNPsPHoFdUWPsMOZ5whmEnnM41HWWEJN8sNwEg6RAVWKYQ6fdSWeim3gpwDIsXWH+NedgN0pceI/2FK372uu9OhrwuPth3VTK9IdopMtDdLbwwIP6/7YH46ZMUKWzAduOR1ZmHRhDL10jLYrpUzynCAookEoIKHQGaA2QUPKmRHLz3e8LpRECiKkvAc1bB0xdhqmwbVedUxQ99S1fS0KPShOhOfDYsyr7Q5UyGJnvkt61NvhShtox3pXI+FnzbrS7li+yutac25Kk4tJQKDWuMqsleL8l7zBOxwEHU/MJPRvjhPKRV7kVUJsYkODZXDfZOY+gYVabxYxK+Dkvyq47umPAIwAHdCDqPMN6T/Pb3FNQ2T2djO2VFFwrY09zixLE4KGrrKJ+2A9K5zaAgL95stQ/fqByaBT3nb/sLw3vlIhsHSAXXfVX8yq+anycJdGjSPBNUAP09ulYSwlLZhhvnaSBzQHPmc9YJEVGjFwnfXuWCdVV0YgNzZI1spsM7tZ24lOig4LSBtVVXIaCBIflY12Xw0Bu+fw9iSEBIgwIjEeJJDIBx4ko5wSUswIA8gWOJYjPqtINIhUB3gH1yBcTxVnLlycpV86JdyQ0TJehIe6gnh6BhftBjXfXA01zbc4O5ty5UTvlkTAXw3+B34Hpx2HcDX8TnYnOOKnKnHTP2oGmWoR6LvMTVZeP0LtlD4q16VyohgCQXc+UO++7T4r7rxFVyQG0KuGh571JqaGtQTe20pfPHJJ5gnEp3rItw6KrLaajaMAyQ1onz24DQEC/SgaRMNNiFolsK5D07P9rVeVyBr75plT3ji68xLfGt6fOrWsrOuHwjebAg8ZpLoDaLinDBwzmRdCgyunV4hkL7cKKX6KX6Dw2PmtJsPMxjQKhxDc5tOidlkRqVRwfPFiIGWP3ecquk9vc6tjHQRq+lAHnZn+71UTQ4MQYnSSDFxblVB/UFjEqyCtwzytxyE3CePYIZ+6GD97jM6iJMBQVSDiw2jG4GnNv+ZW3NhIcMnubd8iRDt5rAYhhP3DeQ1QXTEMjuTMV+aliArdGvXH8P6vkwG9+GdglmAY5XJ5BqCwu06UGaHDCuiRGiAM03KEObsTn2YX9PSuvXkZ9Y77U13MN2HqoqqR4UO9r92eaaKc2tk+PwGWibPvkpa4TUeVGdX2drFheCIKHpKlqQiBohAmq/ma5EWfO1kGyZXyeRK92JXK6Yo8HIGvwnNJA0rt6r3KxWKUAW4JHzlly98O/D9qL9SM4so6ejcgrZ53U90JqGlhGEyyAqx2FQ0KKg4BiAt9h2ua3OZtvMri4FGoqPGZ5WbdUB26zV0S+B4b0AHybFfju6BYawnVF73UWYo3HMtgMKn8sPQfuLTf87/1S6UOg60YvVhWm18cbC+kn1YKT1sOTxsoifbMyta+yLrFYXCdfykCwK/tidapauAJuA7Bi/oYG1C8tiKDOChhkZvywMyBx/+HZSMhIqfRtX6aqXG6ixcmkRvLItPPO95L0mBaT/i47g/aR7qUCD5MnF1nVVTN8w3VbpIywWuobc+YMh6H7VatH1WvJdgyT587OLiZlt9Y80JYOtLNyoJf4IhdQkY00c9zetzv11iO6gx7e1sktuhlSetCg4YiGJBfLiATgsfOcQzFU0qBr63DMGH6V/vg0npEb50GOhEfEzvgBn/Uv+snnniFRddykRo09OZTqLrgM8uFCeBiIQRbFg+lBNUDdZ93Z4JoBFCrSU6z3D4KI2iVAgGiXMISeHC4TwhLkLge2GqARx+ruEVoDGJpZMqFlEeCEtd/Bs/Wx+RdevM7ca8VZM86UfK1gtV1FsrLcvP8F3DAZjDurElPeMGUjh+17HHGC37EH3SO/vOlsWYSFCCKXgLAeCaK6ihIIiZR3GEKskgvu6Tw8gIe79SDJ7zNWfnn3g9IlVw3lvsRhYxUM63iPU10Rljq0LbNzGsGDRWtP4Dfhki+YUKKAEZauwtdaB3j9b8aih/UHxSTyHdRzPeoJ6YNB1WY+4FgwSTlLAR7bboGd5+dy4LcWy9kXviqUCCDdYSFL+w7a0cSTuoN+56XU8v8QO7P26prbPS+nxoJEI7lYU+yDaXvLL392FiRBaO/OcCU2FsAKhwW3xgcRrBqskoiW2ZNCgj4YBkw8DwOJ6ecsnZFIzDggI0X7CA3snBTKSaRnXvA6o3oB45yu7fiBRlZtgnmy685pwIMqq+O2jlkWSBksgaGTLSwNibseAB16bnHeHA3cNHS3MImU0awGe506ELVCXbZrgIPFY6PwYGFwcAYkps7fJRnxf+ChinM4V6OrQx/oVIYlDQMaTIbeCBGsMps8wY7P0gdPt0lJgksx0GBsdLEU3VV893WzTEOfgUOnIXFc31te8vZMYGfbbeCRUJVkLtVZjCLVJkRJ/EF6ttKVI46aA0MhdrbFYDaBAJKdVS/LlhbppCsbnq8aDEHm2Q+B8Zn3NouM3GeVpkfwYZSwV5D/SitPJwYSR7x6e6VuWIQUSEQ3rgFAEthojw+XLYmoMMMDDlwk27blypOPnCznnPgr3ftiZXZPlUC4ApAznbHw8Qggpn5IxxBZZ/U1AI9zdRb91dc/Zu0oz2IfUPDge1xFmLO8eR0O6pkWvtHGa0Nsi/qAMcAI0DKG6xm+Zh6w/bz47CHqbmuNwXc4HsOKkscKvAtHBwM0jMo6uuumYqLPW7j4hc6tGFm8EZZaiHJ2vJhee4wHQtpm4ODbe+RlW/vkYfnWOgAE+gfBg9/jjKNvl5f/tr9s6JYvNkzy0bNcyfg24gwDOQCTEwAJAMUEAyA8K1CG6m9AhGcDIjwzEEAiGZiFD6ZKYPsT5xBdldhMumTf31zvFpt8dts5CTxOLN1rky7s2lYpA/TTAIaqpWZ//r2lA7YvgrfU9WiFvPbWy9mR+S+m8dXZOFLVIAQgz+w/rJyzxLn5CCe6mOjNgYZxZ6OLW8vAo3FWa0as6+vUKxMYqKs3Iix/EzzoicH7phy8T45zLNZ48u61eHAhDZVwAMTJ552DjzE4mnI0OWMpinAIDya9nwG6sBJ61WHrZdgea6S6JqaE0LxDoliJ1WUXLhwglgEO/6EBCzVG457aFjBwucOJSc93y8WuhhkHttfIajyrmD03YjLARs8qctUW2FkGJfo+4Q8IIwkKWI5+Azcp2GDynNbzxecPl9Mn/loeum+iRM4CgRkHDPrE54kgqShxBZZaxFO0FVdRk22/F9lyiq5Ke8S35mj7sJ14UGU1pPBnZ7McJhDcWhxQTq7mmyowfYb8nLjkYd4Di+JkomAoV/hgWXm4XGUe6VVUZHKOhlx50aViH4A6Um0F+46zCe+ZOhJE/EPWYNHEHX0gWfWQC34yWbaVIx2EqJ1zWdu/oadS1YTw76LB/SQr05Hy6gYM4ZjL7/H53GK57qpr5IQjfyMXn32D/PbO7+iCj1sG50nk+BCQDPJAJIFJAMgngIgWmIX2jnC/N0DCc7zOxm6Mt6Ox1sn2HXmeXQdjma+HPeP4e7cFHzxI85SbNxmTHrYmkPFGUMD4Yva++y2Z+b7Vq/IJNWq3Jp00cd36yDLJsv+seUDNliZak9u7TuJIzso0GBqC4ppuQpJlTUZHAcnzg6+e4i9KGgY0KOYFxia/Ic0riWcS7Zm6ThMNnSRK1F1TVD/4kHly7xM3yStvX2nxeHrKz4RLSAzvX6aiPLl8xmd6HFyeiKs2j3RthLgGJFQU9g3v+k7o2ojJjNs8iDiOC3LtBdolNm0kFV3teUKBIDBwoATBH1Bq0N6K+xAM9h7/haqrgjj+BVVYMz4ZrtyrmWxGsEjwVmJ6CHpvOy7AIQ7FHhF8l4EgvKO6brT+aAfHqu64SCQqESiWKMnEZf2mXFmzCqw1+Se/Xsln5czBoRfDNkAO10hWJFi8vvv278vFp1wvFUOyJOMYR+Kf+W0VIspq1M4G4a1dBur+AYjuAYmOBSwQAqWOsM3JtIH3tH3/Cew9izZKXp4nRtJmEja2G4AjkPAZw0ragGI7ZOorR8hvbzkZRBig0RdSxwK/LIjrEmj4qfxrA47HnTRTxo1fouDo2jUF5TX2Fd5bLWaMED0xbr3TUDamRzf53b6FUtSjQcGjEspHfhd+D7chS9VXD//hLLn4nJvkjG//r26nS/XiwrK+UGnh2+A7JzMuYSDRfoo+aMAkoT+gRGYsqNRBb8HI4zIfKk+CpJHasd4qxLqvKBimua3Zk9YhDeNea3WrmYmtYg9ua3LJ7xE07G2x44KlTQyNTo6Y4nc6opgiagfcMg3JBsHBAs/YZ5+p3OTJkYZSMzkmGTRMzmp0arZyntcHPUjINRrQ+C7WF+LkqCNO7IKlDu7Ug5Ppzrtisbzw7rVCjpOqDxIwvkMCuakhdqyXr5emKQPO6PEKAhjRBiTGxwg0VI3RAMmD1/Qlb9QpMy5DegDhpjdeHNAIcLirlwwGcVsrlgPwIGAkE1REDgYV9f9lsEvsv8gkkXBmelzKgcGiZy4CASIcDGevBJoPmrVzNGmXcFJprkvQZp7hmZ5VDVb1EsOBkzAvW1Kkxm8tBwig4boNJ66cOdRyffpulx591qpkxYwIGkyHBOudt8fIqUfdgdW6oLr6FiadzUcEMv+sKzhaGrQt7MErGcigBsRmTY3aAo487n3tA4jlBah1wnNq2H5Z2TDP0JjdAaFr10rJggpRsHSWHUk0tBviyW9ug6MXEGRV5SFf1vGxB74rH709XDJOhZoG9g4HGKh15CZSOLSv8Fy3Au8uwUTD8XLSd/8dMADtkzq8ylc79ZudhgY5srCn/Oubo9yb9+0q4zE3Po6BRwBxMefWgAjLvK08Q6URqrPWr8MaVps9QKTjgmFekkGExnU1skOtRfuI6et6zsL7BB6cISdijbLVaMt1WC7nCB07LGXEim3pGbOWe6pn7a8d8/G8Jti1/33Q4LLsVk7ltJa617akUBHsjeSU5t2854Zu49Qd2M+rJe+aOLsXOEyuYQDBPRae7mncatXMsGRU4wPdspVmPRUViTUN3iQkVLGQ07rlN5DEMieB9f8PDITwwODBCXTg5rOwRAU9bKgHpjrHcCqp5y0o0UfJShwCAgGCXlnji65atE2yF0VjOVNh+J/Mg9eRSNYnWE9nFY3zjJvouWXS8tZFQpp2hsSoeAjC8qU9pQbcqXFTNQ/CA0jvgSByENGNduy+S6Rr920BMTXv0M4x67NBsn4tdM99vbthoAjAgo+oMmCaW7Hs94QlSqx4m23aTjuHUgtjIOfSIyCcGNhemPd5sdYjWXWjKht4K5H7dhps9fgavuda85oSKRIsHqz72nV95Adn3SArKnpKZB/Qk6WISolNc/dfw4Qhlf/qVqJifeXcC94JCA6JnqYnDcW8bm9gGuZgWgTJnr3QuPxmcQBDc+QM+MbJkVs2Zwu/oQklN5wnNZlQSdItGSorOg4QEMMHQVJqp+OVwVhNF8vQD1qr/YJSx/Ya+a6XVklzuZvscC4JWo/fb1NVxSIsGSMNEJOxqq11dnF/efIbe8vjBwyQK0flyKju2EgB32N7da2e2XdYfpZh/H5L4d2G8kKaYDB9zwAIzwQRe39sw3usg2+IevlOHXHuJYqDthLWmdeUuCPHiC74SCO9kUa5T7u3OCdtazPZeMiQ465x7GkBvm7/QoTczYv/qa3eUuFqESzc7VnPuGU5xw9d3XVPOixRjdbW+SNfDXCYGoUAhDo8SiAnbBzzOeYzbGgdaHDo+fpXTK02KicO0Asvf1k5LgKFBi7whyWs6YnBs7PqTNUDTzz39YAjYzzOW/CkBTXoIn3tcFy1tg/WALqdXlhYj2cylqulp1YxuV4CT/jgPQ5Sy3KOZ9xGzy1yPyqtsBP7A3dKxIjVHHAcZFu29ICbai+xoKXQMsF4SNDQQMJuDlyq4RESB+d9DB2yOeDGDRHkwN2+tZt89OFIEQBHsrQRpMU0GXB2t4HkDCiTIUPXa714u9HOoQPRLzuftDQ0GsjDS48EEhaIgZ0NTjosYaEsxvXV5DII6ip+X8wlMLf07MSjkpNXruBx6YVXy45uWZ7BHXRaQIyaBKzcKsuq1J2Z6kx+vwgoYUeF5PKZ3wVFQHkE2NTSZqXPwJFzXbJt27sFAMn6LV24h/zl0aPUAM1JkGC2PRtJQN79ZFm/NQvhnttVDj1mhtARgMFzVSWz1ZrgSYuVUpUze/uy92vjDVUEDXRXF7NzNOcxMIpfsWexPL7f3i5B5JpRBdI9D2pDRKKKbsTYL7FkTg0WbUSfpeTrl4DgYQ4tEbSWdb0i8s5sLMEOx4fIoTCEfwdVPMWRjMMhoY2AS3RfV6J7OmqAn/3JILnxp5ckgCtE1r4cq6MLi66kBqDRtkMQ/JqDBxoBexbt2x7VFFVRYbCYMXLs92gioKmAxnZt52Y1OBoj5b+vFjhMkUzhgbQGQOiJ0DJJg4mQ+PaIc4Ia1QskkvQioRRxENZdomsiA32+45OHi7yHmbZY6oBnuvPJ3LWBR5JG5D+Awd79LumHtMG2eTO7KTVU1+XNs6zYJD5nPiQ0Rs21z+jlQuLDg9dUe/EZ42iZqP6wMu/BntgfNS6JYFQ+ZRHObaB4rdkjbQ5ynRjXE3f4mTnIzMFICGHxnqusMhg7hyFSvGeuP/1gLCyzeA8GVQ1J6QXp4z53s6OdI5xeg1S3285hDORm6RGWg0BJCWvHDhB6qiEYSFNT0VWAy97w+EoXDHiQuN554wVijQJhhedryoD0nXoYdNC+E095JyUYmbZL+X4bb3Jr3BYFLJi4fkNBAqCxfvSeewLAwfZSqSO1htJrP0pVCIccPjeQquqlevzYPhehMxgGpkWlgeCWX5+ZnZtxxXuPzttSV/EKpQ4GAgjPlEAIIvxtQKQvbG9QRWvb0iOOKlD1Ok/ug6G+yLkr3OXx8guvlVOOuUvOOPk2ufKSS+WhP0+Uj1buIaW98qVibJbQ6P70o4fLD86+We0qHGcEKZ7JsEWi9qRYNHqPFcmeyrFLDQHUysNbW2/WbXeFkndbPoM7sUzY+6g69gHVUFi5Y/wJyyeMSAYLBQyfzqrXa2ICLf6Vigdr8cvtjBgmCR6lMACChH1PBHaxFgQS35n1g3rftz/6TDG7Mg1kJ539kUoTrpys7nqcbc1M6cYXBBBHcmt9x26RggIYysHls9NRWijTucqMObOBnAukhkm2XSNMn89J2KkKO+uCV3WJjqLeoNye56p6/6zY0NOaNWOYPPf4CTJr5jAd7Fa0RurjDeOpxgIQnePt2DZYd8YjB14opGJSYIgVl5meeMKsRkkDDwkW4RBIDyCo9Drae5/l4cd6TWITy6ySTz8eLjUVMckswHJR4Po0cMAmB+bB9KBnpt3k2b8AjP3gz+d4Q0RBD8Da+kDQIBHSbUM5TqDOl3S1LwAAQABJREFUKdvaVZceyR+0TtwqUB7aIlIF2BmKh27A9qkV+A5JjeHH532qrf7+8iFy0llvy4GjvpT4Jqylmk+mIjFRzQc9jcuseGq+KPpAQ2Ladi3ArTbxxWZ+lVdAVEgTKF3pasVs350F9Kf1awpCgObVl/1oc2k/eeaJI+Sy/3ldGv6EPo2FBFMBrRvfJhaWnKGKqF/fDdrH2d666JnIpy38jsHHqK2urCN4/Gb2G/fdPuE7e+bGMjEvChY6SB4GQMz1mvJK+WIr7DioJ7/XwYfN8xZDZJ9L9ekgQKrqClt9LXhjIAZaJr5FuXw+ry82yB0G5wAMMbQfpa7u+ZWydUeuStJMO4Jxy0CJkXYWvkuGhOOZ91ypKcDOlhdDrczJkP7Y8zQJ+mLqfyFioRGCdkgdvf13Sw73eignCy7t1lDanAeVekVVxT6S+tgrbsz6UA3dfhFm4GwkC6ZZYnWA3tVPm99zdwZ8BP1QzJcfwBz+/VTdfqfFw7uemip5gppHQAdoAuquh3FPFYjxBzcpk1PPx0As6FmdoOJxHaeAccClPAyWahI7IIORIH5z3x/khVduwiZEUBHB6O5mLsbIWeId2dOxvemt+uyFf94o9/35NwpMVBeRKDE02M5kAhLWkKrhjNxcyakKrxrLAWIM2mZVVIIGgSJ8MC0V8zkQATtD4JZLkEgOOZjAtnZDd/lsVrHnlhvi8DQu3zeHeXmrK3uNXKUDlcSYZW+fnYNqAk/lwTpz6RFmxXRrqr2lR3TpEJN/0lmJfJWry8v36L5damqh4/bbMylq8POx+yBVdgVBycD38z5h8IwXyq/siEjRoB0ybt+VWo5wBNabbqcdFgBCRX2hV2yJoR3fo7S0e8qs+Y3fef0gUFIMAXDousggMFhHVegNrd/2clURUVXkuWsH3xEvtzScGKe0aLzinlr5zqoRL95w5vLyTffWY5eqKGawGglEU8Q2ktM2b5WK2jr9TsOHb1DVJxk1qqkUIEx/45mBfZKSCCRdbvJEdSQD+y5BnQdBg9+EfdkwCIxDZotjk0e/PltV8u/VbxUfqVbAG7ee/Ypjr5mVg316RFoV0CifVgX0qxXtpkVo+T98MBJ8qpQaNmVeh5ZKkJfdmuicJlLFmFEvGe8oI1XQfkEGXJnwEFPe8oKkj7kbgUM/AkqiojFGIXda4yzWwZ7SVe+zoBqvFR+lxI87PhYmaCS6JKASPxKqKiyThU2LaCA1k4eCJskIrlJeUDeKwl5s9N7aKcG1Pf13AsZqdPCX0bM8ozuXBgkObm9KIzyfudOxYU2GvPzvSUIPL4IHO7mmCUCi+LxNelSWSgwrxYVWtQWBCdQ3PbziBdKFX9qwXlifYTpl/4Fl0rUb7M4+oQ9XrL42Rz54D3YOpmckDTN4k9LkXAqqFWjnoN2ERJqB9h9vglxb7Rz8FJA2uGaVbW+JSraq50gkdOkRQ0Q0t8R/2v/BAHDvh+KhmKXoB6pCmhwk+NnVMmPGUFm4AIadnmBCYVxvEtCDHM7gRuAe4IZYmfQU1Py6N3m3BTfC6fCbkAjS00hnjTfzvpG4Vi0eFMRiWgwmHXLisyGVUufvUj736KzGCf5p/cBRIIyCis/Uz7dXYWYP7U5mfAZvpbgoUdDnt+METhNhv9du+s31n/z1qLlla0pq4/WrCR5G8vh4y3YFXfY7qjwpkXNJG13QEgmE+6/4311tH5AYuMWsYYBY3/DBb8J25Jn3ea6q6KJg8ew/fqFjjZ6Ur7xxm0x5+8fKuFF9zDiMy2DbkXsaVcam/sGZNCqJTvGZoV9MwcTl9U4DvoK+zzRCR2pmWYk9CD+XbdpjdUF/a1PWiPjm7MN4njF0wr40bnNBWQUGf0a5MXQHQNHBYBGuYTNDNBytXddsMB74CIOzJhTefIoTsc4l8RH5ifRH0pg8tKXWqXiytPSBP3ub0+sH8d9pWd55sr0b07QgFVDHaVwBJT5B9yywwKWapQrU8Oona0c8gpEqFy46SCMi9MH6mOJvUa9K+dNzd2KPbux0xs2CMnxukEZ3zPC2albBqAxAQdD9o7m9aZ9DFUDye90kdz54hwwcvlLu/fV5StT8jo8d2y7THdtUdWN7o99ICMuWFMrYwpXiULVkiL3mEPqH+2gw1eX3HFQpA/tXQ7zvjsGFez6xIclUddW0CVBBvQKuD22CqinnF0oqfOmCSNPwznWzPp3ZT9Orl5riob1/NM7ft5vfKX0jhhPzrhGXhOpl/bV6+yPrenf//ppsySkg2AdLj6RTUyE3h1IGPIYGDFshNW/voWVqmo1X7yiakkA94+M9ZMQ+YHXB6KcN+L5jxy8NiFXaeC14wAl76UIso9Kb/Ee1TLp6opWwMRrE0rhs3tQ9oUzh70mCTIeHseegf3yZLkf/Pugl18diOzPQccObl1PyhkfM/HjpT/rtSmVKHSatQh1UWUd32mwnJ/ul5dM3QQL5E66f+d2BFxx+aJ+B3yrIyD3484qGAbZ4alLaWGQjEjdSRZ2fEcpl+iA7kgWAXwjX7EWLe0oGVt0lMCSH8D0DGlxehasfS8ZZYBaxh319X3jgrZM+1howbs9A5Xuj3HD1D1V9aaQW2865BWmf4KWvBL2RTtnOEVws1NApxnHlT/+Ox6v/Omfj42+jzfAF9R0Wm0eaYOKQBqYKSu/wIOk5CT/Ag7uZ4iEP7wtTkvDtICUdrIJKVbpU95p+kVSx2n6PRIWHQ8My18rBfM5i24INQf3XvQ4Mn4viiJs5Hl5H1xQ6tX+YW/rIQ577nGnw5j4K9ew94sP6XDSYBmsW1QLr3a1rGVRP2F0NnUdKnwhqEICGqTk7rblmLHD5JtAlt96tHs/fanNwushNv7sboJHZCBqUZrhP9ufYxpTgZF7mO3qNjYW4sc1el2GSxf2YO3CSXPazA6RLXrXccdPFKnYb8IDoPM+2Gj4i22i4KBKGeXOKZeyZK1U9hcZsDMkgwt/EOBD6oZi4Zwi9eQE0SAciByQH5oi+sCUsN0/9c6gt1A2WzYE2Gr33WnkxFNVfyRcEp212Dqo8sEyhkHPN7t59NRT02B6uVhYv6qc2GJ3jwLwTKhwqAC6HDFmfeCPNrzga5YvPRuDpu2kJtVGBDd9jnUpr1dW5cG5Quk3are3mzePgV22mUKEyMN/kQKmtd18AByf/gWdPxxSCNoCYxtUde9U6in6pg9aN63yhj1n5KJs3pFJHhmqMKjJKYQzs0zeMzBhwFol5i79jCTIpgcqK4JEjtdXb67eJZ/MggDClK6Y/+Dq+60sDC284Pxpz7yFwUALeZwzAbQXqDDUVJzzadEVmQDvTO1oDSDGl4flvDYThP1MKutei/dEB0wR+oyrstkhp4ubbABqbjpX4FmxBXPOmvuEq43YOxus5uHcLVka+X9dto6RGxsyJy/HUKnhMENzZ6c5v5T7fAFdsJmBHMLvfDz5YXQxD+8VwwV9uOc4kz0apdIqx2DmSgj5DRQdnjel97WFGnc45Wxzr6zc8PN9jlvU1dCyll0zHS8sHDz4lWBAo2GlKdFTy7lcTyITuomBQ9PEMqmLojmo8kZihMUDTyGx+63OIj4leR9qQ6cqJhqZ9Y2YD7RGUNBiow6W9QndXi/TwJIBMPCBRNAcu1bUVv6ni2YGZrvSVZ1CQ4HN4ZfA3CTu51u+cOs3bVKkS3DIlDayPw32y6aFFFRglmlQHdz9jnPiTcB8tA7HGpkxcyXPSbY+q6Mw8yEVykHFfavhcLzdcZUD0IDkoV0ZwMAdfZDC/eWbAOKNUkypwoHFAkgNXdRUjmTbB2Uy6U9BAXJ1TQYP7mOVQOTSOi9TzXFLlmP6eMZBz6RHGIne5Efr8rWX4Dvgj8UwbIB0M3XNdQpnSxWW5ybWzXZSLb6xG8IoScNDynpiYR2mtrjYjeMYLthv3nGhtwLygJq/kQ0+vwGiIZZMY/g18D7bF9q252japorFu3jpfcNUuQAzS2BTNZoCxsBDuuZFqBUOmt7o27wiefTthije9p6H/aD2CB+0dsTr4htXQNkcGgM4dXLySABLJ7pobtSN78z2C5YjRS6UnGblSFA/AwPKYme5mtrv2OX+JFfX+C2Xa3GUNVuOlgwrte3X//JfI59eLs+Ah73j3VAl2SuR+JVgpgC76ZMhM0L3T8YM2Dzsa+QTGaHhM0gYE9RdAyRyMb+4zDu0kpG1+OuxV4fbDtQcaZJrHF5XMp2cXbaVqLwWdw8SkT+iizzQIXojPd3w01Xc9usfOSbDgWlfaUf0cv8JTOoLc3iKxAdCQgzO5aKCLJZ2NYZlAQRdVnrt1oY6y0aWV9/hh6CpIryM2aKG8DBLCxlQgCn+YcBlBY7y9LEj0qcPV3dW6Qtqwu+uSHYGkgbfMBDqTAF1T6+qiUgHmImwE9dz6PB0qjXKXXvMS0jvTW4mToPH8AWKVrw68tIzRPfnMfFRNRgDBktDu/CcC8Lj6508rKJEwkbOtjGy7vsraUm7KRsIwa05f5TzpRhuEZLDgAwIA74PQj4BBO0zo+dgE3n/vXwd6hBRGYwYDGOHBzHv63cCgDhlWqgZHllHjQy1I92dP7ZQwYLwIzf5n3/AM5IxG7ovpsg1qqnJlxUqo3fFN0s1xMERw8KANysmaMjWX5Xasg6XGaDsNtUbPcmmshrTGvkNiFCb64evm8jHPqqvQbZMC02C6hb0hauBbaX5perTWHYwIDeOUfhiS68nfBFsyPGR8tM2aA1ukkYsx1yPfA0C+7y2PHtgZ05RGsw//w/fjmJwJmLoA+y0mAgjBg5GrrR3788w6H3XkfO2XxFELGK70z5/pHu579Hqj1x/7fLr+yzQZzJjp1r1CPeKcxeiv6Nu0zQXLleB7WmVzxP0A4w47C9LmSWcPemGx/qQ36Px9FQBs9x6my3tkFClhDCxeI/vsvU7PfMb75j3GQyNAzdz/j3yGNgm1n+fCT+cXAgyBhjH4TvjgfaZBUNmvaPgnBK/QRGG2M2i00j6+/rUJJDW7ILDRZtaPK7rxXseNHx/hZC4E2ghycmqk5K7H1S2Pi7zVgxvh4HgT+w+//sJxsmpdNzUcEgAwtediIPJRRW7lmbM3XPGp34BIjJ3WC1wgEEyMQPDtbe7xHOyuhglQumRHFKK8mTzHCCHunNxtBfzh6+u8AWr0p+T6iazlWDjt1POmwEuqDCLvA7izVeJTTvekDN9Li0k2F1QiYTuQ0YH0QTtI5LCXobY6VWj8fO75/VUsh+l0NNNh5+RBwrC5tLf6tA/utRkTFvHQlJ0RU33BChGu55SVU4k0wpEb0/z8i546i7woHxtFwcasXB/TQ+BAZnDoo8/0a1zJ7+EZo9d+2F3TrY9L8eA+Pxve+F0IBq0PxrMKC3Hje5OwZsrSRX3lwEO/TJuYEh1IB3R/NrYc1tVJqisT8Ai+Lz34BvB0CZNY02kz6DvpIrbgfkUVe07qYNLX/NLZOPgqDMlbt+aphEjimKp+jEaGh4xPQr/gg+QAGpmRC9fU7Eqpg0dSFF5ZhdmZRx0y6Ibu01Y+gl7Q6kDCxu/OM9VXdCun+qqSfQPG59Hsw/n5tTLhgC/hoEKCjtiU/vH9lAFglh558NRs2EJ84ed90d97a9/n+80FSs9HfWul9oU4KARnmLNAJkl9F01DW5676DGskDlaMjGmMrO3B4AMFenxzMcAEaVNjvfLr3hDl7fJcjypEe718uLzB8vkx06AFGKrqosggHfp3vtOo9qK6tuZ9eoxqd6YFAO9QOnFSDu0NVFtyDQY4HEwHm2mKvsip35ylyzngWkrL12PR6iOAY9G2qcvfUX/0vfuNheIFZxZT/GMSGq8kShNcDG0Z/72S10javBel+qG9HRjHXvwgfKzW1/RLSAvveY5dadjA7NBiciUPjy3VTYaO2rQiAn9I1zk7BwyPQPQGT1rqIIGaag5cGlsG3ae565n8iRgGFUR0+QHPuU09EpKG1BROe9dINZmSBpJoMHf4YPvMph73i/8hj5aVkyR+HvoyFj6mkui7Dd+rYrEjBMeLHYEM8i3Zgp3WBNwahpIzM3h3wq8UzhIwNByPafeUEskq1wYnWmWlhbI7M+GqbqKO9oFXB90z6a8Zg0l5X6R7h6jFyj36GcJv/0oxBYGtXN4ly37z7EN+uHtzcGJjzHJWm5enTuvn14GhMU8MGc0X7J0YB6lO7sZW/Ah03aXhNeCnflwl20V7gsJEZv5kZeDrpomhNNPE8W7jTZfu6pX2igsW3tDz8wMef/Xwxr1Nm1LkGMSFfZWBdgmF+wwfYP9r0/fjbrSsrsCiUNN1STws/CbchMsSAi06REQdlY/IwVy4qbAbVzXs/L5JKqfzcH8CFi6bfJ26LMQDJPIawMavGZ57/jdI/KbBybDIeRSgMwH4sK1XvL/JoP7nqV06tl/3KzSN+mFCdQUNK6JNbNevTHtOFz4PY0F49Gji27Cx578jnpXcqIwn1OKMbTH0DyqszhhkXQvNGGR7YxGMvTP5L77zyhEhwZ/ZI6Hm2Xivte0O/zstj/qHghu3VwQp9t0/pHnsjoZHh5x4RaQBBC607GBjeuc2i7otoo1n7jkh9dJw41Xgg3vrASJw6w8GtQuxHgTMHiwY2lAp1q/rkcCUeR9ciD8oAOHLpUD4f/OndV03X8QfeOh5SWAtAyIbMQd/1ACnBkiVszP5Anhhi7C8bfn6pIov7j9UVWThUHDpM0zfdpVWgnXA9cBYPiR+ZsgzR38uJ4T1QTpBuA77+yl5eEaUCwry0awIMFWoh0qOnXnQzHpzgQSU6PDNvdad/bmBNCyQ924Uc9RPbF8aSH1HKgbxgn+UgUFMzyge6kJBvDDZz4L1EMgSs2ph0w6dFxIDpkZ4FJp4wCtTgtoeMk8C0scpjwmTbUzNDKh5nbK87JlRcF9k445mwd50FJlZCDBFqbJ9zBrBus8ep3xyYdmgCsh0W81A2CKkHSeEqENzKjmDjp0AUAbs8e34psSOChFhPsW38Z31rW1cPnxR+jrLQiUwAoLt8ih35qn65Fx4ygyhmZM8MxgAMTOhMiDFZGp4eC4NhKGFwtLu4BBO/v7b8qp52OL5ZmXSXx+Fywg+Y4edLJxC+5VFfOI8Zb87o/3qsRhQCfm5oz2ZuI3rs5t0iUYML+LrnhRXn3/ern/yUfkzj9N0YVXX33rOrn2xieU3imA+O7CCjiR8gICyFYruoiqtKYA0qQVTZa7/NzBwFGC7lDisAFpp2DpqXLi3Aei68TvzALx9Q3LfIYlQLhmlFk3yq07BlzDZkggRfLcP2/Rd9iYbERtSKi9quoyP2z0vTYd3Zwb28sb/IPVGM27Bix4ZghAgz8w8Mo2hQ0IvOkFipXa8XuCC8bcDDOR0DwPn90yVH8DDlooeCxFvrBr6BIafr5h+4q6w64HeLzZC3VukHMuejUlp0ViSp926ujNxCkzKDR/pu0f3I/BjnNkpieqfBbNrJY5M/ZUfbJtuGMOZh6pAvLWjZ2gdjDB02FzvSOP0zT3W3umkTzbzZ/eEMeidiDOq5f10705qNJo1kAOQklbTktCWD3UbPxWEN/m0qkqhxibJnTvwc7RfDAAtLE0db80b1fVOtK971rPEQSfvVnbKfpIXV0EHC64Fj/0yPCpq7nR9jN6zhSojXfEe2Q39Pbc7b3EdMXm9d61xay97pmQk35nyD07tmDfmNl7qHrLRCBQJgcyQ5RKqAKjQ4OugmCailXyqxUGER3zBbPVfZnMhJFYmDYBgCB08Q9fg5ckQA7GdfezG7zj0xvE+ef+SqeEzjagYWO/uUqOPH6alsGUzUhZXLaeLusEJgYDSGSKs7r9QWmcMs/2Ep04fNnP5yqgcJIw6SRBhnTPeFYyDSjELk4BIGjzMAPNmLsndDBweATcNKCpAo3VKk5mHOAZluHCqvsF01BMfT8OrhvlPDVM1UBu5T3Ss9+P5L6//E7Ov+SVBIMUPwg9H7xZnzoBDdnAswoGrnAHy8G+AEFAJzJchznzmXYq2j0ocWyAnTdFoJrKW6r8ELCuy1TFRILGYFQ6LqQKuuISLGwsdR29DoT5x1gv5xBwuCugvgotCa0vhjs2uGDZBAlmeaZc9ePXZI8RMMzCQByWEkhMFy/rKitW91DDoqYRBgt00EDVhGuqnsixpyOqJNB52Eho2XK45c6HAwFUZ4aD17ST/ikR82dr9+pOuwm82zH/JdOOjT6y34XFZBZa34GpcuwB86O39IjZi4T1LtuW7e3NQS+1ZhYBpBMAbTnU/7NMzYVUy7CkjM923UVB2x3LZBT1hWcTDfHpAlpGpS18w9KNcAsGyKcLDbXZMmwgGqIl0hT6HRdMrK3zVCxds23plRnDywwB89VMwbyY6f/Tw/GCuv5dfrB3PFJezPqSGO8H4q6Ga65wixippEj9znDU+GLeQFm5IVv7P983Y9pIWeZsynD8SZ9Cwke6DBjHYVV0cG1AxHcEmfWfsQmGd/Y5qqj2GbVZFwl1ICDRuE4JRo3slGQgaaqn1jRoHQAeWLpXDth/qWZrAIh2Vk6MtWPxSfoA/wgCQwdt0Z0YHaiG429N9WgcXPipRleNCzQwWXkv6CRhTlp89u+3Kt0js2zUWAaEDIB4qnvm0paxZ0rX9nNHAgc6HDsO2tQ3VBv7BolvMIsbz2kj4H7BTVxXoS6Jf/maOJP3VzGR6Hzzb5+DMf2P+mGNeMk8sEzrPRTfaFwFNQ+hBPoO8lOuLj5U3O2LNHr4n+FCgnvQfW/a7HFhphPwGbkQThSiFwa3pdQtXHFf1TqMYLh8gI9bAZUQgKJijyy58opL5LqbzpUtmF8d/R463TrENWDhd2K+zqCSEDq8MwMbcWFdnUuv+GegMuMg4eBhx94GI6ln5/DGtQEKnlN6QoHQjwAIceAyDRL65ECio6vlEryaCcrFVkd0tja5WzODnOl21NacZlMnFoPl0r05mimXghnoqbHlsEwp64gy5oFYU1rSKVTN1bMB+NeUuW3mjeYfxa1G6cyULTe7VrrCo0fwfYxUkZyKct9gTric+tZ13i57yXHCv0ftu1B/Ngey+gz93PNohCOCXSdcfJDhySW5a83Y1Rtt+leCRZzz0RtLXDNXIcENdzUSLdxJwlmWzJ45VL9/czHZllRTkSBzEVMH9JuuyCqFG+APjzd/zHE7Aa4g8MmMQeoYwP5rAiWQw47+CM2A8QRGT/c3wUOjqeD4JYi40BB4dGCwFPXfkghAUJdz50ijvjKqugsum6ISYcPHKCjU3Dy43S29MpWBhreXK94kYa4yQZsv6V4TNZavXmOZHdhP6IUVWvG3I2m5aZa05w7NzOs4jXmZ+RBcaEyDhS9HN1aAg7ER0NsoHHSDe9oFPr5e0VkaXlZjOlGYdg+KfQyqn4T4VtT36vf6Zx44TMJLdeC5TtbSmP7H54f3D/92IzHHjY2lPjsSPPQMZT0LNypxkgaUHVu4GluAggbiUvWkHQ3X9qEit996mu7S9uLTR8m5p10n6yP52CsAdSxFBKjEGExn5NlIQLx2MJvh1FOmy16jF0pFFWZzJBF7tXOg83JuRRgsNE0MWYIIPaHUyAiaRa+jAUMaCb1mHvpHFdj06cVKLG0ajhM/RWNMPNIlOVDGffZZnzCwDZEIcayN7zV/pbnRQE7w56ZO4frq3hzNvK9gVocmRd8qGrABXHTTrsz0lHiNWiYj9gJ6g17ThpMysO1gG6IUY6RPDvwwcYm1Yr0qfj8Gw4jUQ33IsnSFxEaX2OYAyiPynnRQtsOTDsLlMOXnPUpbunAg5xXvLAAoaMszDhN7dCGLDpPxlkcrk8fuzpJq+tyTWOCi3bU2Un4in5MB2H//5dqm3N7Vpp0fVW+iDkVP0A2r4L3H/rgzN1ymTTUVl4nnXC1no287YdIECYKHOXCpgfcxhKf8/Rv6rulrhjkz7eiguCplIL4ZmzwHY5bMjL+Vc011LGDyNA9oPeojlf/jZcj+5IHbSad9DMYQEgzfpWKDPCoPlpEggsVXOR+M2zyoKkxg861bLEVDrhKqsbhUEdfFo1sw7b6Gga6V8vFU3cP2sYfsZsmj6WhDXdoWSkBeNFj0yzfSBu9wFVnlIO1pOochgpU0GYyqR3/wHxvSBDQsjccN75R4OkWgMO0eh337UxXfGI3gQaNUYcGl/zI+4/o6ZiDrSqYEKgR++ITATsQDgR2CawZVbUn0GyeXTy6ERImGZgd2YfXKQHxjp+BZ0wGXau+JSWZQA7z/5jjJzt+sA/rLhQPkgnN+KrWDsBnTMLwP4yDBI9whtRD8hzHseg5g8oOL30sgznxMdcXHHw9UFVQEaiYGI3XotqOQ1tiegScUVSFdmhJ6fdH/R3fMhXOHarklO968PcF/x8zWNgQxvD5YOO2WXTfaRripUyTeBcPWq+uy5XAhY7umAzSCGdedwvcYNWqdYOWBgEibvJXwg3idfPIsjcelSpoQLUbGZ2SwKrx2pfRppAXXp/B2RoVngPaitvp/xAcsTv7TianIqll7BOrN5dRTMRDM3I7UyfbyKDjueTJ4D3jSYpHGtKBoSou24lpg7NcMw/NyuQz6Jq52a6K08YwEy2DfiNXRDZcqTKbDPsslXHR1AuIfGSe/rfncBCNhcZMx9kf2y50Fpv3tiTPFXQPJjeMQ9hETDIMYBhGdHIkx8c7be2q5TFwCSAVW2B0zYYGuyaYTFDFuGEw6vDZjVpk99Ymf1sTjzbErjs+2PXd69j2C2zGnTFNJvWEZNiKjyisUtNwGRKrWeMzy34/wbClUY9GBCGqs/N53e4ulYkHV//3j3QGAMCmq7rc5eVMbJY+UPTyUa8dcdiBwmAKNj/5iL6nKB3GjyMZA1RG3dBTneSxw9lfPjxudWAPP5sClIcp8xobm5B3OmeCGS7R7PP70g+qFYJCXBJ6NRwDhO6peMovIQUrg2lHagQxY+IChBJ+CEAi2mTVOW0Jy6F0I972Mfp7Kq26N10kZyaSHSwecn9VfZPGXfWX7NvjHozMabpDgcfOkM1Qa0Y7iZ2A6pTnzNq/dZa5wj2jaOgzRYFqcmLh6xQBdKkS5FsQ3wJvKE0q51gbspYEl1kkEDaH3s9fysZy0J3w+Z5CuHtucqkPfg86ds7XDOvdq2TogccMrk0PLzjSmNvWscmT96j7epEf0nZ0ZyOntFSb0JPY8nHiGquq4+x3VVOlUQ0FJybWjT9CrKzMjjWQSRE5xAbqgeSSpuwz4UCrKzYNWlSoPArtHv1MkhFuUDrCcOt/htzN1Mme+xDJy50Jim0qEzaXHFxCPa4GxrbKwUvDI/Dzh3uGc+c3HfkikbuZus2ejpprZQPsmpSv22V69N8m+45arfSPSJ317ar+DwL8QY2UdbTr++EmVpRJ6SHNDijdr2u6XaEaowJSJojLC0BKfvujYx22rj8hHnw7HkjaD1L7H8oXDSSeBuYBLL79/4L3o0wozRnV8Il1LwEU66xK8v4zkUofezGsGzl858TufYP4IgR5pEzgZDO0wZ9xSBxqCCGgMly9yXtm/UY1lY7FUrouHBVW5WCpX2yaAZGM+DpdzcSM1xW3bR56FaVvoUOAgEcB+Ehm17ralhxdkCT0+GGgn+ODD4fLyk/tL5JBSOFUgW7at+bjgGMKAETQsX0bjWpHVMKBDnIN7nET/hklzU+XBJ36ls4ap+yd4JAd1nUy+yd+hj6WP8bsS+yFzEpUJ5sPzd/HgLfg/wAMgI2EwDT+QA9HZqigaB7rh5vjYgAfVVu+8NUoi38BN5GM6s59EY5mQLjkeSjjfOf2jBKlDBww4I10qJJ8cEDiYVG6zQaK4ACHk1q/du1UpEQ0/4rXhyBdyjoj/LZLjJPyGZFbUZ4tO4ozHoRLDRyR32bjhVUniaEx4OdWPEiVSNJCTeNGzikSH6a5dl6+THlUSa85ADgJM+xmJKMtkAjl8cuSnnT0Nbt6YHFjmtZd5nnBmqfFdXHSj9RX56tXF/hNOLyF+cz88DZVUVmSlBB9lRJp73zzD90i3nDrrtnVbjhxz7BxvouSGnUsbFuw33PSJa4GxrbqAiI3oklPFvcMpKZhs23ceH6UbLstHtdy4cVgSBqpEdxUk4f5I2WckU+YB+8aMT4anlBzD8U2fpadjFozH6uILUGDQSayQbIwkTg9D9msdb7Bnv/n6+CZjimOUdkDuxWJsJZqYGeM8hw/8jBSVyuY13lgkOCQHjlXSpX33n6sqUmcJymCkDbR7oPYyYy6UvtJBfyMzalwcLJmSYAchgIAGTjyjVO78/WPazmSWuYGdx8CVkOi2chwm12DnvxtH2s7jtigG9dXcHezEol4zB/QASfA7C7n5O26+QI1TGWeAXviNFnDhocYzGSU0MNF6IewemDTHtZ6OOLGL/O31WzFr9Esp39pLwcMACFcfNfpoXak2RdomfxKm7ZgZXglDpOEaTP48J/v0h8vE60ANBm4h3UAnh/7bu07ANjJQWflicHJn1DxNOVdjN7rjP5X87lsVfPiMA4acovFxNz7v+l6Kf6q2gE6fS6LvMWKNdjCqNwzHyjMD09zpirSIp5y0b4zuU1ghtfBCIYEgoW80kAeeOZp2y/55S4+Q6TCeVUxXdz+EWiWsgkhOT8sEIzOXkSd3awLfr6rKkv79S+FsMBUfJr0hGg0CiRLtuxZ1DHG9TMME01bmd3vOvXpW6uvNSXdaL8RavqKgSVbhuk265VllDna2b7kLUGTgKsv0pKNhfFhWHgAkI6eyvvpD7yn/N6oOG++15KrRDZcSKN+gpKS7/XFOEwKXGUk7f4O2I9g3Ppk+JJBmw/00fM20jJpKVuK7UiuBsWdsewQNfk9jA9TJrbArcBmTD9/fK0if6TCQuaBLL+2BXO5dl/VJQdB1vOKxgtAgS6ZOmaCTaElzkqUXpstw5lkfe8b2cmgkMO4Nw2jUXjyH6Ym+ZGgAzlo3MKtqkA+vuZVxMiST++WIY76Qgw9arDYrerEV9bl0pKaRsPSJd6ej/3cgcJB79IgAucdu0foPJw0vUqmD4EF7BI06F5x5rapboqfjg1NkpwcDGysUTGPylmlkXmvjV2DG9QeXwO5xjxqP6L7G2eZEeLMkQzAhiu8ULGxMnx3CP/gRyWFyRimXdaCek5xCcjBuvQaATHnMmfFZDwJQqsBORdfXBXNHyD//MV7sMV6+QZ1DHUXfx28HUgf11occukg7Ngk+ud+uXRpU4ti8AXMEoNNtjviQ51CdPjrsN/ZfltJ4zPzIfS5b3k0HlorLTZtAi0Vi5mCZhVTGaLNOmEZs4z8aZ8OeVUxmZ5KQ2gjA8HHxvH79twdgxndJuH563eu6eZHz/9g7DzgtiruPz/Nc5e447uhVelGKNBUssStWbNhji0SxYDRqYkk8W0w0GrtGUTH2ioK9YkVUELFRpXeOcly/p7y/7+wzz7P38DwHKArJ553P7e0+u7OzM7sz/17KGuA2GK/mRGiGlLdivD6a2I/b48WPQOInN3WAGCpN2WTKWPXHC6fuGWzwfVyhL8wDAP+tdz5hE081yEkxNoDocrUpLhULOt5LbaTGDG0mLKnyVelizTbPGtKe2PJ/GmzCDDcYDfajj6S2BSBHtPxMS21Q/4mhxJ8SgUvUdJ7/Y3Mza0Z7sylOD4LAianCEgEhpsLE1+n2+JbWgEVxsKyRCE9qGdDYe1ikyVp0gB5ijLLfAV/LJN6b+DYkCid9sMIec461qvdIefnlgRshIc47UVrc4gtRGtwG96oAd9zGbwdH2Du4xz5eqC/4YmHMiumWA7G+b5G+VoTuj+bgEs/F7/0FD7Yi4vB6iZUMyezv/Pa9p/dsXlR53YBWprzOI3kIY4wO4JSj/2pef2WgyThWLGw7IQ8wMi8rxsb5X6Ybu8PWAOhgVEHLPpJDTllrfalx1tv84Sf/aWV+KKSym6yUIjPG6rgG/B+Dc/xWt5go69Zo5m6iRKUQq/dBVd9NgOTzqZqCShrz4N4C+AkLEDeZbH364zaYAekTrI26rzEQCDLgL4hsq3XfIOJw94mSG7zr7JRiExY4C3WNYmHZiLR6fkP6hChKVURDnde61u3+Z3iQa0UdEfZbVvkB9SY5IXXH6grU785dV1ig2Chb8Z0kxjnxlI/MMSeL4lvqAZV6HXY/gBWac1jSBDdETVlurqVKs3KrpTTWvFT4/59aKipikEIN+Ntpt4M4I4/ZS9m0ff/S61Qr0gJ6HpAExSENOL277/6PGbqfsk0u0PpRXpK0Bfyl2y0lrXk+YbziNAkRFeZmmj2bF+t91Vb+e3ZwOkgbji9tOw1ecPqNkggWdvSTPu7QaZkXZkRimmBHvWjGTH9SFQFjUizz3fzfP7mqbVuIz4mpwutihv+8Ite29hA5bFb3J8tBdEqvv9bfzg+HLOBi0IG1VcBJ63mufsZ1JT7gHoc7rE2VYAdjE2dNm9otpa6EOliTOaV4ZInWu2McmRJu02EcfsSeZ8WyrEGeFYOFftjiEIh1Tlz5jSptu7I1EYe+UILVHTvjpR+WVq4dc1Ln9uaSHVubskoJgjQ1QR7sLznvAnPLNcPl+6BFsZs+42p1BfyiCe6K/8W6c/EXr5cdnXyhiXz9dj3RFTGfwgpWCGUcL/oQ/rbsMSwtRWxuOq9xr0Liv6UKYh+ZNlyxH1o/nFjLTU53HQqH4I6YmL7/4U4mKLhviR0miNt06Ppoz62OWscpJjYT3F9cqBD/uVTHLB5CTZNrGlEO1FqqUi4fDcR1ILW0yAiqrkYfTqKhjWItyQwxVbube84BLSyr6iJmOvc5TmhzQ4+QL4R7Vsm6CIOAq695wRPjNKSE1uvhXUc+FAD+TVRIYyfzw8yWJq+RB6zpBwjEFRtI0P3YjD1AP+JL8wxCKpb5bIPOf7SrPrlw6o00z2iDbxfIrDUPPHKPOeS4r0x0ruaLom2nLeATcaXh71VPVPkkeWOjGM7I3WC6SmS6c1GhxhaeMXnJ7Ws9XyhaQmrw0wrydWeGa8VUQxbahqLLBDhF36UUU+m0naMKQPrZ5K5pH+xHJnxjrKkQU6FbtGataXoNEiYqAt7oH3/Qw3LsEEsgDdp0Yirreb5G8zvmA+x0I3Yd0sfYmre/0ZUoICvIIXmdMwArYZDfkFOKx6URwAu3UTF2jNQjslTrTs+3EhD3LFVxBLQfiYBIrHh/xdu0YhYgzo2V5lmBee74l95vTcRh+woQQNlJPP7fTLjprorqqqnn9+xs4DxQljuxFQjk3tuHm5EjrjDLswuN1XvEXqL9UJr08eJeOHtXOKZOmTzPZ5wqq6s/mTbdD1V2vhvkpfmSKPYdbM1AZLb98O42+/H18q0iDdyiY2e3H6+T5sCPLNyHZ+/ON2tRFrfuSdOEeUHRNW2/YwjSTUrXBvdxHK7IUBDIcsvuM8Hd4mHhECqExcCiSAvoaUeIA8fEwpY1svWfZSku147rH7+hEBHXbVYRIrKxlmKVoaYTllX2pKP9Nqs5fyViVrnfjhNatlKyNok5GuKEQC5YewGwAPq33fmYNYFsUIwDYIXbmK39BgGN/sY8PGYfA3BPLowxUisLJMx5Gyi2j0Kw1VoBrljfEP0AAdG3TaWMtd9TCBx92QZ1hWevX1to+g+cYya8erOVa8eRRkNvmq5KnRL9TsBz54B5Yuy+tksVavPgYsmOlF1wZXXZx/K51+gpiTD33u/N+q8eoN/Iqs3KyW+TFTT93F1EW8BCEJNwxGQpuSxdtuJR9eDb6RJTaW77i5urIM0qrdV6Yqpv9c0krWio2HcpQA9BsHhxK3EgCYLA3QdXj0kv/bTiX30/YEOygp36QXEOGBi884YnpgIJ+Qvts1YH7fZ9Qimue+zaZkq4aQHsYlPBaCDzQHFIqhdeLjGkfFL8CMTBBYdELJHKvcG3zeqF663oGgV9TaRu+pQl/1zpBVr86QSA7dRm/Ks/8s24oeEqdLiZJ3qQbTiA4IVFky+FJYbzuH9IB6uAxmSNgtPNO0r9efQh15jXhcUzTtQkF1sbmqtulamC7wXbG/iXfA4AXKHVv1jhS9buYW2eocg2Kr4PZxVoroIW6ZplkESpS6XibCndTeJi8vP5TdHELmpaHp/8UDX+jUmG3BerKOzVlXC9fnH9097Gm4K6V7EKxlhN2oBzQcFJaIZNhQrhNrt4JK4iuq9bmAAjt8WaNjgzYQKassROM6EJT91ISN9f2hZF+/XoeL7AA/kZShoCZ/7bYsfenOGHs6wCyEJdwz1Yg4MGOCFLscasveDOHnhojE0RG1kkMcamxDh6ZuTFoMk4SqIMiU4nyU8G4O6AvaThsT5qiimOPAjWdyp+rd6BXg1pY9etzbMmr1wjp0m1YkQ1zq+yWSmZK7bf9W70/Yg56m2Q3o17r7jqZfPY03dZQ4fIPOlr4DQaesvAX4kyw2/o2f2jVrTy+ls7muxcPT8vywxvi9JB1GrFWi0c8LIXpViHaSYAtdIV9BtTQq2LRu7Cd2NrUlxm+g+YY8LfqJNtdR9zO0XLVr+hcDdko1w4v43tH/eDMJifiK4Km6xXsM4Fpmf3ZZYw2HnwTCtNCK/V922ndlkmad6Fx80YYzl0VfMXuHiMJ6zn+Y96T4AAtWOtFTUiv4KdY1vaBMyUL7p6XKnWoeIxxC7U3zmluP3OQggUEEA9BMKtnOui8a9sa8r751riOdhJxJ78vSwXEkPp5Aty9ztEEuw2p56CHovEdWb+up+pr7J93Zx/WxlxMD28qKc2BlGj/GwsrCat+vFPobpQdH9N2MeHdDctCrLNuupqGeVmWeRBoprzfnehue6yE03tgCyTfZg4E4muovqgvPw4snBAmpHx4mPfDT0FLzT6w4ViH+SJuf5OQfHfUiteL05BaFJYisKDy7bKsjXBjTgFx4ZuKPdYg2Dzyvr9oC+uP+x1GTFEQ8o9FgQ6Chvmo039iZTcP5t5T8gTBSMIx0/dQFljWojsdlPFWleVGjN0l9mWaoVqywxuvNL8nvYp22QxAUcTsNSKUACukbrG5uxO63rp6qY7lLJx7yTcKjnXXZW66lwbYruhcVogKmRGmuCxz9xqzVM3KfsHsEosEX5Z+9ZCUjsbc9cdB5qcJElekXQBFIB3ZZXmLAnIFulErYbJ+6AdtzGvZDaMYcNqBcy0oj9d9pei4kpTmCmSX++wQTGTHov4dL8DplsuA/Pz3AqcUEVYgQw3/nyJx9AfMY+RL9UfiYmC+xlz+22HmWAk21RFK80+LYpM+8b5AsK1lS/P+2qKXkNs1Akxc6KxTR3F9RuBiPJzOwTZq+dyG/PJSHkNILRzJl2fNYe/l28JVnRuXoI8QLQgzDfeu8m89vI/zIsTbjNvvX+dufwKBUb9Tq8f7kRiZv989PeWbxEokFOuDEkQU/nXEOsQzgAunO8BoHZ6CPt+9f6dgt2tS7seY7oS9xw/Ycgxa2vHnivNvgd8YyLqo1Xcg3SYRt5UiiMA2iCDEGFlMBgaccSV5vHH9zZrOilMkQyHEN8jlrIIRHMKog14Y7kRIUy42icVmsn5VAUjwfdpM1Z+1jp0jTS039qIQ88qUaebhYX6qkknmSPkccTr1z/z/dql10ZCIbNzsyLzn4HdzOEdCi3ywBIKkza4j0ceOMgMP/gvZtrijib7dIX37qAXN02s2+LYENwHSPERqAECiS59QwhHiCM8WJZX3o18fGeeZ/fygVA6G69RUasrVzSOU+OxJ8V3q1ZqaUWWxn/XO3D94YMKHjSXqAoKKR0l4u618lzdy2R0E9PfP86xCAmR0anzKtOubVk9iyHEKZgWbo64CiCDNRTA96STP7VUm1/uziKFEt0s2buQIxxHcinIqTa7N+++k3d+i01y7SSH6kVJm22ypD1OFH9Y8cRZ3xEASVQ+3tiEFQFpNAiUHWD9SFPkA4V1GWXMff86xEz/pk1ct1FWHTIDigrMjb16GI4pNfq+RD+AQAlP0EOxEkK65zbEaW/TOA6ErYU48K3wUSc637KVSEjEq/UZNm6JFwu4JHojTAXOrphTI5qKVseQRrxmigMeLzTAegk/I9ewC6LmxSeHmPfe6Wdy8+X5Hsg2Z3WCTJckN1TzCXpIjp2OieMtK963LjCPN3ORG0D2WPER88lUqM8ikFKGGdFpx3U5/Qbz0iGfW25+2oy6+HWTv1IQM7CDyY22scr25oFyE5msU10a7qnltMV1YUiCmMqJvfx3HXLotFhyKU1BALydiXTM65vtn743pr4ZLcJm2YJCGxnCj4Rce7QPQXfAsKmef4lETjbECs1pPduNOeNgBjfuYCT26m+JyaVLm5q//Pl0c/h+15rr/nKS+XptRxM8WNWPFAJpr7qaOlbRrvkTHBIwjzx4gLXUxEqMiAsK6zTRE1P9JJEjvdmi8gsgDl4/IouEyArkscf4K+79ds3SEpBH20Y55l8797RKc3wnyqpxCfS4j4Xz2psRR/3J3HL9UaZ21yyTeWLUwJZGp2tcosCTWTY7Wt/HQMwTCM424RnK0Lf2r3GWM/7xAMqi2lD0gmjwGrdiBdmS45PgL/g42NAX7qQmUfzD80wVyzpyLGCAkg2zUJyfUk1UuAZMaqGAAPqkybQITJPW3z+beQ9zQil2XV4NJiUFQF+Qiwltc8s2kxjHLhJ7NfW/YFAQZYXiYB3/mdlNHAwycxaoW6QdO660CMqUaZKiUE8unNIYkb+yTzYmKIzkmIxAZo/k2zb/t0ftuphVDuCCIDcZesQ9hEQ+WLA0JMbRa7DU+PdiZO/PMFmXh62Y5I679lEgxBrbUp1ip+UL+F7Ws5Msj4oqEe2Eox7yeO+dnU1gkL7LzIAJ/UPEx/sC0NpCb3u/I1MkPhlszKvjd3G90vdNIB7r/Kf3Z78XCC9dkQGC5UyW6Z2Ly+CbpPwu/vsZG7zDWvXnXs2/UyNmfmlzc801xyhNaoWpCNWYg1u1sIQba3B1TdnLCREVwAaCb4uKRuCFGenW+uJOGRkhq9/gm+25t5zpZqmtfDUJYqVvScVyBHJ0w78CnZ3TLVVXFJi99pxlLeJqH9ScX9YcZwtZUMpDek1nz7R4oNZwJzUIAk71HvVY976eeXqIfTJIiTXJVl4dtJwBRiM2Eq6HS229tP+0zt59a6AF8unWNo62I074WNyGvheRgMURsa6TiUK71oXUKOPHD7REK/oR/LbwJ4OABgaOOOoS8+IrQywXknGUlt6hMgjYy5jH79vb3HbLEZbYRhkvbuedjxYsW4Hztd9AyXvCL/P/l0Ac9FRvzUtmj9yaWDh+5EEFwb8oSnNEVx2L8+LcBylACa+B4vyYIy7xuI9R+hA76h5xH8hNoXo3snyIYXXahnoA+ESrlDY2dt46CMXiOXHdyuu1iPEar1DgMFcc+8lvdAJwI2D7aNaPFmj6EZdFGqpn98AHUfXOLJT7UxUmyKqVLTwdhdJkUlzoEMseq0/WjBDFdsxj2p+syLUJIsHE0CIydzLdXl/Zch26fv1NT1sZNMgD8QsU4sknT1aeAOlkRNW6BZeyqaUaqya8E99Rpzbqkc/F2Xn6QvGSajnHL6Y6cFTvovUPLA2HMyETbJk1o5VVSJrNCD1i+57qyZqNFngJiEVAGjeL0zhdOouuWeaS0b9VNrgck6W5QUF5fGHXjhbA4iCHaKdaBEVxca1BTzDpve4m6zpFYxOSCj2aYbfwEyJspNbPuiZipn3e0bwzsYtFRCAhikM8m+P8Z29AqS3xCavIciD2ZJp/vrHhr1F7vTidAyNW5HveOb+z35i14Oc26iKRynu++3AqiDqBPHjalhQnpppS59IooBtq1Xy96d1noYl8of53Td+endvoNxTWf44oeWfJxry2OoIZGvtsiaQ6iuKJkv75R29rofMd0rdrr2gkKN0xacZ0HF0GCAmdCcQbcx6TXpCz1ZW00l0NICH7DbS+33l3p5SSCRAJojb8rjp1UXrnOQH1W21apKH3ABFIpAf9BvZALCLGmja1o5kyWW3KJB6dCxvwBwTCOUx+/3jhOZYLueD355hb7jjKnHHieebKK060psAQuoj9L+pR+pRnpIBJdckWfkf7xrb43y+FONSREtEZnr4jGXl8uGLOhfQUvQdmgW/t3jt6elcFdJO/By8DJxpEV5gPWu5DZrvoPjLP9t5J5FMhEMlPKVa/wQdRcZjdIQs+lgPKDhjHxRhwL2L7kEUjm+SD+QsTDASGjwOWPXAHGxUBeQu42VPUBGahmyosjo8/kGRHiIbse/QJoBcHfB4M85pRm52Uc4LiRExwHbDLcC7IcIOFDVtXcS+TH4q8V9+l5rEn7rHycxSOyJFPPXOi510NtZ6qMEskpgKBYiGDR7OCStiadVIYN8vJMlnBzGZeyINUDWzqXGKyI950tQEma2TFsnRJU70rfd+GQo/435lrgD3ULtdAGp/FkIYYHAwxzj17pBVR5eQyOPnzVETNMR1bmPO7dbRz04QjVrQD0HXlj6NPscrM7EcFjG8IC1lo/3ft/y0Kv7y5Oe/3Z9VDRO4+9pt0/nOV1d/4XHDnUu19Ywt/Kdh3tZDGIaKqNbZLR58VF78xrpM7tIlzG2tqy19GTEWMMA9h/xT9huvQoCzCjPALvUSPXiusRRsJzYLdNJ9YVum+jeY/aWIB5K7AeWBkEpGsG2Qc1ZwD2NrvSCWWoccc8it14Xl1xVa89debnrJ6EsyYL7zoDetfwk2Y9EJE2KyBtJ9m6lsFvoglwrF/OblHgzrMY8VtGC1/ay4bsyRz69oiH8EJ4BFrHkfC8eN2t7oWEI+fYAWBIO7GEMZxIePHD7DE9Ccf9jHNihSfT3CSOme3b/rO5R888bnHbVgxVZqRMOqtV35BxEEnAQhn1DI5/cgDnce4BVOOD0cjVZFYpNy/9u1pHti1q2lZkGdFV9YeWvI7ZHhwH+g+3p/U22SeIUS+v6jxuVJEfqL5NF9bjhBEI292gjQ2QhaIX5Inr7gWgBFmqADyVOwn3AFBAOcvaO2x3Loljig0CRyCspQEyEPwp8/O8+JsN9VTFTiZ775raxeVjf6aqpI7J3FVm7alFlE4ax8uYXWE7PbD9/pIKqgxNwRUY21ZpLk4Q0ryBVZ+/tprN1s5Mr4epqp443fEfUxDLSxCciCzxpLLmk4m1rrpoW+WGQy28CyruKkk+W1zchPFk80KXlR7Mau8+V8uh050BlY3sIkW6l3mdgAr/dScCL/giacyjxPSOC9gLj//ZPPOO1KaSrwgMZsV5fRsnWlu7tvdYhHZDyi8UySKTg4OZHVNhaWKV6xuYo4afpG5/I+nmHHfDTFvLh5oxn09xFx+0Snm0EMvMVwHETluw98nzLWT6BP/5c0/ZlyML/YNGFvobonezhXRdYYxF5z2e/PS+B0tl4SIinFd2atrFBEV5ePls19kjwELImWOt7ykCDMiWsKGUddcAein1W+o746TIoSOI0LoA7okYr5xL6bk4XdjU4mxMma2Tc0uXY8S46SqqYilLqYwq6XZd//vrKMwSvbxr93kBUgU8WmV92qywSIg/77ElHAVyXCC3xCe+A4N3WOWCU9T99qrtRgxW6/dWL8h9CD43ni9V9y3xF/PIRGIV8eFIAaDmAYeItqn3D6go9m1afClRKyxn0MA+Huw6eNfGHHwmUu0bYw8zpp45wd//vyFA6pCdVMFdALO6spxH3TdvSBeGDL9sxSinEWxXFxK5mg1K3Yv8pHYwA+1ktaJYsfKIot55aPe070DTQbELkzShgpIZe5MAXnq07YmhNsch8PeUkVSZvfaaanp1rHMTib/JHPmr3ALsKFxEUwD4cwt1Sl5N34TBaoXsA9K9BbqDBkpwMjmM2BRNVSYuBFNuuVaVKU6lk7DCJEYOQBaBdkb0XUAAEAASURBVFKqe2lTSBEuL9BNVLWyEC5a3MxkZXtkX5bG0ktWOhmBjPbZIZlXWf1WqoYaPFev586yyol4CAVOHzar0BKAlfriMhDfhG4PmpD0uJkXCGmc7gHWJ5/YpR7SyM/MMbf27CNRRHYeCINngTywPhrVtYM5vl0CeSDW4v7Ro080I88+ze75HYlkWOSCaMuJ8IJBb5FjsQUlvUnnPx6cqrhxcQ0gmiNkKCBVd4N0LR9kWK6ndu8sc8ZxoyzSACGCvOCWGFdmlrzsVMpqq95m7cFtJMRUrNEtKmorEWZE2sF+3M0YbbDAb7VG2qpJvf84p+Br3vq7iNtHzzd1att61my0Yed0V3Es4p7QG4We0IpezgO08V03o7eItkztAq2ZtZ5+ZEUXGU4o14eU7BBO2d8q+KJSPZPcqUExlaQO+Ak5r3vVtqbC7F0BRhxxpLL4RRRPDm/2Btq0BJ4IPQi+dL4lrl32ThICEgEesg1t2cg8MWRHM6Rp46m7vHDJE0WmNN9DHlv8Hf2P2qLjXxpxeGNPgzweW/D+wl7PXXHCsqp1TznkwQ1wH+g+eEG8KNgyMC0I5NWXh1i/j8cf2cdkDNc8GinluT5c+CVRJ1/oZtFQjhKjrY0Ky6dWE1tELIXIqiis+TDpigssiBWUH1k4BMIesRixoVBmY2vOZKI4hOFvG4RStr6JDTrXkLe25RCEFIqbVdkEQDhBOcUx3AeinI8+7mEmfdpDlcSBNTCG+PMZvxYT7D46DVuiAm5syYUFKmRpZOdkFb97xEJDrJXtk4AngKlxRr7pKcTB9zutW0U71d6MZZ38IH57oUewrApEa0ULJsomQ49QFWThRxgSeEGJI76B+s25Q34BOxdYGTHUuOM0GEOuUu0+PnhnK8qBgAFh2CbF2M5ct/xmdAIYc4zqrNwl4jyg4rk/eQNZcL2P4kCdsUNHmogXuBDPcm0zXw/V3Jg4jiFCKFlMPUO3CqCKywBAZ4+JmAVZza1O0HFRPJj+XLNjt/i4OPf20u8fgNNg84mpNrNTtEBx+o0SG2YE5Mh7RL/RpdsKmQLrBXZK36QFniLa8EWCQ2Mecz8bx4zhvluGWe4p82JvXqJHsghEc7FB5MFj3aOZ504/wl4bSnYIJ0TcKJttW7olVbHrSeuKaA+IzREdQfhRWNesY+AGfitHHfOJNYHObK6PBoJzfbC1Y/90zhJ4WtNPPbl7Sn0JNbM0Hymsdwq/kcRgiYpUZuwufayI/7XF02+CQ/cIAMttpHqq18hW/p8eWm7dB2lAJdrgPLIUECSv0smyq4KVVX1f/vNlE5fPuhDRlUMg6D54QTfs3MHkZORaBIL4CuSB5QGmayMOTyjPgwdrlUt5HhICsRYd3rtPO4oAVJuUVlAfeHri3OXnELiRSYFYiVDU1gqq2JvEVnfi058w+RzrDfXvchGnfbguwPaSjS2t0x03A74EAKFkSACUrvz73gO8dhZr0rpxb2oKqW3L0aRCGO5BtKFFEHpNgEA28YGeMSsQ3p0KgKlvYb5pn6fwCzGRo3dli01yvdv0H4Vt6fon5zplNRQoQRhd6BELdOiXA6rsKfSJTdKg8CuiH0qkuIbL0HrKuidiJi3uYY4cdpkFSk2aCpOogAAAenf16xsHriANwQYhj6BZVVP29H5v3zCG0Bz8tgTN4MEWMcBVrK2tsRvHFBDGbX37mfFDdrNJktaHPN0JnEiRCArMtU2WqFyoWEryODjtvhuIgvFAtesbAAOtBZe4p7p/ecgw6yqJpq435sVxu1kx2Tczm1pkpjtsv/7YrbvB8RZkyLramNv4SdZUNB8rg7JcIi8MDJx+I7pUL7GDqmgtpC0Ko06aWERTjrOkLsgDQ4R/3nqwFSfOymlrpQsZ54PFtbbnq1I6wEwDXOPduXfr3icvEOQBJ8K+hepIimB1JtqlLdLDLFnYwhKCDmn467KODzn0a+u3Ep0jONBVV73p4K9mjx0iQin+w3dyNhUiSiZYQUjFsjq9aqcO5oP9+1nOYsIevc3rQ3esvGNQb4MvHN9y3oZVd144cczrWhm5CVHVRo/8xU78WoiDAegTlmhpeNZWYEmQBxZXjSJ5jdB7ILqqqKvxRFcxcQET/+U9ehiU5xQ4EKc8x+oA5TmOg9Zx5nJVEJsYmSDq5ENBRoComzjcnFScXgArDschJFXZ2FNbCANFe1zZ7tOfWEAsmETQNCw5kieFa9spuTdHBGPhuoCNTQDkGojtHdcBhYbnM9Fda9/WJ5UYwCKdBsae1NTGPwFiAlqRrwFYGvMxEasg/ExWQ05MVaUIAIe1aa73LG5L6zrWiKXWN25w02c8Clg4QsSEs6ziWQuW5FkDBfoTwLsd4OCAKnv1FWIBihSrotDzUhIrHEXO3WFTcVyutYs//sTfWUU7XEI0opSfAvYtG+WZp3YZZBejn9NgYdaE6xbdPO3Nu+j13LJV49k7ceqLgwZFxw3Z1SIJEMWDA/qbt/YYYl4aPMgCauquqY2RizrGUgvnv4ICJdR6T1GGl+okc9ONgzG4jXMqwDk4C6u/EHdR9zfPgotrmBGjjJ+V39aKphCZgZwaiyungNCu7rmjwWrRjasmHKocv2TKTVz/edwGLTj/jfVF8TDqGiOZGNGXoZtwUWQ93o17YkWfz58mFsIAHZO/OM7jhRd2MQfse7m5765DPPNWVQp20j+kpKlmmd5pZJ6eD1fCewTppkIiOm2RWkOITVWs/lG4/tSRE82/xzxglf/c6i8QlkRlIFlTWLpWU6yrtJuifxY+SJiLUryirImFDxCrfoIVcfTK8kpzx7z55qPVay1Bg8NmTkZmHjoqvidIo9/zl9xAMNmfIW70D2OLj+t/sS2+/afcAPIokVvBBAmMTLhIb5nQJJjrIrp6ft7kE149+JJTdipue43jPuT3EYDaG952nXl4/hLzyiJ9TZVCAKQKds+vvTzYXH71c+aY0yab6CCxkE+KOummjw/lk2ai2Q8pWT+ennh8okdB/5BcQCpYQRGR1CzX1RSTgntoj0XTvGuF9Up9+om9bBKlVJQK9a1zIQepCmCYr+MRrbaGtT4RK++KE1ux+K4vGW72eO97k58vdvpR2VucrgYYN/BrS8gDnssG0pinNfCQgLDEIRkHK5bTRfsq/LymqpWfZ5iOBYVmL0VZxfooUUr0diYkfm72UYmeOkiQr9RYbpQFqAJHUKakSBgotMkqs8l2OC8naM9MeqHk31CionIpGTuqr5fLebS3KPFnh5h/3nyIWbi4SZwSpw6AdZeWzcy9vftYL2oHXLlGQccxfuG0S5iPEDWHvXnbE3NO+MfvRF53cHVRmrPFi94BXBfX0SeU1nrfKRDkA2Tou9TZUBm1T4pb0PSln9bPQYCkXtmgsWkszCPqUez7P0iikb30o4sx82c1N/dedLAZP6Ff/HtQz3E+fqTBebilpZWlYy764L6vNKliug3ZN1spADW2qOhF479hwv1bX9YplFHRT0yCLdZqTGocijVR1xOSC/oNrIoIu4OeD8IgbKkjMGmiOORRU50tveFCE56kNptoa606adYzcz3ypt6b3h8ivEBv+T10j93DWgKg81nob5o1rCu+IpakuqMsu8psYMlj39/RsKYRTVHKZc7es+cCM3R3KcWf0Jvt4l8HvmY41DNtuPwNEXPeRRMMKZgfG7ufDV8C8oH7oDhikzhll381x8wurzCju7Z9m2trayt/+GjVDy8RjYPfHgFAEi7EVFNiX4Erv3zZEpCyFXsD8vCcBCWAqfaLrngIzoJPzv94f8d9QM2yIBFfwa4h5/PrP5z46g+jzzAjhl1sShvLRHUv3TS14S4D6G2OiVjGPRCEH/u7u/mwJJkh2cymlNCWi1E9vFK5z3EXri3/fuUKeGVNKLiWVEVrCZ8VcqKj43HWJyAMwjOwuBzXAXC88tLTrSkmTeGgZi1moboozOk0j7Hnuc7GAgNpfK9JLAcsgFfWxRL1fNjDQAGCNKAQEcMc2qKFB3gFaBEzjplfNMOYsbLB+nmFOYFlFa0AeKMSg2CgABWODwYb8n38KOCGKBknREzOPXovf4uYict7W+cpKHHMeZ1oyomXUHTDNSBic4iANpyIiigHv5942zuco0DYTFo172YAMMXNR+6NbzEO2Vbw/YO7waFwib4POemz/yYEsK/ML0WZR2bhRJjY0CNZoCcAmbG3uApxFjljPVFbxRG55vXpA62OZphEbijjQapubCBDOCi4H8dp0A2IL9bRLq/+5WYCj/58bsPpN5qFM6ONRJolis1do/nKnLEhMurjAlvR6TdIE8ucZQxwS8mF8/gZ9e5ZZq2Vop8J0g/UBGZ+pprHrBWB0MxzoyZLcyA4WOv/O+k90Y3cLxG2nDStgp1HpWsjuRPIPaVgt0VrGs7COSpyzvlAYWhiFe2ddBLElAop6Vw00FHY5mDTPL+pOXXUB+blN683t9851oYCwscE6ywHf+A8muflmUfnrjH7vPPDrR2ePPcUvuElnz85CyKb78g68ZBGSao3oo78coVXuK2KBgvyKAmL+8iQUtTUSHS1zlTUFuW0aMILuuqzlyz30bOo9eWwatbaJRJBtBDYu0XT6HOLlwceXFhqFqytNISfbqsosF9O6mtuvmm4ufnWJ0wIi6vlojyQZzbEPurDo9x6VG78hBjn4znMzx4uBJkktty9pEyPxwxK8eYcF4NpHsHZZs72Qln4TWm5DaRCTnH6ZSkRrJ1STTgI1qSCXf7I7s3Nl3pbXy2tMkX5ASsXRunbUT4vl137sgndHDW1f9FYjheg2kUNwJ3xDpjYyYVZEFtQhHeOiL4Jv+VRxph4VrfPMtePOjp+FwireU6+OatTe1XUIhWBVxMOz/hmwU1VKLdXmCP0lCnx+pt54Jv8zbyYVfQpVqZ/206LTZyULKNwjsP+HrNHa/qYF7CirHffHGjj9xA+JCBKFqAK4GYDsMIhEUYEObHYfmtuS995BMjAyY4PGn/9P2V1lBeSGLUmNh+Pm3jbuC8Ou75758YtRvutrlz/uN9DPFhi1Sxqlp3dwV3LkKPZopW55rSTzjeX/fkVM/T3s7yw/3BN/u+rcTidF1FYydg36T87mcmTO1vqHEDLuBBJubFV1QVNVbjGWn1d1qNTnIPi2U7kdvWXL12ASJhz+Tag4U/mNmgiVo4IX7pjXf4Nc/UNLFcl5piAoFI6U6Lz9a+ztgptGFjEil0f0m9Y51V3Ms0e/YfNvaE4XbWzZG58lNZIGm6DKAuBVuJk5NiKh/eee39rOh22WrJtEVdf6vtK/xmeKsQvb3b0oYh108EE2x1mo+WEpA+BXtC3wriBXO1uLRNUk3z24c/0DrrqBkgm9Tkdh49y3mKv6p1kzrmTLLyWWwnJMUdPtkFeHx6zj5msECn4aAGDFFdTuVPE8UcKLlSrZ8L9WjEuoZzqf0ff2lHNX6FsS8TB8DRgsGVCdNXK5NWJwjNgVSrAfZzd6/C3Lu9/8IVtGhWdxDmoPPboP45p17JyzLwleWPmrRLQ17woXG/efHWQufiSCabVYIk2RLdmHKvKLNAUgNlyHcoQ16ZzmTl0+Jc22RI20/7CR4QiwJa714BlnrjKX8F3bNsjU167kDXR+/ZGrR6feMlVJVcDeamteaaoK0vtu4u+vRXJ6LdFMr7zAkzm3k59zMFrvtIEC1krJ5SKd9yxj61lkcdYiU7GZJjIawKy4sCCvbQ11WU9Nl70XiyyWK4zC9QNUb1O7AOQDh4mZ7LTPGcyx22sDVWYq7vuGAdSAKiyUNXMdeaMslbmxRjoiD9hCw6wrHpRMavqsp1lFUCf577yam/Tovlwc+DBX5nctnU2mu+yec3Mt+N3sNzg97OamPVrPMDqqHCHMBoptyAWUSA65MWOy0hGGlj3DXx+9DUgDSg6FifKejgOiBkoPiEPA/JgUH6DAN4B59bVVLx97dRXrjmt18F3FWfnDILLyRXkLCyoNiivTzvzNNOhZbVVJBOCxHmTcy9l1ep8+a20shwKyAZuC2SB2bN/XA5h9G5eaK7o5CFDkLgbG205kduYGa/MYT0hAvT0SGdowv1U0YYzfJiQEQ5ccUJ+VrnZAEGiYuOKKdseTqLRzwVtdxMLm68LMWAPt0EojmVzC82rr/eIh3mxN6f5Zx31BPjRWTUkprJtF0bNu88MtJ7ViJMItrjf/j9IFP216TVK63a1gLHMl20YdYmwUsIEIIsjpFyf6mC7A9bnCydHLL+IvHDYEcpnrzBDobkiaLDQ0ltNBWNcM5ZlrhHykI8JfiaBLL2oZQdbZHLIUVPNIYdPtbpKxM5YmxFaCOQRCaztwPdbV7VqvZuXnkL81xdRubFsa8QR60cJQhIQSIz7yIP7ECvmhSpB1qztsvt2+92Lh7bvd0V+Vs5AJ0/OCgbzYM3xJbjoq7kWUwPkH//PfuayS0V5XwPXIZk3MnMmeArkYTshW+3jT/7APPv0bnFuw56P/YNDwJZ71LlveHkwZMpqqSd/pdixPb8marmYxx4dYk1vjawlkos/S1zyNftbtyjETpwqRZfhCjJ0gOCd/XuY86d9b8VWWCI55AEAuu7GZ03uXsqJfI/EIQp6F9E8tdZREoX4C+EznDyd88jfM8+VYKxllrlISMNvvoolEvqBc7p0wKHMvk2+Rf3c1f7Wt+wYwKb4oI0XrLx1cpc2Vz+41iwbibksBaR4531DLRDFYx2gSvFT4fz2gGrIFIv0QCxFYD/0EU656BAGdR2nAdLo8fSFFwlqZCE69QAslLmnh4PSg+IDeWgefsQ8VObDXrRBCUXqZnxRuuCR3753/xvUvWbg4Wuw1hr51TTL7YC8QB6U5euDZtGHHe0x//zjcCdBFF597x7Ou3EBifkGJ7VqZ0a0b211Ko6Y8o/t45VzRuOz4ZCGJ9r4WZZU9nuDTJEQHNqmKPrwigVmpWLJEesLh7Y/XJZj8g6R3kLzzTys0BsKWQ/HD0dggbsIlwdvOswieQgCSrK4yv3eQXHfBgycZyLXqa1+Ag9AK15H8hrWJavI1lohLIgTJ02dtoMNlX/jjQebiy6aaOEBehL0Hg6Z6ShR1I59hvBEBAU7JBDrL1MEVKeA1XM6PSPPOPkUxaX6WuOTaNcqxdNwQ7pav2DVBfdRCwIp8xDIqmEeAlFKCPx9Rp5+XhwOFeZG+23Q3Cs16yUboTAvQRoWbnqnfuX/2wnisKPWZ9uY+wCBIJtl0Y6a/NCkRpPyTnhsv3OHDW3RWeKrrA5QVZG6kNm/VfNA/+KlZtJK+TzIL+OFp/YyZ458xxT1Uwa9TxrmOjCljSqAH+E49tn3BzkgDbBKbb+4CuUVttzYdOOFGl3UMOJAnNKm6wbJRb9SyO5hVqHmWNzN+sYsDk0Nq+PQoY2Z5bsRjoOC2OUe7QFQJuz5V4A8kIHj4Y1oZN+bvzMZX+vyu1IiW47C3hr/B4UIssDBL7ib1qUC+U1SnpTrf3e0DVvhOA1EVDjKXd+9p3Uoc9RtXSS86NzPlr4Nt+EBXL7jTyncN0gBo0v1RTOziMEzv7rjyLELF0gcEzJNm0rfIQ5EvTWNLBBOAqq10B9GIqkCq38Z3rZVXIHt+uoHrBsjDeCG8284IybUmyADnbo6xKhVAiT+eXhc590EEr0iow5AjS3UeXPp3GdP6Nb/wHE5u1qDjvdWrzarq5HbUCJGFpcSr3r99aChd8X9t0jCiqGAXKorxIMOY7cmxebINi0MolqU8FbkJg6ccTEedz9hfbBUdEgjIdpAPJyo5+pv6R6LHsLM9M4pNt+FyyTCybA6ixuuPdbcfM+TepHS78m6MXKzxy2gn8g8VXlPnh9gHn1st3rGCjzb+QW5fmCEcfIJ02w4+dolElOdrneVBjBj5hosUsBKiZITVn/KuinOQGoscQrZ8uxeKJGVXo84oLScS2zNhSTWIuUwBUILicWyuY3NuBcG2ICR6F4G9l9oTflDd0psukv8tXs3be7/OAKRWNghkKU7KzXANLNj74U2VhVwp6o2YHo2PyW4eMkFegODBLP5hj+VY9zczjVcb3tCHLGeJnMfCd0Hi4BKLAiJDt748IgrLmybV3w2XAcmoZiGTlq5SKayXm7u54Q8Rp32urGK4lWaeAKQ6bgOSw1JAka8mTff2DnWl/o7lOdk8Nv34O88vw3mSzL1479FXAfIiwkH64l81F+wtLEybascrH8NnUM0BmfK5HRCBN9UBYCIzudBI6Woj/MA2KNf+e0pI80BB8wyp5/5gSdbz9CcWykI46xfIOYBf6LEkKvjlPXEafvagH48z480+H173x0tME5QuEGZnpZ9/O6Sfy5Ev+GFsJhP1Z9S7AoEyCm7QRZWQFOPu/NOIYDRt8ycb6aWlVrqPblhP1Ad0rSJFV/iAe5EN9RPRhj8djoNxFOCdFkJhSNIwyI/9ccTo0Jh+5EHbfqRBb/95dJJYyce3v6mqeJ0Bt4hbmfxhgozU9snpWvNrA1VMs4rN5WRcrNeRDdIIrmAVNoIAbaWpcJQ+YeQI7x3YYFFFtT1IwyHNDydRqiS/DcOaaDbQK+x9UQbeIwnCkjs2SUL7AnmCgQLhbwZzY/TJFupH0zt5gHz4n92M1defXTcnJt6GFqMaNvaPL1ksTgPjSumKIe7RkyF/iAupmI9pFtvWtuIkv1WfyAjgDyci03YdJdu7qk2gHqpOBedRnxFRj7Wg7VolIhqmvKFXPmnExPOijLnIUWBWag6G9S/rtpDZqTrmy7FUXWqOtKlBEg+JA7EZHektg2Wir5D+nHTKDtqJv94u1gUyrYTT3nP9/5vh4jDdowFG1+0OhNG9+EXX1VpSmDLLP3H007/AdsuZXlgRcUGy3UgJgJwZ3VTKIDJmqSHq6U0ug78MpjkcBOk6cRHBGzvuA5MaglP/f7EHmbGN5unJCd1afPO5ebSy183WHzlNZLORR7fFFjeVlKuMYmjkk3HDHbsNTvJVC0KYyoCmyB/BGP0I56m2VDeejGyZgrX1pQKeXR4JifbnPP1t2bJupAU5gqSFqO48PNgw0IFr/bOndbE86PTBqlziZ2FeSQKWApAgOLiOMFpgDTgcBz1znU4vreXTX/QQxqc+bkTGz+fsTLTNpbTRDQ05+hbd3x89/4HAnyxbcdE0ZXuBflmp8ICiSrzKi2y4EI4kpdAbPWXs+My8GuYtGrOn45+/ZrH4W5SIw0ag5CpjzycCJWryQVug3OIqxBd/aZVN4lVDRZcAUSLvD8K/ePbraqpyyv1+XzYi/rXTN+3dW5OHFHY82HZ6MX0eyALNs4nxlS36JkFk07HXBMiy0MaiN2cyebPFW2U6HljbVfcP3H6Zv/mbc27q5dKNCiUH0Me6DAOO2SWnWvURcHPHESk5URRWOY9PrivWVlTawkCDC5MMCSnwDyb8Q8xVRQxFdZUFHZ2xPaX90/nrKWjRM3vvbujAeEwZwkbSEHBbhM2KWFO3VLlKDlOnzMN52KJxyZRA6H2u6POM06UDAFGYT2xfvHROmDYNOVlUXdk8mt9RiDENsb/9j7bFU+q6j2brqWqKw4kquCMyUMsqw5M91L8wm2UeCyo1/I2+7+9Io7YC6nPfehkHIGw2FFYJus/jm1dOPC2H+RslesFAXz+qT3MqYdMtEqxjL00aTSxUnId+lqEDEFsBTXhsL3/y2ACi/7k4TH7WnY8IMo95WSO3WSRkVjeY07+TMl0drYiMGcDThUXLt1OWL9JLhMLhLJYE7OVAPvSYpsYCBEUEzc/N2SBZewxBp+DI3fof5uo2w7P7zLA/Pmb2eaD5eusGajTe1CX8NXfzfQoQnevf8+idhwGHUA0hSIceTriKfQEDmk4YLWiet3TROe0SuRUMhf/AzbruESjHyQleV1dhahlACDK5r/vekwvAd4OJwn4pixJyMIBVVeX/nIOqtwpsF2E2PRIw92dQB46E5+DXGUesqcN9g6pgECwxPpm+N93x6jDWmLJItAVry+Zee2lhgehbFRETEgIG0cUXOce/7jcN+AcOppdx133VxBWfaRBqG2U4bzXX6b8vW93c8Y35ea71WVx5BFWnhvHffBU9FCOGOE3SAN/ExDpRVO+41S8AOyHDFm4+WKqFl56XHQaXoDJekyRNY0nenDcDyQNkHeI45NXZMkmat/pSkAYrpDO94QTvrQh2UPfCRGdlQYRxdZwWIwJhgKB3p5vUbBDrCWaZDqAJRym0D1W9yHUgIEEelWKZ5o+Hx7JQS97flv+S4X3tmV/Uj1br5OFi1zPC1mCks8udlm7cIOTO3d84aIjm2esH4kJmzWj1YsnvaIRwYBDUPgjVQbzp1lCVqm9wlhqAofAZLtqx3W8OmGgmfGVTD5FPDYYH0oTAqUg5uB/++ej8SRKAH8mJdYehNJIV6ILJT9tp5DO3+8gAoU5I6glUJUTzLIUKaKYjECw0afLf1wC8iAgH0CIUC03D+hmSH2K6S4KbZAACwDkk24DySAqoD4xl7ifxY3PAz40DmnQD4AVVDve1SANT4b+sxSvNEvR1/HC8TtgDHHgxkcfUm0o6OkTm9eM9x/gyhEIA13M9NLFJd3G/fFMLI0A+ijCPaWxXzzlb8EdbzwHuQ9KkI1jNueT5JTpAHMQFc+nJX8f6TMIJd14/PXduBiPf0x4uD8zb/pIwvbwTO5JcBoWafjEblzdOoVvgyUdY8AfZmzfAZbzwOwZSzK4ChCF25xXO9fY8LjHqIU5+50sjRA3utAjKcVU0Nn1vqxvHI2i5u03B1juwp3l+U5MRcIm/EACu3qA2NVJ3tv1L4KNRFysT49j94g1JyngPEY0EWBJa02tFtqnkmLQV4H64M7igGL6mcizXrwtglPae1CqO05Ehzb4Y+FaM//H5uL+2xvcAIBjLuinqmw35b8BcbiXpa/E4kUUckbtOtOswi1SzCWpBAI5e+ItL8vu+VVi1SNq+vabztbEDeuOyKcabhpqg/uZODgEFjatNkcdN2mjMCQ45cB1QHXc/a8jIAXkRKsu1SdwaCpeaBNFOalNH/rPvebII7+SDiZsLv3jm1YZb1bLRBYxmb+IhsVEFvmpaROwbL5z/iN8RcciUalarCxaxB3civXM+IVfnc5CBMhgqvzBnrtWgkCIoURxSATEkLy54H3Uoz4IA+6FxU17ADg/8KLeoopVlz81473pHHtKcb5NOrRMrc0tJXqxiQySjjB4aeH3F9FCMhB2/XKtO8Dq6hKkkDAN3Z750357j7/sDntegM+znkKMsymk4VpmbAkE4t3HvYkNsRBI1PlNcGffF/5ynh95+IE/fU+1xZ+oA399xl4PCWpM50++93XeEfdgcvsTxuV/3GYdM8ZVleUzcYpkbjAf/7NrH4sQmD8gB5CIQyRuzzXCtTA/IXxmbKjMWyzRqrOcqyem+kSUugP2evMbFZ0L5mllKIvg++/1tGIqfx04l2GHzFBPlVdc3uTBHXW1ITGVTIXxyv/go65xsbBDGKxZEBHZCUlRTCBHqxRPg9DgXtCTbGiWayYu7m3qTlY+oavhOgQPhMRC98vS8RV920XqE/BDm72nacA8Jz0qkg3cAIiKvWbd2NeM6eRRjv4BbsPj7VxUlerNsHApntxZB3HRAVYvlGA4+kQ0GDqMY9g90kce8vRUy6qGJgmloPxKg0As1SEOoSGHQPw8UKC//2Zvs2/f70z4G333wXpYA21itVVYXG3ufuDfVgldWKhZLe7Gglk/JcXopBCLfKF9YzErCuiI7qGJL5HU4PwiPVAWK8q9plq2IJ4AeTy8z+jTj9xhwKNZoVAe3AgL9IQOrc0368vN92Xl5rM1601pjZWquFttIiZyamDSTKRbUvsGMzU1tLAdl+GAM0AMwAUgJqSzqPY8KV+lEMFEEIC/VYraSeg6nB8FADJofnc8Yjks6kCc9Mc90fXRIRaocYXaGHfnt+89jVgK6zwrWoo5UP0M2b+emW6szEtPR+P6Tf9AHoTScc6snKP/myoAZjcuOLyqUNUn09YuGY/Zr799juECAOg/Y1yb6A5j9sLCYFX1yKxP3vr7rsdejnGKIyyYb+gavysrD3wsfdQsxV2iNJOv8x7NiuPWYMwrrMKYk4it0G/AcQDs991vpsktk9Mf1lQNAHtrTdVMUQ3e7RF3tK2L6RDRc/g5l7iYCvWYf73Z3nlAOyA/kI+f6WOtsJxYOHbZ7tBLHnnkVBuXyuZT76HX0RAiahY17zzZ3+o3kWCQj5zUsp32X22i80Skvq85IC4kIqfESNuAyVb0gxlftTWPP/ob6wQIt1FX3eTVupqKZVrxuRDLxsz3d2mbHad4hdusLz/lwep/iTackkozeLkABxpqWXz6axnR7H5YWCFyeu6lf5h+5QusfXmWMH9DJRLSYu0etcETxzy4dz3TXO6DEiBvMWGk33jvJlMwSRSN4GxDyIP7rAxVAN+IirAWG5p3G01izol9JWx28IiImRztYUYcc54VL9EGnAJhJZySGo7jsHe/HjB5ye1rnWxbBgPdbhh81N34u7Cguc8CU55NEUKoV9z52DUHkB3A4rQD0LST8HnwZPvrLFNuqfakhus9ZUt/6LuiDEx8V6hqxDG/7bjvDhhEtMgpPNEhCde4B1xr6gFX3gvXocY9wIoIB7EaHJIjRFwLP3ufst+06vp+Zo89Dupa2OJI/EAAui6Uif/J7hsojtPiqlDtjIXlaz8BUGPJ5cRgTjT1K42L7tmx4aAZahQogquadeJddzgdDvOFecLeEh7+AcWO8aVxdRAd/mHazIo3Vy3vhfEF4lRETK+9dpvp8IOAq8xiMy/Q9E1DkNl12jlik2ihT0EshqjVWVOR4ZLETZnXyWpJnEvGvupEqrZYIZppRqJn8nyjK3GKcLrtuA233vPGClu01S3pCNDYGibp2YgRF9v2iGxBJF28wgfvNsumx8XSy6avXaoID23DZv7y5uacM0fbmHlIS4KyjMmsyz/5yxX3PM879wiCKfWpPjq4DQqv67+56BNZyk/7QYK3nkIVyiurMP+hSLDOiiUwox1z/zBL7YceUuiByQLy6SaRexsSE6VzCIQSwKuTRCzEh7r7Pw8oxIcAk4jfhpCH5WYUWoQAdjbXhpZhvQLYldwTRR5OeZlDjRn3R8UksvoNL2cBtvx7NtcKkTKYBRqORktBGoxZAKQuR4gT+T3BIjFX7pDf7EKAq0UgScpZ92w/58I5u/DVNsdukbs20BHgzQ8wBmB5SGOr6DZ4nL/om6LX8r6r3xQW4IlDqBDIXQDhxtk5Tbnx89XLvvls+Q/fMX5+00eHTBHfyEhNiALOyCmLfxFbePUbhJTw//ArzGN9HyMk+AR+ILu37tJOUbaKWjXKrSeKWFW1fjm6K4coGA+lkUAae5AGgJvv7n2DX3xcPFZj8wrP5t2i45Lhwp7Op4q5Qw04iljVjXbUQXxI/K8PVm8YSbIpuI262jzrH9Gpx2pFPBCRg9NfmgIR5jLpkUIZw45kayqbXEmcS50cLjOka0jHHVjOBQX71B3M99+3q4c03OPhNoYdMtkC+rqZAumHarGm4TYcJ/S+nBGxziwQEkA/iqSCPelf33unn7XOQpRG9sC5z7W2vmdkHAVpQJge1DZ3xuzSyileoiY0JszbKa5L23T/34443MvTDJsSWiEgI7NdhcepzEMu2LjZiN9Fw8F+YPmJimyJ0qnD0Uom/7Ym0u768DEC3DXi9lbnsFrZ/NI4BFIP5MFEwFlwyH17m1NHTzShK8V2yv4+iNhqrTaWUDJy0G+LNHSpXmGN0B9x9pEX1T9FQyUoHosCM+CgWJqK6jrljm4h8Zuy1GlhsgChRlHOOnNYAKxooSwAC+bK9+w98qUD2/Qb6afOHTVb7/lpfoAwqE+gPBLH+D2Rod49QLx1nMpSdEFvBZHVhFq/HwX14D4cEPbrE/zIwgHWhB9DM935i3AZSV2Hi0mIUokArb4A9W2h7xzE+r/QO5v6P4jCcVrUcCIpjhPj4tevMS7vOU4Up182ovWAVm1OP6Hj0Ef94kOHQLjDFYgQ5hNcIfq4qmhV6cCion6frl1p8gM5VkzVuesKazAC4ZTh9BuuAd/ecu8ynf3w2T7WhBzREhwLhT2I5JDDvjDht7XeiJQLaZGK27B36F9MwY7+0m/56C47pXj4fa89qxRP1Z66YHPzCLI++sjeVk+KLwYFpEEBMXCOZG5INIxhkwm84BTXapR/p2Nxsbm8R6u3ujw/eiGSFI9DtkSyrbut/6UBndu6Wz/p+foqnjUOd5fXLFudE248ASU5oiXYxP88cqDJUOwlKH6bLZAPCpWfXATcYYMx2z3sSJQN9Ys/qx8f+9prjjfvv6t86BKBEWqByWVDEIA0UrVfvzmvDnXVn9BzXv8yTjEGB0YvvaQCqyn2CFFW8YZ2BRFHVaROKM6a6km2niWjAc+yx1GE2PQTSuOyyc/tgV4CBOAWMIs41Ua71EGUgFjqhflTRmCxlow0ErL0BCXq+rb19gBhvqs3NrgcxgZidKIahywcd0EdOAzP2qmZ4jM5PwbYfNr7NQrPAaE2C7tvQr8slyZ9hL//9Abk4DZ/76gHsnD3Mi7aQ97tG5ee86uNS+ssYbhAXwlI+ufPXzwBAwB+M6dSid84z/x7ZsGnh5OEaPfm3XdqlmOtmbktURQNmoJVYcqiyxY466JNM+urhJiKpFJDdl1gOnURkSiDGCLlpi205VOwgyD8xYmp8BRHKR6Vwp7I28CGjYhCnbJWlnJ2xNfry8ke0ecQhmuX3xCewBGIQhAVRChwak1lnbWavKp7G0MIdZCGR6DZuxsYiGv919n/r3AcsbcFRk6ErFi97uGx7doddxURbwlDQs4OYuEX712uwH+i6nfR2k6DOq1YSbZauwyZZVlKqAOn2xjassAslZktUXkRWWE2d+G5I82Dj95rht4yy9RdpkkxVyEWTlR3kK7D0vLJk9eBmwYxIQVJewiznaV0mXAbODCCmChYRO3dWjkgZBaLnJjicQJVn3DsWTXBypp68b7gPgComLRKhHMDvi+ISIZ3HjCoY35x99zMrBbcT6kO1a3aUFuz5oeyNUtqouvmKjrxIoAW12iDPQDsl1XA8pTkAlAs0ckJ8pMorXbOoMm16Jds6WLvwoluqMW8+EXEUsldSP7NcwHq9pvoIt8HrrjOVEUrMWN2N0hFLJZk41J/TFzf5uPSmBwXKO5enBRzI8Y9nak4XkP3bN39mKbZ+XuSh96NCF3NzHVLH9pPGRU5VyOpgERLPdx19iizV66QKZIIKEJ9kGclqugLAbSWQvlurTpRkAsxAndBMEBXULAfsP/3JjrPOxPsoz06+hRr3bXlV7A7SyrXHmIqfLtI1kQJ9tI/2dJttJ65SBH3MuGlXS2xClLwt4dlpivZwWyb7a+0qtyKpnDwZY3jF1MdWnfBKa898bnqZiXW9vYhpqL//2OIA/B8hCi8sdUFeuFwHXVVTR4MmOqRKMlXrGhqqfhRJysMiXiRyFeaBEP0FlKwnGSaiy5XpIQuFTaS6XvvtLJUQW2kRlZIheaynu3MMR/9YCkHEAoUxLlnnWvuf/h+M/SeWVZsVXet5LDKnJfRV8/AXht475vg1gxPXwBHP5sz/UshM+VqCB4UMCWnnWK5DSYeYipWzpmdpJGLWVMhCoAr+HT17O+FLAFAahkASbGAiqkdtzjDmogFjsd9DInMsVXT/LOIQguNPRQ+CMMTjaBYBnj9WqIR10FLUWt89YGwu+rt6RcFBLrNkIXXhcR/+sx3sX3nNGkEYpdj/Y39Srnzj4kK28O46APfYazmV2ElyAMxHBwT8eTUyUkcQ6BIjJX71Ypl1SAW1qMzXoFzgmjBmo84ZCjHSer0+ZftrUh5hyNXm7r75Y+FzOAUPY43xttyb0xmq8/etLcNMeIsoOAOANL83v+gqSYyUbC9p+4VMEi1xnXWmuAbLS/CvIMgkiNZY4Ib9xQfq0UnRz67llPADKt38XEvtM/9EJcUYIS/1Mlkua3gzL/69I6fxsl2Wfmapwa8cPmzOvlLWCzGn/VzDtwE/jltbGf37iO6fhGaDju24e2bLl4cavk7PpLgrFmxrJkZcdbHJnONJpnY2Iw9NbGSC99Z9HVEHgrBxsbMXtZOobu7mUa5Cl0SlvNdbtCc17OTaZkTMK8sXmWy5ZDnkMfzz+xhmhZVmP5Xz1cY56gJjVU3FHbZ87ZQu7QNE6GJFxHojrwtsZlSnUbmSaYrpJF5uTH33TLMPDRmH8vCgjRgX6FELpVPRQTlum4PaA5Xh+u+OmjC1f9oopjPFUarxiyLLauJqrJM2x8iFWaOgi1URYpNQbguVCYdZE1dXUgJgoQQMrOyM9JtFllI3x4IVVU3MgU1paamrsIUCPWdoO0pjYJnbIuSGJsx/TVe/0a/eAfbqm+beh/0y/V/mfq6Tn39g/b+MfiPX9K7pp4b0/Y0rokaLPNrctDNrcpwdR3zCaTBm5hSNrv0zSXflH6x/LtVUQXKZ94xn9grHGfdxf0OPatJdk7XCctKRQ9p/mtbvy7XrFnVwhx2xVTF2pFIh0Rds7Wkpc8w+sNqKqN7xEz7rKO57tqjJccRR4KvVFQ+H9pX1WSZvn2WmLMUm41EZEGFKwl2VmdScAhWTyLOZrXC+fzjxiPVfqbaoedesWKq8nxz/AlTzEF7K8TIU4IXR+t5kGnUS5Ig2J9CQpniOPY7cLpp0aLSlCpK9cKFLWVRmWFycupkNUZfEzfOFKO5RCzS77u0j7YtyAusq9zw9o4vXX5+WGsPwwfWnbfmtqdv7+Hx2Gv6X9lN1EDaBgGmCu6cO3319yuKC/bvGzY1PYhIulApK7t2WWl6H7LYhJ7WZJP3pw1SBisLqnETR8RHZLw4BnELn37TK444ahVJvEN+ljlGoRL6KqBejibCu5r4DnkEgxGZE/Y3yxY1MXtfMMPk7i/zw+9EbbwpvcFH2hR+wO4lK2Ufna9nyN4782xxJqcFLNK46cbhlrvRFXVIyEsczb927mVa5zcS4hKfoZIhefGMdcv/ffvMdm8XmB+yKsxRWhrJk4vf9RGIcFaIha6QQFrAHiIBmfi37FBOJQt7ramqpn4CYUC+/VqydEbZUGFsyVtD9bfXa8lj8P/eXvvs+jVRBxsTJyCQ6nCldOAi17RR2xEg8q7QBK4SkZ8TuaDvwSd2atKk62er1pmZa6vldBcwjWSqPu3r1hKJ5pq9/jzDBOUrEZ2vZfmD1oIAcsbuyuexqNBcdMGZZsWqQpOdrfUlLoOICiCeSgH6vfb+3hy463TloBfi6N8A4hAHEGgZNW+8MtA8K6e73HzloxcCcoXjaCBi/lrynGnxjSS28sXKGKZpB+GXqOaqe4hEqF7DM42LFPp+nznm2OM+t/BmtRDIIiGQ8opsIRD1VWsaBNI4J8f8sHaDWVRTFehfmPnUwBdLLg0FhFr13iDYvLUHQbR9FWQg/2tFXxYZrOeExeD+3GPD2PuW5B1GEvgchX/GkuGY4z+zFH74WWXY6iZKqLUqgjx4I2JtQ6+JS1BqT9MmYhbM8xTS2FXDK1uFnkRGWDbJs9rml35w9jLTRJOAgqKL3MRYRBHg8JirPjOZK8PGxq1ROktXAm1EvQzUHOwv8C6EduNpJ8VDuqNAw0sdbmOkFGX+OFHcj2UKdv3GvCT77jgD75r27wH22gx7u4gTopJm0GEqLuIpZrX+ckbsN/dvEx2BvzP/f7z9vYHY3CpRzyZIBGfnoRWP+rvqyeg5g9jN+uXE5PZercvEvX+94WtrDeViq5F7hXTN5134phl04VwhiLApL8+zVlTkkSfatPO1YJ00loNhhV/REeuAp2Bn+icVnfIr2F1cKFcLbqO6osAMVMDT/gMXmLrzhWT2TdGOu8HtY8ubaBGkk82VOotYdcCbSZ/2ME+M3dc6D+MiAJygy6SIfXd5mfl0qZngxHmI8nzGD5vxYNeBX2efgGK/zvN+radoXIMycZrBNJeHntrvTx9+vKqmV2ZGVCHKC8zlVz9rRl34uqk9PcOLuX+qdAsdBV2lyMajMyQxdObZCpuwW4E5fL9rpQTMMdy7urLS/Ll3x3icHd1RmpOd0+GemfPMbT8stylss5R4SLm7rOMhEwQ7bWzKiU3Vtt0auwjoU3l5jvnm645WvkrWQsIMMJmQhUKROBEVsae0Nuy3Qq+BdQrWTm2fHnUWVheeR+kWm8Ruzrff3ias+lySot8OMfJW/79swzcQ+z5xHU6sK+jDXCFNNM5sZeGlJ973cKvcwpNwFnx36UqbUwafDmKxYUWIfgBFN2HRi4orbWoBrAxdHCknxmU94qE+YfkSOYg0tr4gzz33L5vEDbNecrdbwhBOgdmjzToPyut8xoK25tjhf7SdAwE5CyiOWY8XXvSGuez3L5maswUPTidfvKqm0G/YBlL8QxxmdR85YhpaqoII02mfd7R+ZUSfwLCGtR5RLp3sQP6rPy699lSawXJOujoRdtsLh19/cP+LHAcjFMCrz3Xs0zRy68yq7AfhOgpkAnfvnYeZoXt8b/rft8CElE6y7mZxHrL3xlSXQq7t4PCAufn84WbpynwL0EP6uHAV5EZw3tcz1614iDAS4jzyCNlx6fT5pqxaAd5ys+L22iSAukkpZO+582BT2GS9aawc4ZT1a/Nt2xxjPZWMNAa0bWQeGrhTpRBFHhZUFBAIznyEMuc3VjeeonqLOYLtDSkwnHRFLwyEwSKySCJFvZKY8GD7XGgpOvy/eEpzyn4fJqs3ye0o43NT5wbFx03WyCCRg8W5KxKCzSlz1YxZSgtQp/WTSAuARaPLZ+OMRWrCCt4pv6ZjOrawRNx138w0ZIVsKuU0nt/k0Oh3zAITvlFirJekYD9DXUNJjigJNMZeCvaH/7KvjT3H2nNIQ1fipaoSrb8Go3wfNh0u/l8IHrTqUoqr4nd6B+hdrIWmnhdZJNGZom/377vQOg0/Lv8vTPnx3ZA2VJFxAzthPFBalbnSuzvdXE96yDb4+T+oHHdvcaIOuipEjafrGD//05nX7HzEgI9XV3aBc6iszjDvvTHIDN5zpml79nqT2V8ByLpJhnoQ+oaoKS0SVyI56gvP72YBOmKq8tqwGdau0JzRqb0mWSSanZGR/eGKmff8sH7txJ0Kmx/ZtUljc3irIrM6VGW+WVNt0IfkiprKluVEbm6NlWnW1hTYvNJQMxFp4vLyaq3SHXlnZjDTnltXXWuV4Y8P6leZk5Fp4wChDIfbQLexonr908e9etv9WaYmp9SQCg/dw8T/JkTgPtJm7EEIfEvGNyhr/3ZXdStsdMjgDgUjdm2Rf0C7No0PbxotXywV4zMxHY+rvxlN/3+VbfAG2mYUmEgGc7dPyy6ZvQrbjRB1n43urltR48Cw5s2k04ua6WVlRvmuRI0L4MrfIUOiI0V0sueq6iKmZUGm+cuOXczF3TtFg1JuLK2sNm8vXyOOP8OE5Mcxe1Zrc8Llk8SBSMH+jjLskdUPxTSOuUIcRK19/9WdzD/+foRpUlBrkQZcRlALTevM7lFol8shcMRpMqapDZnwh5qKMiCz5r3IMUAeHj1XD02mfKl6vEUgajuyQWIvbf0OVHKyyR3Nj3PaivNQY8FQcZPswU8vLx+zyJhz1Mz2u6b/hxEHn+8cfefJSg8YUXKxSOTaQcOyI4HAoZ+vqjSNRUWs35BtJozb3cyfW2xCjbPMEtPUfDWvq7nnjsPM9deMMF9/vYNpVlQn0ikjxkVkmLsH9DCFWWKlBfQ1yQLfrit9+9yJNz1/2A5Dq1vk5O/TWCmBDm3T0vQpyjWrFZVz7vpaU6PoCyjNUXYjwwWRZMonDUQhAxOLUKo0bzbUVltl2egebc0NfbpbxASCgstgNCCP2kho0XETZ5y1aMP71XAbnjXV9qc8o78/v4AESiJ7dfx3m6a5w//crnDoA7XRor9kBAtODQSyj2WfEcgfWdh46LmtC4/4Tav8g2YvL798ie6JIZuf34P/b2FrvwEPcWC48tqCqSsv7H3ILo0yc7qyniIKiVOowIf7aP3s1bTI5EtZXqN832IuRIAFTdOcJmaflo3NmV3ampv79Kjs37w4i3v0sQPFWnfjlq+yCCBH+pA5c1pLb5gwUMEsN9hCFcV1BHdUVr8pO5iLR51rKpWDJztT4uuqkDm1UyszsnM788z8FRYBZWWFzKIlRaZKhuj7/kkWLlrH4VekMJ+q5Sgrr2BrvRsQiDpgORj1089n6dfGJYZAIiIqA2qjXFKHd98cLCvHagtnhCUfXF7+2lJj9lHN7RdxWIC08ej+Z85ofAldByaoC469Y/yV3/048IXZZaZFkYc30XkkF8RZcCYUT/SUoTwXPTZSUuNVHbNdN+8dePXZfZq2LbF6CC0AWHCihL68dIWZKA5kbZVcviTG8heCn6ET6V2YbVOEDpe1Fjk1nJOfq0ubIBBySZ/4+q2P4Dzm6TZ+bX8K16Nfeg/wL4ns3PKug7Mymj4pSbWNR8VTAwHZVsdKNApNmihhU/bg1GVnQ65RvA/oHf///+3iDfBdx2ajm8O3SCFx+pzQcfdXCPbIHHddRI8nMylrgOJSBxDtmYi6tg6Rm2NElVtvJIR6ccEqiauQJSnqj7h69IsnnzzZ/uZfXr6IubmtbQRagp8iJnJe3E/u1seub9cOSmt0lbRz4ikfmetufNbkltbJxN4znMFJMThIiGs3zUmQCIJ/DGycoK4B6Gp1LB0i5sVnh9jouYiqW8qn5Yy2a/c7/YM/ve8RPyWOn1Gj21f5X9VxuLesiejpOgr0VXFiW1a15uFb+/UcYMzMwCuLyqwyu6gYbVf9gt9HmYRAlKEtG1lvTgC6ixHFeQK1EYgOnwc8sgn+98mRN5mditte4wA/1lBsVwqJLK+uCZB32l+aK90raUJThTJ39ezC0EIiwCBIA4W/erzBu14SX2yu/n//3kMa/Vr9e3R2sPgOxuOQRaWEd6G6RnFk0biwyl5zCCTDFI4c2GaMEfL4/fa++LbRd0oGZ9tg/mC9V2p9iWya232KLjq2Y58HQBYOGbAXC2J1euLMoettYf25Y+oTOp94bUXB/AMv69HJTF6/1qwq84KQordAv3jlFZ3dLfE9gBqkgQh6TY1n8OIsFwUfqBcACYE8aAcrya+/7GnOOf81c+gfp5hcxZMKTxJl8q70ox9IltBOuow9ZFIvC0mrSyFaBKIs3nbyG9cpWwR9V6woNhnRHJn9VlhnwNNGDV54+geuwva7Tzek7bfHW94zjXFjriM/t9HAp+YtNspRbkOH+JvNE9vboiDb9JUc9axO7WyYD667Se3qVoXqprZ+/Oxh7rfzslZOjL1dzgi7AFQBbsHG7xEVVa/EQpyj/AZBOLEUdfy/v12ztIQkRFBpCVO9Lbakqvfo7fOHhzQGt3r4pECw4El/HzeUNTJt2i4zXXvNs6fXr883P0zfyR43aoS2M1GikXKFoz7rqS1AHponJSnWw/ZL9SVGm+6Id+kvlsiIA97YlRTjTlnP39DPOY6vR7hm50lOqJJD2/e7glQANO7WQ7oHWY5EFycun3Vh06y8ZnD6rK+v15WZi79dYGaXrrWGLFgspStwGutraqy5+1/79rREIXVZg6y9v82YG3h0LhnVZLyirKKhsBwUNyiJmnKOH33sV+bAg78yvXZa6nEhL4gLmeK97oy9ZVizh/AFXAjT0oUc8n0N63zYMWrOOPE8M/nDwSYjp8zs1SJ/xv3TbxRR+4uF/GcoW6WkWChbpd1fphG/y2XKELPpHssC8thjajywzyUHHN1x0LOwvVAwH6xaE1hZE3Np0PWdCguU1Civkii01PfnELC/Nal8mvGaAABAAElEQVSYuHAAO4//7voiM7YQfYNbCHAg5MQgZ4Q1N9SEdgiE+5NLMrLgukM0UFQvLfzhOvQoII1EGO3t11QveXyb/9tDGvu3u7vH+kixUm4lxFO0MfpKZVA89jObodEgsaiOGuIV/fWP51kEUh951E35YtltQ+V/4ui+ZIAZ65YDrmkRRAywbhVg6tZbmr5s/ptKXzM+Hp6R4jnuumsh3bhdva0ybvew2J62PbNcuGe4dYI54nH+2H7nDhvaovPlRNpNuqneT7cuyPg5Zp/Lhp/Qud+DrDGPCwlV/mPmvLxxS9bXEw0TC4pYUegTKYiJR3Vrbc7v1tGuT+71IyzgA2bCj8xfaiatlKZehfAhmM6iNM/MqTLdey6wpvYjTvrING9SYSLvSQ8yXnoQWWcGe4hj2k/irB66EdkOCEQlIr1KUI7HM+a0MSOOvFIfKWTFVE8M6iAT+6tP98yVj9ED030br51t+d9N5G3Zh4afLWRRMtFklOwjWwgfsih53wZwMiX7yuB700XjTHAdAN+px915bceCZqOhLOJyU9dOjAtwwD4ZsPObyLEHfvDDbrMW3FPmHJwIbe6QB02BQOA+oKQknB3oIoYyOSl+jsKe0D9XBwe/pZVrx5C9zuWXSEIaaQCDa+m/cQ9AKYkMbPvIKxnR/MPcCOA0bnvoGnPI8SsUOuJuLbTfeJcia00g91SzeuG35qzD/2bmLW4vz+PEdNgE1+EQgv0YKOA31ITaRyORplmB/KZ10Yo1zbMC895dcsFsPYx3Xa++69um9+kAsDtPC1sDQLj2XFslwf3bNe+2PpQ3SPZAvYMZmf2V2AwaeKMSDtQuN9HwUnJbS1g0adnyf3+/wkz3yVST296oiS09EXuXY7NZMyAPuHUQB0E1QST/HHrGPr9pvcN+hZmNegqgS61tOf5V5DmfuX7lp2RAdMiGmFjKRPiO05NYokvWjIslFv5IWQhd1ksCk1IKcpRMSVk0iTSNeArCELEz661tXvHZrh3q+olLEMi0tVUW8TjdZHmlOJGaRqZVqzXmNwdONSef8rF1GIxKlx6PP7ejkMfeMo7ppAY1PQOMZoeAueC035t339jN1AbLzOldm5rfdii6s8vzR/7BmE4527MPh3rPYtiOi+MwQBg6PmXyHEWOMqZ7VbfKOMKgjg+hpB8Nk9/jOhx7POfoWx8pysk/0CEI/71+ZOHOWyRj5apePoHjJ972ChM/4eGZyEToggqCPFgUyVFDoW5cu+xBJiAjf7Y3EIYTfyWQBmxsPRFVbBH6W3PHvwS16NpuaO8ATXKdhvrDPSWR/q3v2SUr0OJzdydIY8/9PjUPjvu7iVZ9piQUu7hL8X3A7G5eHGvMVRdepTDVHmXIxXCg4tWpS888XO3atuM3+JAAz5Ne9ppgNHtoMoeDXiUajUyriZT/Z/qKmx4wNnz9Rm35mvUfunfgADnXOMccqff9Yuft9fRyFS6nLrHv771buLXSUM5pWcG8YYGAAm4kGQ+kbqL+2aipWxMJ1E4iBfOiFbePTyCRVGOqf+8W/Ir120MeEFxuzTgEQlsgEX+bLh+JW8NcY42lykRo11hMNOykBtR3iMWmRo5xKTjU7vT0qPPGHXLtqUNbdPmHM4NPro8ozBm7EB3bIRDEWI4L6S9v87POniiH329MboV0IS+L8pijT68UscGDte3phRa685YRVkSVk5FrXt6jh3lv+RdSjN8nzQll+5Yo1ANeXoe3k/8xhHDKZ7MLDxrb7SR97HNlsRenmOSQ+YVW2R/Oui/wI9xHHJGk777GmuA6HIUzY8RNz/hTrCYjDD9XADcAizx+4bRLyCfAZPd5eIoqLdEzPOSRivugayyEG4cc1SEnUNTVn/WNjG+XTHpqGlSUQzbU59jTabh0pw7obNYiji3OhgA2T9kqZXOe1UAdxiPE0erBG7KCTa5yyvCy9QUZN951oznmjE4mWnuPCaw6RftZ8Q4H2t1qj6vLjzfH73NrPa6DNhoHSncS16AbvPZVWX0w+laDsga2GXUPyvR4Y1yMWWwlA9yIqZwXCm8Y9fVKxcBItOW/1XdsnwWXYmQVdlBGRqNjM0wjT3Zv6ppKIbsGKj8Urn2rRWbdG4n+cYcf0fC7oZKYAw4BZprcYf6+u/H4W+F6qvPU8d9rf4NETNULxcHqf3r95P0xz7ekn/6n1zuOtVV/zTgEUq+m7wdrAkKKU64u6YSVifCZ5EyErF/qWWSh9UupJ44SAUeOkF7PXXEC11h/EHnJOkquxdsQMqqpra18ccnKvFeXrY6LsdCDUKor843sYBRVe5E56rhJxoqxmnsGOIQW+tdtR5gJz+2vcCQVVpT2wK5dzZCmja2+NEEgzneaEdvm9vaPRbT9lRjSeHhUtIvEkC8IYchdJ3XRrBh1+v2Bf28e8mChJWSrDnl8fvRfr3O6CCdG4mlObMQxCGNp5bpxiI7GznjpByYsiYI8RZYD5tR0C8tbDJgdctJNcI4pTH7vyPtPX/y/3eJAd5LgaFwNPyLAKe7Mzqvrop0RsbgaoUDVnGnLb/kmQSVzZassdvcIt08CJJ6IJHV/Hp7m6RwSAC/WCPNQn7IkuEub7uI2shLuxbrwn/F/ML0G/cZE530ut/kfPdDvng5YaHaBvIDHmev++Bvz1AMnyzu/3JrrAgSTxFXU1iak0faCcYjDHABNBpiuef91jmtCqw9rGHlYpGF9Tyrqsh/0i9xcm/49bYaiFQ8rEe81Hy04ZxnvYPO+k1evlemX367N6H9lBvLPcmNwfeY5nhWaZ57qngtXBieXqjgrNXfN32aKfsbep6v9U/duPiQQCC1BmKVq0VsTZYR0j4uGWS9+oxQ/ckjVBufgSEAaV3/50gWPKV+Ni+oL8gAR3TD4qLshKl1bIA6HiBw343Sk45etMh+u8hCB40IiiqRdVpZjxVgduiyx3Zgzo7MNeZRfuN6KvG7YuYM5qXN7M2ftkgu6v3DJQ8CLnxhCKN0wf5Hz2x/i8HEawx7t9kFDSMO9EYkNDzjr/sB7m488EnbkThTEpHMJaOLtRiL1ZKoEIAMBcD1h2ZTOj4LFwEKglCo+jzfJ3f2cdcjCj0SgOFgYXPd0Jy7woP85JcH+rVsMCgZyRsrf/ICMQM4OboFznytQyeFI3ZPLVtx1kydu2Fyg5FrY1N4teM9Jb321GZETLDgtnYiE/tRFam5fseKeh+r3x+sXYpYN0Wbf+8dSULDOPPHKpaaNHMKiaxaZAKKHqMULQiB6vRwHio3p0tO8/mytueR319ZDHDG/jt97AJnxSIfSZswDcBoAWPcs/zG1HPDd+HpDSvfEOJxy399OVZVn/Y4exn+e5/FuioLlwxLcR0NI3nsOXIYcIJVzMq+za4+26DOIITOrznRuv9j03vV703vADNNuh1XKVZEwPa+SC2l1VZZZW9rY+jbMmr6jmSvAtmxpG5qxYj/XrnsPiLFqI+XXTl9xzp0xJLeVkId9ZIwISawbe7beP/968IhAv14RgI9RStPsguGIm+rd6vsBMlhRXfZU35f/fJl//Tli0lX98IgrLuyQ3+xCEAUibb9EwkkjiLVFQafyspTpk0rXm6/XKlZdnadvC0YUc0sx6yguw2DH4jxDlj+FWlHolKqpZNikHwm4Yo067D3b47/tDnE44D92VPRfihBw0Wa+tBVvnjGn5xNDupdZN+yGdR4a8yB9aRul0zohOeTBs1LJVDnvgPwWZsCLLQRa8KgpjkAi7FMVp2j3rll9RswGxAQEKAabaPZw5NfJVLlb4P423WLfMqDkb6GhYw94Qb33b3XuNZnBvFF+HUFyf1xfaNEitGjFCdOWn/+FH6A7E1zudfVBHC99MFqoVPF8qkXyaVIkFxewbv7y5ub4g++1lxNtAOhPkWLEE68kP8PVA9D6qW1EZADevDxFRYrpCVzdJC7G6SVYS1E4gB3a/OkDvo+rT9twQa2arrLffcWaFmF/+3SYZ/Be8rJr9vA4DzhXT8zC9UTx3jvjCGY0eoz7eI67Trs867ATxmccefSnnrloU6LrddDWSYqfrq5qYp8xV8fzZXjwmSlbk2umfNHVvPXyXubd1/eznInj4NwNPNNDyIvP1Xt1H8TtXbWfs2fsKnyz5BJ/Xux6fQmCqw0CIctlzyYtd0+lYP94+ewXSYVMfT+x5nQtDg440VUqU2GHRFJxITj+fl9WbmaXV5hShStxpZmi+O7RrNjs3aKpNcqBYxm3YMrxv5942zvU8Ym+3bxyt25X+xQfZhv2L8ZtgDy6PKNsTMDYzSyatVsgsmJResjDcQJ+ZVvyI6EE3ORKcAF+DiD5jpS/9Uy3EBxFlbKeTiaoDajwVaGsYakoeQcwWMhQs6G6BGfvgB5P4DqUYii6blgCWKelaH39tIs0FUBg3kSxRKquLZjggCTPcoVnumPXT/eba5yLhKt+6/lakMFwSl2yfoN6m4M4rE18blSCjVxz6kE3Wz2HA/g8JyerrIMTAzlRmOsTopwWLVYrudc4G724SaFHkc+Y0cE8OeZI8/F7u1ug7/rsjQtkNHtXfU8Wt30XOrYipuQx0P6IM58zI8991RQ38xT3a0sbGdq/79aTzDdTdq7PIcUV+q5d99bYe8/AMTJHjpFuDFzhOewPP+Ytc84fnjeddiqVrPUEE624OKVBAXVTlUCtNLnZzwi7P2NmfNXG3Hrd6fYd5DcuIweMRaI8l/fgGR8sUAYk/3tI1Wqqc4wlXUk771LcQDsJBTvrGJGTX1foRFDuZpcOmd+sGg9YO06mPkHp2mKPqfAuzTqemexrkoxA+G3F3M5nK2alaZ8fOwfCoN6C8tI7Bz4/+hokET5uA0yTat3ZJraHf0z67af4dBsKHzNnSzomZfkdZ9wXuNhxLJtxbwxAepyAQyDcx0dkQrk2nEw14ZjDlbSA1922qb3v+XEkZIEQADmd2McBCxauQxZQhB27zc1o2X6RaZwbMBvk37Bwem8ze17nOBVNfSjaxctu6xuzkrHP8jrpFnGqBRu/5iig2H2dcndpc+PHfqQRVnq2ig0KI6riqFSe66fm+c0YqAsgqo2sGeohM2P8IiTaoG4ccSiPIbbxqTgOu8SQFhQHzPHDr7c+HSAO2uA5ociaYegloNKjgZwneS7XALaIcu588jrTqY8sIMNnaBssaLJUQPcxVfjMXDH6XPPSM4fZ8bg++9uMAXMWuUWkVbUF30q82pRnQP2PvvpeM+qyN3RV9vrVgrEqgUZf1mv//9j7Eji5imr9c7tn35KZDJlM9slOICEkQcISSNj3XVl9Bp4oCIqiqPwBGR4iCioiBASUTQggAkLAgAIJBISYhZB937fJNslk9pnu+/++c291375zu6ezkfge9Zueu1Wdqlu36nx1Tp069earp6lkw2cBtN1653eojBI0Mq2CB8072FZLqKGuwCL43fHrB2Xs2QucvCI3AwCgwmNorsYqZnSn5pixmnMf/6387nput3TFp+yXkMbKugFpXpTnnhgjv7rje2rq7P12LKttNdDFi6sKTKdP6HtofcUKEXgSa3ftxY31I65/MBKD0RCQtGH+3mziaiFjdMI+yJDIDwwQ8QnBiLRoKnxO94HXGxN7My9qVFdGAmGaZIGqL1pyUVXGONRk/KdIGywvu9v/1YAGSUZZyffHxk8qBbiNp7UxXilmJDLOfRbEXOOx2zlzGzljsZMZWjMdptOYOSYatq5sask5I9OKhtEABT4RIwYs2FGbGnLhciNTAWHU6Oly4mmfcH/lcHlnzNN3QOdniG6Qxh0Z8tcXjpPf/+I7yoCVRjSzorzsu7dWVV17O/JmWRBZjzFQIGiRBMPU1feC41S6dWE6Mp9U2sPKbrsd5RsRDjlqEjL5JujML7j0LTnt/KkyaNBaHQE3wdX1Rx8cLk/+/grZsqU0TIbO9yDj0yN09MjTUc9Y4a5RuHKATyJmEgvNkPfgGSJ5IJTx62CHuA5YhOUPtpU1EPfeYd1iQ7eEcOtvHwZo9AP2/AuVjUdaaka5HmtEHpV7f3+DbN1SLJ9OPUrLbhKHMwq+i/N3nGutQ5tgn2k5oEFQGjLic7n+OoCGYO1J+HpOjGmwBZoz0s++Q+687z5Zvqw7wS5GP5E2kzig4QJfAmjs2lFs0Vz53ocektKehwOclmJ6tY++h0oPWx7DLPM0tAl8SrJgf9jq3IADTYAZgCb7aLHzzkZZr0D0CRB7LpWrrr9IOh1SIz++7nbJzmnRGop/w9xrUa7J7a/SN+1H2z3n6EZiud4xWApHPRqcgFqdMYWwOUPC87FF8xRXXYcnmo5t1fflmEqD24d1L3oanOhGUk0NO2MDvx0SN0QxmgM4bcccIjyNtt2fnvSUH2AwCSMWMnTHpJ6gwRxvmPbIpB99kjflt8dcPszMi9Kay0geqGzWZmBwLDNb6xds23DfSf/8+R8ZyQExzmtyoyvlCYFpD6abBzNwVKGi0lZVYaXHoj2r2FiD1AYTTIMfM7anQHCUlHdjnYZ5uB2gUhdoUQ2VEc46jWCBbSrDZGzYDV3VAoYkmZAfLI4/cZ707oNenzcK7fRemKiejuhgGAyt1ZLT8UV0+BvVqdudN/8YI1oH9zgXAUY93qhuWB6v7X9Ds1SgcXcgmRHllWtsy14Qaa19KNGSqHdOOJRJzqLBSAYPPvNrOeYkMC6oSCT6HffhBjDmpwFuP5JvX/xzqpHC2TkNOrJ2wCOzoq659S5Exqg1HsiYQERq63Ps2pocq7RLrW6IEyhxIJmqq1Cg0kOqVWVnW7Uhy87UunaZE5JmHcMim1E6gfeYE5aA2WI0HpkuVtOfMazEOUOXEZh3vxnMfYPccMtz8FN0pJbZeYhXBC2CbLweMQrDd0SRlX5rS4Gc99V3AeZgxI2ni1X/PUgwH2GI38Uhcci3MV11t+SUvKfxqLJimcnx29J21reEQrl/Rr1oObBDnW1A44lnf4l8oJYCo1cbvurxUJY/gHawwsmLbIy/UAwVnfve/zQyILjUv42yAuyqfyZ28f/gB6mj7lM585JRsm3L7+Wen/4Q26JW29iuNcYc7VDoHsztYL1HJVGb992WYTJQ4NN7BD8rlP1DGlA439iNg6ekyEgNzdnbsQj0E6fdPf1+3BKvko+VjqEcT22eOUwf97XBU5MAWTIGIo6qmQyaQSV9P01ck1YlgGViAhAZADLSjOvc9BMjhcQXLIYHcRGh1yqTE+sRO7JuQ/02tcz0rtGKq6hYnt3gM9TQ+EPq+V1/7D2+PriAw13od41lrcDk+HTMg56T7puhxsGx9iq4DWavaPgSxwBDGRgnko/oPO4k2vXTGmqXnd2TkgWZjQELMjV2Si9YHDp0gYw982M58+zpHrC4S+zWy5AfRokcoKvRr5s9VBQ2RrRSN1Iu+q9RMum16bERMzprCUfGiPn70b3Ky+qa/3jXLjv/GiCWSjikAG+kLqHMCgByRUao5Gx05LfyM5uvnbpaNg7rcssQsTMrNC4YfAjWTfeMB2icUhcf8bJMsXC3lPc/Vv7nkd/Ity69H3b0zgPDOGhKCvD6dbV7P5YMJ1TD7NiBoXoP6OxTBAMcudgoyx84mqVhgVEhwSlEiEA8/NjZUM2MEmv772Ar8XBishVgoOFHYC1xpQw7do0cMfIz1qHk5tcCSzOjrMcGSIhI9ALBlyDS0OwAE78fJ9pHjlqCxz2xL/BpcSZuclkN+rRx6HKyHH7Ec2oBxXSuJFZS09A8FFE3Mjon3DOtjo+yvvicbSQBNAqgBpO7sYBghVjbblTmr+zbTDMRFBjM0blq+59syIALV+VvhVBV/5bY3f4OldWrctW1F8oH/ziG9WCxHiBrupJjZkVZ2Q3/XeVYWoGKMnGXvoJGzDzZjmadje+AsjiDI74LIxqQ5znr1rKzzma7O6r85pnNke23eQYujBLQUnib9ytxqMQLV7bymqPPxMD5NAaa0Kdi0pXsBKQX00aUCfaBRaA0EySF4NEkgghXsh/bpU+3qGR3ZHyGJnvH8ts+/dtao+7qiPVcOxq27KQE5IDZOJbZdDwnUbL/AIzKKRKuJNvwAgXvc03bGN/9ZHT24v7BBRx4EbdCuBnX79Ci0gIOCIZvYiHg+9DJWJVWWi5I9qLK0k2qHYYNXNVQuxpDNzijdDBc3kUggzaMIA4WBaqGMmDB7WYHHbrBlSx8YJEFInWekbK9Senqv7zjxS6BxSRUDVRncZLXjGg5MgYj/aS+OfsldNgKMJkIR7BMx3JoevzjPdOhI+jw9c3Wx2BiQzLs3H4c65hR7+XfmqCSht0MCSinGJuGvI7h4wxseLITeQ501R5vgQGXyslnvq9zBmbU6jLK8DY7+78Mz/Lmj3OLZqOCPUycwax5Gnw8pDM0xf6gKrCMY+Jv5kQoK8MIG5ZE0S3/xs5suEfzXm8A84xueURCcJ9t6jDhcSg6Ftcv8B4ZPbeMYJ0Q7Dh30rtii8hafDvsvaA7EnkT4zxa+w8J1b4jObnlUAE5E+cOI8V2xlbOaESBKqwy2q38jw84akEHNEifarCHnvo1/GcANMJ3O3W+4Ro0KrwTAYMg0R5Q+MqjlyYNWwE/CCWQdcPF7j4LzeQySF8TVPoy7cSUl8YbSEETXTI/psYHc0CDZsOY+3kbgxCtH7YppiOAGzqojbBpg3gBbVugwfY4AgDyNowO7pntqFjBFir5yO1FPDXB9DmWoZISff9tEezl5gbHlcpMSkUMKKNTPucy8D/fgfnwaACEEWPqMAMgvGlUWX9dOW0LfwQJ3mcwz3g0E/cEDbTWRqjLINloPk7kVP9dKYMLngkSd774Xi8T/a4psloXQjMOf15QMZH20fHgAw76nsJLQ+p4H1LHg2mY5FahlXx/H9XHviDDBsmfM8pqDt/V0IyVw9B9m6ZuwIKZ1ddxzgJO32H6mQAW/TaqmkOit8XVUOgyQrDAyFIaJolV9ycMZWajd5ESArurCbWzwXGhdoHKZeSoDxWMTCelKiQjlPMJR7DsrBw51u0q1jJwktUEzEmQYpijS4Ae5iQyK7p1/cFLrZHW2YbFstw0++TkLydgrXUYRZN5uUGLRLVHGdQf4f8nl457TjgZbMrCMjAqQTVkZ2KVMkjpKNTkAK3L9gKXWvuHwoJYX43RUR9NYYmpkUiF5c7NQ3/luNQEwzTNNRkn8bTBUumBlkUsdyjMUTKYO6RGkd6Q9VY1uozepJSeQ+dLTgEGqDsQj3PxftoaE2SwQ10O9p3mdzB1wkeUknjkfiSWnXstn5PR7qoLW+X4Ro9APZVTcjGa1N1QK0E1tY1TLggGNJyrvfvPMpNeA9rS+rPE7vSwDPtKvwTpy5SZwEaAcK32+Nnxc1RsGVbHtyntmXdk/RH8WDjT3qiSpBSl3wXtjc+cunYGNBLJuw3GE509E/Eah/Gc4IAApTNKP5mh7O9Tooc4H2tIPcp/sr2nyEo72vSbGVX/8xrKB6ZtwMb0TkMv4Yi8lLGzefK9DIjEAISx/SBiwMJQ8gJGvi7sNRPzStv3PiaV5+iCgQsYN8rmyTcAHPqZGHdunrwMQDIeAPJwDED2E3gcdMChlcCXRSWNs6wfADyg8w1ez0FJA19S3Y7sb4Q1H6f9Y6V2GOpyoat9mKMstgh2GpPWDxZHjZ6hLpq5FzF14hK5WuyWqxG9DxLiANaUABbNWBBuTPf53K+S4MgZAKMj2h0LhCamtE6q2ZVvGFQJpR3TkUFBKDUQALr33CZZWa3CCem5n/dSk1FM3FI1gZzC0EOHzwqF4NcJg192bHZ8phGsBbCqABrUk5vykDAD1R581vvnut8yAZLu0AlIhvFQ9WWFQj2pwojdQ1KqlLZtgaVWOi0VIMBJXDIfzdaVnuAFrATgofjqZUYdS2B66zq+0wT+f2CcKgXhlSj19Rmw0pRbY4ZCod5U25FZ0omgAXCWuVeFoySJAhhUmvHT9lw3woDA+876CFISj1nhknuMao/XGdgA+57xdzkT4Zy8pnRH0FA2jAiBAMWUexgMeHDeI28SNKOXyZkXTlYJ1lA07YiT3bg33bFMmtlC9R2l2kTQcCQyzi9RejHtbfvWAmvWjH7y4tPnsI4tSmCGLo/Oee61sCqb51l8SEaO4IAGQTYjXPgo2xI1ehjpAOTjkjTLYYUjxbadPQHzdyutaPQ2z6Q+CcX6KC+SBMQxjN4ASCeMQLjIN6/FTMoTRPzpKWGwGce9Qah6inm2n68XNDZPngzAON5PH9f9cP8BAMjFMtkeW0nti5suIO5e3UqnO+5VBnuTmMg6bqz1A7geeQgLEU6F8DXI0ENnmmjUU/LI/hXLTJ7tH50GTLNSNM5r2Ry8DZemqmRqVGOMPv/9uD//EnjYiFwVBwuOkfgzkgX0zNL0z+Rg4WcW7jWMyaGKWQNCYLy+4HTEsFVUWAfPs/eoHl8ntZsvjcUc2/NXMvbk29UkFVKC6rVdxouJlXgg0MjaF8GzIB0HjXh15A7uuxFLPrp1lcNHzNf1C3EKTj1xRO28uPcJdqyqzU28kewKIKBg4HvOlfUwmezgvU3GlJvT5L0VfI4qVDfYWCdCgOckNoOpP8MsKdW4XEy/cd++m4Lp+e/CDIurt+sw9i3Mjw8uUJkbOPjgSN60IY7Ir/n+nxy1IK2nMKEvVZfEQcNPe19dsz1xgMIJ96LLZfjId2MT5KZszCojFD7cmyVdrlAVauqKR0oaXNfys3uh4cu6DO3TaW9FnWlE8We56Gu3y6Q3h8v9d1wnG7fkW6wTL9hnhQruxHxYG/9eNFPOgJkyAQMVo4zYW7a256HeUTtzAlRgh3lUYO0z8PgLIm4MQAjbMSmEUcx8SDx6Kk8Q3lipzwEKzyJGEGiYhDV8zniVIleYm/v6ePACB6SOStuOEDyuGWutwIvDrtAXiKYM+0kc8+XWzqUDGlwAZlQLJgE7C0fXGNVbCat5I+MULGxKFnsLFiYzz1EnjDE3sLOmQKUNPvKObJsaMXp99i4ZdjwGJpyfoN0/VWGxcH7MZHT+vwfL0nWdtCPHHuOEKgaOFou6YJ1FPddZgMn4g8t4VAICJ+zTB2o4X/CWy/dItmzu6L8VfI3RPV1qEBS89FSfHg2XMBG3ApVIpo5Ec3KBNEiTFueFtTM37nlyPPtlPDjMcgRnYCrid0XKu29PVIN5H/rOOYdDSQK1mfCE1kcYJWugiqp/xUrsQIeRP8x7aTprbTiKHzSt4rMt8BcUQtzsKPhRYvTWlSKbZkqXrjulS/EOC+0BYOdEYb1arpSESecWgh4G/GdjmaDdipOMMJwbox9Q0lDQyBiPcdX1vvaGa3s63OffJMOOdKzwNmztpN/K0MCxhN5/kevtRrIhaGBw8KAXHJgXJT8O1MwxMwfSaDjklifkSjGZfhUYKmO3Ar6QAggT8Vw7gGve7yNECYOB8VNNzDuxzH/ywEpID/bz75+Oe5eb+0mOZpR4OeI/Y1nWO5qeUwD7MBy8wMGXJHiw+wEgKqcoa014dVZmwo0DduGCBnS8meHs/2dGPCwOG/CJZ70jt935glXevxCPABZYCKa2/PsBLFRdguZJXk0JAMK5TP7TEUJpx0xIm5EfVxnTfFZt/zmihK7conTDkNsPE68nx0xGx908Qd2WIxJ2QnM4kGEGK1eWOdZe0Fi1G8CA+w7cgMluhwErI0+SCGa02vEbdjrCQjJTXCY3z7zzBXxPlhW8FRXh8AMyDl4jX0tXiQNHTNokxXCe19jqvqN/920xAGXZwfCH08nkTpA3jIsMSn1C1Sej6LkPyPHO4Th1CzUi509Ckd4w38I5rgAs/AZFXTqh7WANyJaz0JaqMeBAI3IlTA/V2CndsfD9uD+21QH8yt/jMX8j+BTReuTSDoDo+AySb05BFPMrSATg8Ib4fh8jgMzZP8SoKPaYQJ6dXy233fOEzhlJ7UR8FEigDGhrxoiCbvO5poZWeNff/rSuHcGgy4nn/ndc7lT+DAy4heop+Gx7kN+Vj1l/LY1FQoCiSo3zWFR1fvrJQPn0/RNk+46w1bFjHeI5UOkASUYSFVhCtulcoAwEBQ1scF44xv2Z7qM9PGTIN3YrZYYQaN7ZrTRpRvY3ozSTfcHRDIB8wdnubnZ0OsiGaxoxQUPF8vtfROd2TSYJFhylcTVvHXTUqoaa5jABZkgGbuYIHO7Pu6kDm6gLFgLNKow2JZQLi62+UVm1oJO8/OSFwoldBjI7MiIGLtSjesoKzQUTgMrDzJvwIZkeTFQtep4t+Imccsbl8nTFSuEIkIDhMDjwgJZmWbSgp4w9fT5TpQzKoDHCL++yXfLzGzFYxjJ3D0M3dWdokxjpcwFeWgF8qgTuqwvyGi3O53jpmPS8F8IYpAjrWvILUVmmm5sIAUeWm36ycrq1yshTP5EFj5+PUuMGxzKhyHB1CZMRKXZoZ0pH7GddirkWCjftgRIZORkb3zNbJ1zYQFArMIMmaLAtUdoYgnmhiy5EO4FZrNSNV2unlKCB96JAzp3muDBy66YCmf7mAFkFkDeBVmV9YITBubVQGRrROnxY5JmyzCpRevmhoRY/jiy74ZJWu2WEw5R1nkF27MiBK5SJ6goluhTlClFycgPaGinaUIXRTT7cseE9fyLHnXC5Tp7jW2o7iX1P1DlNyZesHlrDOQ3UlQY+h4m03Hb372E6PAXSzCjcH4DfKqxpehx94RW557ZrZfL7cPOCb8RgaFIFhjmZl92Fh1ocjbB3/9JoXe1nUDmGvVtDj/ZjJ8SASAooi6dPeLg3F/8ZwLE3b7j/06KRVaLXVWJGIeMU01JMZ//ZzwAaZuXwvgQLvhcBowEdjs2Kshd8gXJ9WRiL3RtrM2XyX4fA19CV1BWr/tx0Eh45Ki7vCvBCp5J114AWiBjAwt1YAHhwNMiR7qDjpsmC586Vjh0dpslRO3UNa5b20ugpGY4hiPJS1dG1uA4j9xzMMzgPvGUzUUk/MzMMq14gLd7PokKI78luHRTwLCs/oju88Z0NbX9Uzid0LW2EEQDeuc7/NPha1X6NUTnq6MXy7OPxOCy3LvxzbxnaBQVNadNONYfDOmhpyZLLxr3pLiYcIlY1vlcIGSaTNNgu8C2t3s7A4bHfXSLTpg6XNRuMFsMtLA6ZWAs3ZOhKuf6HLyj4W5Q+tmFokUEiiUHnWTHZWNOQLVs3dpZ8fDvz3RgTZS3BAWv7HGnDPIO0gTZTJ1+99COR7ZB8WPaAtmZFVoisuRB6vmmY3z5BinKbpLR8M9pvBQYaWOkEOgykmyUthfCCcAMBlgDFeuJg4b6Hfoe1SwDY1tcwJgAAmYBFsb0Pv0E3BLv/zvPlsd9dpmUiTQfgWkpoMo/ot6Mvs0+brmwofHn01AA/4ZdhH9RAmbyaC++wHUiKjVhaiuIrh0NQLUTugKkqjB50UdXb6PRg2uw8pgOlK114ywq+x2T0Km4dhl+FyKINXeX+uy/QTY2++98/hhqki47uTSf2JtfzrVjH0LITjAhlMWXwHsmkOSkK76qjjl7eJjkZD11m0GRVGXuK7qaqDgzyc3JapKxio9KCeqcNzaAbjRhJtlVWxmMqbZDKCbc6ahQ8CqJt7lHVwrgcy2naOKnAMwVFVNNRWNTXs6ua5cbo09KM9buntJPN4Si9SI7md8oZMLvGKNyq/x3KjLbjX3NiSk1+TzAGaDz36Ily0Wm/lpdfGiM7dmUpoyQD9/4o+c2dUyHXXnGH3Pqd66SmNUdCPWDZBhUXGnJC0DmSIkvmz+upgxEJO6N2E4kbVHGhJaWN2D360d2VI6NO/Lf0HoB5NNSh1re3jZlzbYN4zhX8nG/DQCHIhQwZPbfEpRcE5sP+xkWiX710igMaG44Q2XwXDG/R32BG7Dhu5KLYCYj9sNxy1+sy9qTPpa4O74rymb6h66xcCy1EZMs/KIJHTb92Nwuk8T3pdzN58uhfAkfyutmtJ1z9CQ+06BZO4KQc9z9AD9bGKyvuQQtPEyzAw9MKHdC6+1iyESD16l9GybWX3ypXnPsLHU1x4pIMgp3bjNQMTXYWivTV1QUqpeh9dt6ggO5jN6+CPgXmqFBrECi8AX6FdPS5lVJBNuK69greOLFz0FKGBDm3R79V0uK4PYo99p+w3KS/fWsuzIOdSklJn0VLwmz8tJUhUYJJMxA46GSRrk+OHj1LmaFJahgPr/lOShvqoZiCwUT0HY2EZuZwfI/1cseusIw5Z7Izt0FHhDueTy5tkNFzINLN2Zq08qfXKQ22A35z1mfQj+DBOAQYehdetLCrhPrjfcE74Vsy9gtlIwNM073x4kkJ304BDjk5e5dTz9QWtM8+b7qWRb9/eyyZ648onWP8pdKmpoz/i0ajq+h3LGJjN0X3vXr3Wi8//NlzKtFE6+bAIhFrTyjB0Ix49YUYtA2HBDhdbAziqJ694ptvxAm6Z5ReuM+Nc1nZXinbpN/vN1rlmd3KY3fj7wbxL4FjNyorSVRyHzSyVY3062TitFKHxFD/oq6n0A7NpmhGV/rQ88+ABfTiFEbQa1MG7YAAjskfDpazT/y9/Pi735ePph6uacgEnDkEh1EEESKDmz2zb9vJ0oDIyuBg1kub+/JD6pT5mA7LI9VC69Z0Agglt9zxkw2yrPLHMdfRlkJM7melLivqVkfEAKXswu0JjM3QMccYYCGuTW0bv0saQelDSDnhtLZeZr3J6S+LQeMno43va4CDczh+QDb0eF8XWEbGOSPxZNIG6EWj6M6QNB69/wz5zc+/oWBgvpN/8GDo82jAhO2GA46rLrhbXn32aLF6AToqUM7ukCZxFOAWaf/t1dFK29A0R06OOxPXDk2TNyW0YUcCDGpAy5nD9mYffI7FpByMUCXGwQMD6TFQsuciVr3AP0o0466fKKXd0TaNmo31zp+R6rmIsepYBQ+aAA85YnVCWza06RXB0D1YjpVjnCGIdeVJnOj+qJ1yoZY1fOTG3y9zHF8CRztfIb3HlWyi6ICt0Cc4gcyJk8YM2DoMrT5xpK5qFx9YRKtAYz0YDo42VOSpVDNKGJOKFVhoxkZvwIL3DSPQOCn+zZ/rlq+dzqyqBZSnFJ5nqXOmtOINfNd5n4OzcJSdTgDzpWVVMmZpSJjOXFOPeQ6YFNNDrjJjE8F3NM86l5m+44vguSS47G5QpgeZMkhd5aVl/GWZ8nifJZzz+0PFFzSq5rtTlcL5h0GDN2A4jz28dv7dYYYB0iHbC1VMn7zfX37/q6u0PTAvw9QT8k1ywbhmwMGByI3XfFsmv3eYzEY7UYn2q7cqbTJyL13znTjHEQ01xtRUzIZtpe+glVLeC9+kBvMuWBHbbgDvput5DkY4KCF9b5umpGGHGhOkjfMu/hQLJTh/4qNvBmoEEBh/WNXf1uw5BxXK3NWmLbdbtgMRgZVmRG3bHociAIWTBk5kfYT44zSGTkylU+lJ6QU++BI4AqtlD29CmWo6EZnirH8NU0I2mI3tnYQFjvDahiaLQBFdhXOABYWU0CH4HQH+wM/vwxol5v5T08maYtUbHzl8mTIZ7/P2zlm+zet66CS6hcVtKSUcwKKOzAEMffutCxzNr1hR3l6W+lw7NgAvblmlfokC05JZGAbKRXKCxXLphNw8V9pLEZn7luxuYNmTqau8tAL9ZXkj4Fz5AHhZYyRDVXG+x3pJQOZiyRzs4GfXrXP2W+c8gC8QoNheOA9UeetVsade5m67luveI8/NNRPx3NQ5ByLv/f0Enfu4/LxfxCRaAotJY45Mo+ehCEYPDh3zjO9AP18MXEWvUoBeJf+nprmhqToYYXoG0vP+Iq4pFaWN0y+cKkWdmyRa45geB1ImgIDb2Q2fY0A2I6b6lBAQ1w2k32LX7f6IwhDYn0cXPKzLTl5+Va8eBOcXArLjiOmBuzqPHct42sjSQuoASu3c+hI42qmg9B5Xcphj0YkabGGxz7etI7eZ0wfK7Fm9JITuFF3hAARBIrrcvd6EVGCiVpkDFqFjsLg6t0g+mT8AK3TB2NhnfAMo3IkFm7PiWd3Uy6vpYLGHODGd139kHI4al68oxX7TubhA3FRzE6TlLh7r2X81k2swdAlCa5f1VounEJl7ijJrQvB1WlZ16rI+NuIjraCfkxNWj3A+Js05CbVochP6aRp6aUsFJoGhx3poddRVRmIyeZioXn9Z5l7gEaqy2tpsMNTCmDrGT2v0mDlIOjq+viaAkH4btKGnnjgFe4YPkLyCXfAwC5Dz1CmT8dp71Av3vvcZ05o2bCRZc+R9Lw2TB++ZdDyHy2S97lC8Q7gFANVUuxemyrvvDU4plTK/QrjTOfcCqA5hrZVO0LrCIkYsWpXqmnz4CaObeud9WebSTGtlOnQOSBwXPJ4/ut8u69KTrkCn7Ye2eAaOP3CPw3H/5soxGHLuJ0nDvDea7pdh39RA72zurNdNWt8FvWtJk2L6+PuvkCdevlfCgwEWS92cMHhWT0TQGdOEtqYmRz7GXMWH//iK/OMfjpTyzkc/ktJs7EEBHXzgoAH8y9LJkDw55rgFMbt0wwDcnNowCz6HqT5Uv1CF1BbKqtVdpLwbtmrfhnz8Yr4hYo7gO4MGr2nbmTFqW7m8VN+jKNPdGzyJdKzv0gzDn04tsBZqkDUA0fYCQbERJqBpBZRRvd4miYxV5PokHakkiITWERY6HnfCAnhP2STbt3fSujQMlWnyMCpXs+EgAu49lRIAhLXbcoSqOPNdTBLSI9PFhljgyBfA5cwjOmLWOTITCUfSCeVhVQnMr1/58ymSmV1PF+V84om1Z6fed9oTCo0NuXL8aHffmM0oPhcYpgqQCrBpNKSnTbJqXpPMmz4CnoO5d0vbRCFYxNWj/Z581ocyaAhUeaimdukbMjnwlQY1MtMTZFlffFfbDr313oYblyAaeldlQK6GwAE8uuDB1eDWWIu9h793TIl0lTh1FYFMw8Ta++OXEsfe16FLwdkpMBJpeMWMtijWc8KauuKtmQUSOgmN+wT8IFls7Vggk94frn6gLjrlHqHpLK1aolBdsEHTwaBg8ltHSEnKaEd2YA3GIaoD7zdgnaqrmHc6gQyUDHn5YqBXusMHqpiw9sPpzA5jYofjqG1bdQcdxan04kongeVA8fyWVYaZB8U3z9J2dAgixZ12KbiZtEF0vVJJ0PNk9wgcXGVdVNKIuY6lOjFr8uGRUgjzTytAOqMZaR1Xb3sCmSKZbp9BSxTU6Z7e63HYE9VpH7BLmPzuEAwCumHDrmZlgt44B+KcdcH2pXueoH3R31dKNRXNi8Gq7a1nYFTznu4aybphXaQKaq2FKGlZa4GQ3YS6Llwj06cNjKlcDUDCzdXzTl7OnGWqfA/oM4CC8X6rQEGXJPhRytD7+xk0+O7psowDWk//AZm7w7veOZs2P/FRz/KfzITBq04SckRDXfGMTweoa27q1mlFM3d+qWyt6qavxlEiR5cmsMNNnTLU2T/a3Aw46uCjBesRoAOnLnzWzH4YuXJEnf5nnf/ZIMSf0q60oSNtqJi6dtsunYp3yvpNxQoYLJYZ/e2W6xGk2x3LqlSL5FiGWICEBh9Uscv9dgJmxZX3tDBKCJC+NH9aa7UXIHGoCi6ajTrcpYMGk4RtYMiQjRBf0Eaql5nbiUe0Ov0u+NxvvXFUW0kwMfYXesUBENVI3E+GBgDtBs5B4M/O6Qn17SPy+us3J30fbW/1WdKz73LQnwtTcbce2ssEzSKMRZ8123Pkw3dGqnRmkmAZ4MoZVQ/91bmudPuzeXqQHgkg7cq2+6fsX0oc+6xez4Vv/qIw1VU/HFj7ByN1sAMRPJoaOiiAUKqgFMJrggV/HLEzHn8MBJJ5Mw+DW1gwZaghkmod0B8ddRW04NCFG517uq/EfHZr8R6YWVFRo1T03YohHpldfDRIRqdWZOliFpiJWlahDOmEZIvk2qR1HR1SKjL12SYObqQ9DxGQ2KirRhy1XNVV9WBirAvmx2+pfqrUeWJAYt+t6m2FsZGv75EcPmQlbvXAOhpoTwJ4r6qx4YOK7kQWzR6gkqCfxr66Nt862dGbD+M0QsLo33+TswkZtnZsV40EiSNa11/C3dbpvOC8WYdrv0n2DVua8uSCSz7RPU8oAeo38RbCfw6BxkZ/knJL3nhlVEw6M9Faok2/o3NGqKjIE/8zgMMU/gAcvwSOfVjpVZLZzI1kxq+Ut47qFF1U29Ssk4Rs/OxMBBACBY+85n3qV73qJcN8li7tIouWleskeZTexpMEVVdtw+gUdunUuZu8kkRPuE0mt2ZdrtrLp7V4j8wQwBC0eI+gla7rEe3koNW71yZVrbRXZtI2i+RSMQjzzHF06ICaYXQJL46LdOYh/GnMNfMx6qoTTp8hZGImMD/mz2DKY561OaIuq6pg4BAQCOpccMmgg4Mg4KBKEOrMpUu6qgRo2lTUM8HCc95v7+ctAtP4f3AKqPeCjkzrjc9r1gm3OxZI2GmpqegnLXoqnI29Jm+8dmysTr10eW7ekf2IWymnvTaEi9xR37Rie+NlZy6I5eT7UNpYU3Xvs7wGcHwJGk5FpPyfnCOlTLafHlJH59HXxXLh0MrzzOjz1HLAfRaLe8BO4g1u6uqNVT/s3+nhs3rlyOadsHlHgydA+H+8v7OhSX88N4GdYxfWLVC91d7aCFVX1WTo4qdBw5aobtzQCTqafAyz3rmjeN8s3oOKJl3pRcsFtVdxpwYpLqqLlVmZAuqBZTQ/8w674+iwAFJRZlbc/tnQMu9OINLd/wzxPT1Cajr1zJkJKg/my/zp4DCd4JWkWL4YY+xY7WyQtb4j5sPjasw2NMEMuZDTgJd5R/POcEgplIh2VnfUuTPOn/HHa/Pjc5M38/cH+uZlSHY0eXrTEfhotEGpud2ANU6RBhQUoWbTtjZqJH/6HVgPcswJn6kpul3djlEHYYDTJzCytXo4c0HTZzpzQYZuJNoyYYesQiX/L5E2yBP3c3BaxH7OJB3yChhwk17p19mxEtzJnjbP/ITbqzCXjj/ZPrpGEz0Xm7k8DZXVq7lHvfL08+uuevqaAQWbhj+1ok7BwZ9Ph9xsObpLq5xdXirbm1vkd/O3w2urg+VkbnQFTS+fauIKjVWQuoL3dEQa6ionQZ/89utjNZugzmzyN8+YExkOF+8N+8rqJBmYVO4RzPLwI1bGmKUyHDzySi8prcGYCy2uMCinZRUnmGunwIURAIyBk7scBSYEgNIOAGzMHxZ5W7KugWec+O4AJ4prQDMvLgzESeo8BOilE8h4AvJy1tGIHDl8pfSsWCdrVnbXOijIgYU0N7ZqBziMNEJJCvJUQkmo5ul32Hophadf2b4J2bMQbYOhQUnPT4OxDWh061ItF3/9ZbWI4/wL18TQSo2ecleuKpFVCw9V02wCCekUFTVpWtIwEgbPTbvxH/nMBJPnkMM3qNddgTv6EBwjpgz43vbGwyV8+ix59+lhqkaiRNGmHbhEcrJtuZgOE1HNap2WyhqQ347SBgPawpN/HIPv5JSH9LOkcHtuTu14J0J88OdcH6T/XT5XOaXtEuHKMfiEOpqM88398RYHB3CgIioBGld+urRocW7zaXDtPNzKiWB8gLAQk2sLZsNfTngtxjzbrFB0s4TsrRKObgq1SF0kK2vXoJrMOto2G4Bpt6KSAcxeAwsb3gg0x5Ywhi+Nr6yd9qMbBo55//yudbJ4V50sws+EQdgBZyB+XQEeoYwMWYdnjy9zOgs7H3X0lDiovy7NhVku/CQlKx6dFIagKx8+cpmqwtghSMPb8ThaNB3elIFHMordW7xnq7lrB4yIGxryY/lkYKRqpJfSIXVi16QYCRpGjOmNO+/7k9wKP1R0nHfH97+tKpcg8KgBU6OaIScMjkzgCAhaP3h3Oi/skJ9amE57AptWwI7mKTFHvAPVVTllLTDNXShLFvWQrOxWuHUH480Ap8Jfsu9FHFCmj/cIkqQaYflT1hltBWoeG8YPlqkvbwlIg+taAOSU9AwzNFH4/bdXZ8spJy2Rh576teR0RGbw0RQPq3DKNSIIOyfIqrWdhFu3vvHGcPl82nBIIwWSX7Qj9n2diOn9Z/m5WyL9WqGXBnrajVFCObkY1sKuwVI/Efl/JzYoicVxT/hOlI4ISmNhDi3tmfiieigs0SMD11JxFbzOnWBwYkJrtP5Rx5X6CNgwc47jIAge/uQHhxgwoJiVQT0BabFjap81U2RN4PN99HoHHjhYSehhIz+ff8nigp23ZeRIF75bK5Zwet/Rym493FxbtqUCcDQUqrHs5urFGXbtiM/mVcus+bCviNZZ4dBWMMmqEO57waV/Q796b8Ubevv26EgdHdHtv/HBXz46trT/jf2Kyh/uDpA42Z8RDNSxpSnetdXunpdrDSm2ZNqmiEodVBlUVZXIdIDHmefMSsmIQ6EonmfoZko04WTnyPB0DmYbBBq8T4Yzdy7mUshXMOehTDmIUSGuMkIM1Ms775Ke3Rtk7rxizYcdGu4mECNLVmBeJi3phZ266QzJ6QJbfZibHnPKa/LHF++Vb152q2ypjgMSYmmIAKTo6DAH+bhNxjxKPEZRGEhrQV5VvRHT2jaWCbgQE6NmoYASVC+uuuqFZ06VZuwdbmdBJ0IpB8JCyoBiGid+XqbPeoQT8tie5cb4wU9L6wDfjv6cOE+V5c6rMF6MwVbskt889gCs7kaAOT8IlU0nPxmMHLbBvQe2bT10BtyOvycXXfGIrFpSKs8+daq8/vKJCj4lxY505h2ItCUUv8P3Of5EMPZGfuSgSnPj8jGC3YhJ8cEt6lzxs2lD9V2C8mLdNDZlO16n4cWgXVBi1myWHGhgLuiZp05Eeljd5dFlCnYHxDcoDjU9i6cI52LIMdM5/SL+8wN6AgFCeRPveUYclU7pPTEBGFDnTyxbeAh4XxdpzewLg7Re2B+wuzRm9Rn92x1H5tZ37FHxklyHRI+pJmcf7/7HwhxY4HA5wIhZc6/LKG24k2DRCikioZYiDkjwngEMuyUUX4dq2dBHYNtKaCjQC3po2vpQrepjm2wMUu0GaYzWL8pqbliUNa9u5JzQVpkzpy5qA1QCgIXp9wJc0BUqQWEEtNLbGjvKtvzjX6l8+qOLK6VH/iH3ZYZgI4V1RsyjTQiHVGU1bRN9j8QD7c3PvOSz1BOtpglihHrSyQtlxidDtHOAg8YJJTkjw6ne0M1ZvJeNxXvJFhwyPfLR5+i0nbuvFZnXVQGjsT4fD7FDAtVecyvkIvk0SW7ubbXZRz9lgA8mfjm7eiAY1y/VWd0dP4WDPmwBy/KTgbCMtRjBNzejuaZ6JZYPYGwhGn1RGSbhTWToORJHO4xNC4h/WFmvwGGu3aOqq6pFjjlqqY6CqTvPL0BBkb/WUxIVijZ7qG8oQe2sow4S3MGtDp5TCizv4pnXMN+XD92gKhoA1NZl2AQKoMpgaBgGa3YMlO0jsfL8225KHLhpC335degAFxw4z+wO5n0eHpwHKYZ7f78kP8PmY9de95Y88NtzZeLLJ+s3IKM1ecSJxc9CkAbr0RaouqMKr10zWb4XmHp0a56ERsyViX/4Ctphtn57MnZ/4L2ysu1y8mmz2qfNT4vvoNJGN8wDwYPDtA9HqhoO7t/RbhEiGU+8t/G6JSK9oWCsdNDRn+neXPvAIUaKwOABB96v1JpwYpDZL81dlrc0p65Lq2WVYZPb3vjevaymcB+7OdR9YuPyPrIqp0yiefrhvc1j0JYiuyVXx1Zng9pjMTBySO+z/6jaAxRc0Bg5f/aRGR2bFDQCSxK2C+GvWSUMeJ8tJHhYmVHUjgc8TML6TGecF7UbbQJGiA8sKERMCOWTseBeaShk1XE0gl0UGqzW1rqFuS21C3PnQKy2a78CV/2RBQs0T6rBmHo3pBU0WY5eJsJQmZwakwAAQABJREFUqaWlTurzCB73nXjlgvO6jbi1IDP3lAxkbkrEI6WOpubm+kGFeQsxVzCiFVZU7KQcuX384aHSuAMqGrgI4S50Rq/tTa8MvXkVnnXVCUmmC+p4CWlwYZgAR/grlpWpTjqliglplGGh1fSCc0UCBZk6GUX/getl1DGLda2KSi90PaJV7c+VRFA9/DZN06Bu2KQRrLzjcRyNkeq7whFuq49xNDVnSS1W2NOtebt6bVDKK0w+5CeDM5ZPmnmyf/gGGvguQSvh+YqYj+Bui7QgmjXzG1Je4gBBMpKx+6hDuhvZibr3SgvmeSfuINiK70g1ZLJe6q4DoaSTk0evxQ6zNQz2hJPmAVlq4TH2Eey4h3Kx1ZGhMrBXcMKY96qxf3lWL1Ta8TD9HYhR+g8AIJdi+9aX5L7xE2Ts2IVy+4++pe2FdWfyIRl/IFhTdUfVWEpvBC5jp7+2UGm9Toq/89poZexB9JnvDqjPTj9vqjpMtFcn6QumQHwvgjGnj8pF/njnGbGBBNsW+1e0tekJJzoX764yNePc2p3/XoDwAoL33EsP8a+ctqxwUVFLfri5uVDBQTLKwJtKEa3nm02LuthNoe5Sm9/ZimDTXztUgL6UzwJa0ZAzSvDSc88712Q15+4IZfESY5ajqPp/3sLWXC6vDUiyx7eSNck9JrjbCS252aTJyLQSKiWmrvKAh4kbCB55LQXigofVauUqeJgEeowqCGAHMkeqAWjAaX+ihIN40UzhB9UUi4oMgWVyJfhc/8l2va7ONLcDj5X4xpXuRHlRPcHjpg8e/ewGybjym4PO6Xd+xZEjSjLzYnqDhTXb13+6aeH8P6+evKZz8Tf+HrIzhpKpk6Fs2tAZ6yO6Oky9PnlnUUCBWS49qcYmaz3MJLCYuGk6pKqYhq/GHfa4dgIg9dTTP9NR8UhsbNS7YourQ++KhD3BkC5C4T+CqmJ2akJ0mdKIH3tE81wwsyHqw6q0bLMz2ewpP5kJVxJLD2gjUwQFFRA8pLTNZ42lys7CNq2oWw4cAoGYMf1shN0xhbqKC93u+3mDeH1gJaOtZXTdjRAQg0IOdr9TFUvQQ8897lfuSFbOTX5PSoADDlui3oyxRTy+MUDDbNTFz2s2gSKAM3CfmAb+4HqcgJ49zAGR7B/guxwHifd70rHkt3LdN24GeGCfyxTgwUGL+teCmsqGm/dkdaD5MuvtZRIe2STvThwmy1eXxKQNv2qVxSLtCy+ervM6KQcP/HbgbNENeFUIVNxf5IPJQ2Dt5mkT0ey3Zm+6GsQobczcO2nDDxBg1JVQPVFqMOBAniKRUBexw/n2Z/NKF2VZpVatdIpGsjuEWiHT2uE8MHjKtgC8EPfKdZpg2K51fARB+QkAwVBCowQByPAVRVYmOBolDkQqO/npfiOfF3mfZalMqzUp6bT+HRjgcBFQJ8Ozd+rchR80kpXeSB0Jz6musi20fDeErBwM46EzYLAh0Bupg2jtgIfzjI/D+UHgEXu+Zyf4cJVIOQLgsU2wMFDBIzs3P+uPi95c9vSivy00ZFslQ4eJfBZp2FmXXVQ4MRqKDNURETgbR1mffDy43XkDtl3Oc+T0ao1N1uZQ155mWL4cPSyN1mCsiYYBZIYdT+WxCxTQrKhXU+aHVm8x7/aAg3HJ0DAnEV0LP0XrATQnt1VRGGbY0MiZ6vSC16WIYUIZUA+Z0Wwm53N2J7Sjrhp06AYZQL9SDBlpgK/rboTl4fuRITMYBuksImyHDr5XAyaLTeB7Mj2BRCfXOXnuYkOCjysDGCYhs9EfvgWf8bvxF/67SMcfwJ377+WYk74n133vdYDj1xzm7kM11m0tfG71ggUXF0bqTn9JVHWaLdsaeqjNKc3czzEpfo4CA5+Z76Xx8I+0CYaHD5+nakHRBYXkjUkC34XvDaHNGibylztOhLSar+V26hn+2lpbHnJS76G04YIDafgBIjpnTsGbnawC8harOZobiYLHKDSR/yg4oHew/ChoZhRP+NUi0Hw4AGID6C2AB2kHhSDQYLwetbkZLmhoMnzN/jh5Xy/28T+W+ICFxYV1fc1kOAsBa27sLBz/JYAJpY59FKAZavNRQhY+dLqBwNd+QMugyqoTwKMmki959QQGJiNYhHM75PNHwODPkLPtxqnsOM0RMmUnTJtWoScpPc+CAdvNq9AGuzojPjctaaX6MVpGdoPMnw9pAVmmzMOlKS0wnW28EfMSP8XvyhhgWPZiQPRb+ovtHWHSJDs244tjSiT6Fpz19RZIWB1kw4YSlKlemalhImSGHF2n6yE3maPD+qaoxExm41UcXDr0PO6v/cl09D8CIUHOH9ASdIEb5pdOOWMW1odQN5JGAFMnEFKn7w9893RDPfbsSBWo44fO1OFTKXit0jCAwtaNH3fQs7Z/F1q6xXj3S+WCiz7WOQZH6mhLrLUpV4Zjd0S6OFcrwGTAwaSoSthHqpqK8w8ff3i4qtsMgGp5PP/4/c8/H3MbnBRP5ffKpW1TDQeZfuP6Innt5WMTpI0sK/+tzzd/9x0M7DBKmdleK/CUwj1F/6eqiYDBSWrORVDlRKki2urjI1SFGw2HDlotNBAzkPWQNlKH51bCKdVVKcJhawsiRRtDoYaOUXvraPhMg+QBLnV2iiR79eiAAAdFJ5aalUyg4Lk58twbEsDD+2A/nfs/PBvEnmdViWEtwWNcM1eV7wC7JYAYECGQeH/Mh76usAXnHJMnbeoXzekrG1dDZ1bkeEs2zxKO6PRGXcVV5JxE5GiWo7Vkgc/YUdnhmQe99HL0nxIXyVRcH9kGJKy6Pzlbmu54FEPgt6FyetvZOyJZxr779nKo4EZhvnCEJY+MP11Hh0Hl9o6ufSQSL8EKUi3wC+fWYa0FPkuagVul6p7nuUgTIKhovbvqu759N+ErJ69zb5Yb15V4L/fZOQcCK1Z2dOgBOKJLcMpeZiRKFi+dIvJbMx63q91eqtZ0JVAjcp1JssD5EL4/VUlJAx9BUxjd0ENC/ZbpSnG2waBg2mjak+IukSg+gzXAkueePUmldm97irTWutKGRk6nJoKKtgf3kksRe0AsIUmPbTnaMuuGRKwdI1q18jnPEbOqStmpE0ildZG8BaSVfO8itTfKTwYmVFcxZ85ztCkB5zn2QVCdJOhwnQjJUVe5Z2QJHpVonEb6yIyBCIHE+8uWohb6usqOFE40eVGNQbPc2Z/101FvrEOyuZufG5kLxaiu4haanHsIGs0auuxIVC3kQ5f+ne+/Lg/84TEpol4dzCXZgjOTVtUZBIlGgASBgmoN6smjLjPmbmsYy6UVgFUZV2K39uMy5X9uuUwteGhRFTTyVPcchvmlIg7LsI4ltTHVhz9qGKu7udaD6gy/ejohLp6zTmZ93lU+m1WhJp26PWtCJJcG1CecX9IJaQgM7en2Wc/JpIVUjDkha7yCuk7x3GS9FeRFZOniXvLJvwZI6CQMDBaFJPIRmotR5lICMYKOrw15SDmnYEG6ch3gQSuwSHPbbuBl7twdMaWaivmheahEUNys5sR0OJgw/+ArBNVMJ5w6y5kU53qmVJIM6pUT7lYH2AXAVPmVF0bHaLNu9lraQNnMwNdXzAN2yUnxAevyM6mmImg0d0J/cuc5ev6FuuR9Hw4IcFSOUQ0kGlB0U1jCnhkrvqANxs9fPMSkjt1UV3GCPE7FnXiK30jrbO8kjlgW6C4EEIrFBBBHCqEk4v1RKtEU2EmQRy/znDz50PiIkdZgsLyK/Vpxjh9rVdVVSMtV5MmCAY0+FVvlxb/dK7fc9TrWUeAz1J4Owmfo3tUEqJQ/WKfpc2rtOL4hQycz4hHqJ1cocUaehjn5jlpmpKnJzJGLzr1Znnr8tJTqClohpRu4TsOou/xp8vNRgekElYtRrTB3fe2VozA7m4Rp8f3xZXOiLc5qb066B1lh+fLcuMmVCnz3eanzOZyjaCeUd9+uqsagaHffeaGq2rIuxbfahY2V3sFvEt7nU3zmtUjBMSqrNJ1qza3WTb9oBUYvAd62ybx37srQwQqt3nRzslTvj3qlRBAeXCUfvn+4ToqHwvQYwIpsGyhBeSfF28bw3CEorYMKbLDIywANDrq8tPeltJHWYNKOengQy5maD9lmgtzzSu2dHrIzK0zV1K5DI1LfKyKtBVGhyor3MD48len3Ndixmx+wcM7mI+a+mTNzE1aJ940XArYGPuCIP9vHZ/yotKzajUC9pghWqe9ZIID4uQF7i3uvklQzZ2+6f+6hXb83J2xnDeUNdpzPZwzUzXpyMlokUhe83SqJ2Ox81d11FXmykTs7KDv/rx74k/QeDCuljac7dv1s4g3LnD3SmXGSQKMcqsPtDNdqBpgThehEu32s6Rd7FcoAmTDjAqifzKsF0LJoGg0hJwsqOI5kU406mbyh3umD3MM9qhOKiUQ5EuUzMi7uWEeGEY3Epo80clNzyFlrAabMtRYa/F8ENwmKgGMdZddHa+XDfw6Xms2vSBHWaXCLUhoJGOlfDRMAoFYtCNF0F2a0fJbq3Znvlq0wtLGw5amuUouXk2XU+RwtXIp/eE9uwZuX1wimG0/P78t7lDouu/gm+cWvXpRh49bontzRlfhWy1CyDx3ckM5gsv3gFqQn8sE3DQqsCxo7VC0vxt4hbVHGKX9mbLDCAUEog6gUEFjlaC+6GSEWV74w4Vht37G1FZ4kZoDTf+Dq9ifF+Q3Bzdj+uO6mMZQpf/vrMQm0qQKet7nmn+iDGGVVpjl68BToID09dnUx3gcaxSMw6e9+HqqsMOeB+UcZZIpNtRXPK8fgS6czsjEJA44HBjhQaKN7GzFr/nNWzq774aGyylFNJUobAWVO71aCZVWSJLsJGqTC9RxJqO3pbQ/bqkRvGwG2vKqR6qrWUJMCB5n8ipWljlnuoNUS2o7v3rb/av4hehnduQuryKul36CVWPjUT1UXZjRHZlq9Iw+dfI5jqbXxDE3HyWyuUo7U1lCTkDqQwTBSFbbd/Bc4AUazUgdmtNNREUgXMPC+7ms5MlSMnu0hbhF8wERyOrdIeY9NsnBxZynuyOqNM0EmJGMig91c5WgmdV/sJFyOz8KwZaajwdwsG4wOeUAcgBGpy6BdHRpbfrOn6pmRG9RaNYJnLDs0M4UwjlyytkR3adRV/FvwviiiFxj0nPVCD8I8krbnXV3SzoHME2FzFfQpvsB3DaMLmI2ruPFQEEhqMgyxesM8uVuPKgUJqqjMdyZgGvD46gU/gaXdPDnl5AUqFfQ+B+bTWBdElx2RuaifdaDWDcdU8xIA2o0bOqlkwW9E+qxXBp53hYsUdWoISyYNAVWrYIr97aOrUHe9sShvbk9tnzSNbmGdIfA7mcC6aGrOlHPPw5QfJ8XTcF8SXYZqHyXy9zdGxNpTi+tdOj/S8ZciN6OPETj+QwLWcXTbBlEXPQw2c90oXeA8YuY0+BZYu6Fqql2HRawwBmIEj4ZuDnAj8hjDa53RjCsK4mNUTnFa6J4ASfwrsQRfYNDCIr9zdw5+8M3c2WMjRU1nodmgK/CXGGLrOdyFgGYFeWKsVFfGJJdiotNm7ChM3nRRlCNxcCU5KXhXk3MQpwsAG+OAsSeVnKpkyZ7RuordiIxARe2m4phZrt3OWMneVi1W7/gq8mgeldtxZhy24Vzx6JUYoYEpbVqORUVLtRjs66wd7fPttAy2ZJs8fhPOABShkajPAShxd4crNmJiPtyERYtkSl5aLoPAXScfNHQ+71NR3a7dIOdkXF6lTN0sRyAtExQ48b2yCuGvCo4Ot+3IxZoN5uUwOcYjg2VQkAkCID7mLwfZwM3JrjqHC3KzpDMvmMWkDqjg0AYIq/QpLJLc93MuY/95P5SFTg1XJXW1OZLNcwRv+XjtVWOpFMWbvhBpAkh2jcioUWt0xT6BAl8iFisChsl7PL7/7lD9dUC9dO26XY4YuVhGHb1c52RKO8C32DqAPfQaQSEKCYjfiE4RTTDlDUPyqsYC1RFHL9A5iOhKSBswW/RUt0mC1gz6+N6c3wiNtGTCT48HMLCMGIC4zN3QZSLeIyDRmovSLEMycKO0qdIGI3XCgr8nTozVLW9FreicGVXj/4pTNFAO0PZfaG/utr2cT5jReRBWgAPKFRS0Q1HtlCrd9uERu6lTFH3OidXUxRkF2LYc0eclWfv09fZ063p5K3KdvfS9cctmcGFgZeBXSpVL/Jm3S8fvfhFnrnxf6Tg3vGKxbY23OjRe6WSdCB5mjgNrUfUxmkhsNTkmyJ17LW6HMes5zOpxuP9Ds6lDw6qjWgra2TY+rEgg2crwmUr9i/zHeZDKEK2rSrqOmwN3Ayp1UF31/nuHyvXfnQTfQuhAGElbGDwTRHj0Br233dYRINM5nTLOODl6142MEEfqlkq0I1RfTeSUCKZFxKM7933/bT6vwAr3n6D+8yw4ySuVhfN7yrwXe8q7bw9X09Rb7vib2Cu1p/pSxy+1rKDl3Q3QyzxMTDJYMlr6dwqDqzN/LYOJwCPLzvuQFOhokJPgIqXYEzzOmBhNV5UjHt/ZEd551xfwHEP9WGA9Tv1woPpx6l28VexNeMT83GpjRG2d7rX3nM9M4H1yAE4003Ejg2GaesFrfJ/VZNIsIyTIZBxDvxlG+Odd+C/58zOj29Dx0nYkOScvSq/8vfzcKXL3L5+Rq66e4gAhx7IpwnxICMkCpRkGSkheMPXGJ9DTBNeCGpMT11T/FRU6wOaNx3MHkPLkLHeleGRRsHo2lg5NI7oQ6Y4SmfTmcAVS886MkxnJ/xPmGNFbKsEoKvXzxNLugxNjTLMPSEl+Q2YZTWu9azJqyqPR1nJOKDqhqdRpnEayMNIGnxI8ONdBMClcGKZpbhfcPpc/0jz96X5VZ1xvwyueTIH8segf45a98Pyo/ru1wtywCeb3xQcXPJ6n137L+vrIOXMm4AvfILmtgwgW6rsK3dFqDW1QFyMuKBhPuQQE7IK0lQv4EnxP5VnwmAuuAQaSDBDMywYCg1Fem0h7qQ80ZNI8olFPzKB1VTnUVS2hOgUOivNLFnWXVStKRRkXZllM6yfzTQhkejXFauXDCXAyCTPyNPHUIy708dF/gTkNBAMtcp6otQtahdUd9P10TWIeydQqorJodVe56brrZFNVgarA+IgSTRHcYjOOATfeDwwsK1Rc3A3QjL4D4+Gm8ZCbDUszBRwfYCpoEEgpCUEnn2wSvIC7KiIoDT1r+888o3+saHMBpBZHxTfpraMUvO21yKdtsvTuoH6NuxFdwe5LxXqgOS1NgLPhvK0NQDK+23NZDjqVvPCrH8uLz49WVZ8fiBjde49tgYHVxHrXE3wH0570ofmH++HCiM6vLV3crc03Il0y6ONPnKdSAcGMalTOgfmDDaHXXg96o0TefmOkbNicn7S8TMt6OPOs2WpoYej6afKaQMV2S5c80s2WJ28YEysny0dpY2vVeAAHw74HDYdu8v9t141RA5I8vH3sxhl1uaU9jlzasTslDTJ7gsbaK5osShVBwUga3mcrv9Vg5a0OS/amkJ27PiTZWzHQ22jZUG2VQRIpA4IewfhnPNPvOvDgI71p2zs/sMDB0rngQf3bDMuahDuTuKLcWCxQVdQe8w96yTaA4AcDfyIvOHjP/fG+wGtHXeV0ejMCo+vr3hduE1ke2M1jpYuuq5ac7qKryBcuPhHA4TxiR6K64u1Jg+T7t2RLwUBMrE4ICzziaAQu3AoNgFa9DNdk6skCQQUMnz6fCExkgGaEF4k0yvp1HXRdSCGZFIobGEzrg5LQ2Q0wePTJMpM+LXrIcOlaXSWOQKJgIAQPPKPDQUcVkhgxtkgvGbNkdPfdWzxrFsjIVOq7DutUdHI9kW57VwqilBQPAXBgzUxDc1voMe+6fm2ZLobsnb1VDQ+89oGaj1s+lTyhHvvBzRPlow8GyJbNh7QZJPjLxTwYCCCcXKcnX1Nn/rh6H99p1cpDZP2GIv0OJj3bZH19jgwbvkw9M0eWQSqgNOiqS9rQwrszNOZnyoQJR8eYu3M3/t/Q1Unx45Zgrw7nWRAY6XdC247MhSR6pK0myJzXM+DIlJQ2OBBzpY1gzhvP/os9awkBZhMDVo7XTT1y69rl5XUtQ1d07E5T25JZYatwYZ4u7ttwUZPFeYwgsEikhBH5gAh/sYaWvS1k9ZiQrZKIiUvJw5yne3T1O+lG30/xyKjx01l/MHiKTTMHD97IH8/VNxTjkPm7P53wcXcLNOnMs4SjKbKbhwJV0LmJd1Ac4+oqjpa8Rfp0Wl+dKNR7ZN7JfhxOQo+ufoO8BHDOOZN168rk53ddLKHzLcn8cQTeSQEWx0Yl478jkvF1fA6O5pPR5n0EjvK6dN2J+Ymt0gRHewyGqdRgg6IN60tEvY+xLEGBzA+0bAgn3A2wS1mt0iHjCApktGS4OtpmGZg+2Q+POpcB2QJCzB1JKhp85o6a69yZWzIjquO4pS+ZvzrQS5Y/7zN4npMJa51ihEy/W2S6Qe/KezRgWLigJ3RuSIP6Y9qgH7OgpRRd3T/y+JPKMA3dINqMz/v8XgMGrVOGb9Z3+Okzrr4jDAQWQE1Vs6tteQnM9MjMYO0AaCQrJ8CH0kaon2CuboBO5rM+W+EuOiiQLifF1bmn+YyeuozVKxLbGJhY9WizA0Uee+QUHSyQJmmz/1QdQGkj6N14L3GpQGIs425kfeeGXZOO2rT2ryesX0lVFaWP8n9kWv3vyouWfpiGrTbIesGFaSp+kxOl+ooBDi4/R5WeMu5RC35laAboTpzr09T/Dg7gcMsYBBAxEGAcD8NnXO/P+yzhPPX7H6xP0ZuezvIvBszMadRRZc32HLFK0GHIkA0z8h21A2PCk6vIu3evUoZuGAmZO6WD114+Tr56xg9kyqbDpPo8qJpOL5A5Bb1ka16B0lfapoYMfc+1Df06OzYtotjRTWA+ZDIr6f8KK3JYlmTlZBqOmoPoGHo2ZpRJkwxRHR1yjJaKJp8hGJUUz0nDBJ3foSluGjTIYOF00iTV95r8LiT8zrjl5qMPDa1YTJwY8DD3eM14mKOihZKpM5bN+zPR6VJfsEeLTePvIKZp7uFxdL6tKquXXvs1PBWvVuBhfZm6Y/3xZ2U4Zm7M+5pvTtGsktHXNsQ2hjms9/nObjBlJWPmHAUdPKpUaerDlItHBhz5jbmWxOpjySsvOZPizkPn2xiaLKNpn7qn+EY3PWgHgZKSXwyz8OGw0oLrkqkfDYhJvnyWKG0Ea+MYb3cC+Q43jjOes3cn7Z7EXd+p0X58zOotb4/a1koA4fxHn6eyrYrH4ccVG0ikCpRMCpeEpd9DuTbTMC3iV4HBXL/8a3LUNX+w3t9d0GB+qXNNVaL9+cwDEDEQ2J/5HZS06XwNnQXWVexU7KQF8CpAVQR3y7NK8dBRVbfpUOZ1OIHLBVnDh29Qhqf0XCZFehzxUaz/1tU3yNjRP5NzTrpLzjvrVnl74kgkBMMyzNAwBBIw93CqwIXjYYdBT+4GltWEeZxMNdpcky7gSDNeBlpWmWAYiZcemR0ZLiWOhLL5aJpyxVRShqj3CLNZpWHueWngXsIzXuO9olh8QHXVxDeGoh4APHw3A95BdLw03XOli7klNbc1aQKOHCTQpT59ZXF/kVg+ATT1m4AxR+f2l0H9NsqrE38rv7j3RQWQRliFUXoxv53VRQrAt972ulqIRRf2j39TL22WCQMDSp6cyJ41q6uCBNsNQyiMeQ/QPvSwNUIHj2oswAcGLHjO4F5TKgh1tXWnQRoZFMJTraHlRHT+s4456Bh9wmKVhqKQUjSQTsCPg5fQNtiSDROZ8Pzx0tII/6agQdqQQeZ0yJGXHQL7eG4DPMpoRvo35utupE4+e/CffqrSCPN61TQ+fsLq+vn965o570H1VdY2LOrkQCog8D6ljH6/y9W4TIOdEH73zrhlA7/xB+sxJlFtzW5IGiab+FDK3PnyeJDUANVVIzKNdRXY+FB2CDLPjz4YLMccu8RhKGAYqrrxlNowPaqSqK7iPhlvvHGkJ4Zzys6Vkw8FN4LdmiW7uAYEYc68bhiqOQzC0NIH/n8ELjBO9c+EU5YPwrF7FMcyCHfanSB36RjLKkMHSWPBueeahJ6OkSsW2dGtibd8ql4zKVAus2DQ0DM01E0HmSSDOTpXzn/PvUZIHKp+I3BgjUhWToMsXlquaxCGla+WyCK8nzdtOudcE+GuGjdly8AWLYaR8piX68wdzZzeV8b0ni8tMzCx2QcqPE/Z2mS1Zam0bj1CsgfsUkupSy7/WNf+cE95GkPUYqtbupunS3xOqNvr+8CEFVvT8lOjLmOBeeC6dW1IskZHdXU3VZsdimF4gzowgUz6K0ev0EsCg9IIKh9oRbAGI+uMqEyacJSCGGmxPpOFs8+brnNoCpjesnkTgN22zkW9DIuq0chbE4crIJkoXAs1dcO1kFnUkgqVt3+CWiQBZjk3q5svIRuUqgy2w6kBgWvN4uOstApHz7iz+tQ0H7Y036L0AeupkFcd5SfS8fMMdXjYmiez0TsvvuZRa4U8gjUcVPOPQe57ABrM40vg8Nf0wXON7rwtXCWr1LqqOVyDYS76Jkai/57Wxykl9N9qBYUrv+UNR6nKVDdyG8957gjPSeb9H+u8YIwcRZL+yuVlGkUZPtQkOuL1JnLPlT6EhD4Y5TKdocUjr2mFQ8ugLOzQKFXBdGJaIOAXLXyYLlVYuaoElYDRJN6PfkYTWjCv0VVtLtCDRGEWDPrpqQNEYhyyIs8MDG4xGhsypQHFz3GmcLSOWuCq8p/vHCnDfrRGrHkc2e5+4KpxE2oaW+WiXofI3NpW2VBXDeh1uiUHCVTrjH18voTeQT5d8M5gosnAkvdDmZ9LZAnUSvhlYYOkYb2W6l4uZiCgeULCo3SiO+/ZDuNvA0iUEDCSp6ejN/7f8KTf5fAha2JzMMkAlBJgCHtpcFKcq7mTfWO2v/qGLFWtHnfCAqHFmIYgMOIDvu8GSBtXizx7x6myCz6tDCAVYiosKxId7xDYx9KGQzT+350fMAACprzi78Wf98HW1n3tVqtXPGL6Z20tseJpue8Gr2hp5Z0k90oeBky4mhySiSYmaChgAMd1WiBOcrfPDk5V1W6/xv/WBI66SlzfVWTIOfDqumBBNx1hcZMaGxKFHzRYG+ZedBUslvpslcGD16tqgZ0zWTD0aRG1dSsmJwBM7JxqwQRG6z+STnSLSPee2HOk1NU3ucRZzg2bc9QyiHb7yeiouo15gI5aVmGkbQDIJRU7kOEoqBlXIXhCIcf8CCaqr1+OB2CwVTD39DMpOBFRB4i6Khz5mrT+ozJSz4DYW2+kOfn9gU65WEcAGX/6ZNdOImfVOMtiwqiSDjKmJEfqcIvSB+uA6pzJUwbotw4NA3DMd1gzaZtAsDA/3uO51fw5pKBNCgytC46Q1k+HSutUHM1vzhH6jPFMWu+RdRedAeu6Y+3YvAElIPNdWBc8J5M+dDCAA24+WCYvDXNOWpE1IQkPsWXyu0N0NbeXlnkPc6QUc8aZi7ATIAYiULWSjj/oPQLoMuSLeqHr9Jf/emSCtNFUV3TP1NXfdqWNPcJ2f7bJr82o3RjuYA7k38OGLZkxZMjbMAF83cqwVwPiMFJI7acqeQbBTwgKJhA0YDGlcxlUTxkQ4UJAqqhgftvlyevtPnsLGCa/L4HD1MRBeaQzxBHqu4r6WhaRnZYjq48+OFwsCgZsO+xcQT/cjm52mA0tX9gp2wukX7W1g6xb00k9jKptfBBt3MNoSi1auPK4Y3F9AjCRTnV1lqzEQjarGHFpY8/gp4VbSge6alpWde3cmEBH07j/YqC5FvMcCGRuCmaQNDj5Cl4pkb/AtLjclq31BbJocRcFWo3s/stGFdABIsuh+ZLhBf6c8vo3jyLDJOMz6qpQN+btliOQTiJ9VacB+DZXFQrLYkLn7Cw5v2uZZMLs2KiszLemq/nQaSgPpL/oBuRFgcQFK3NsA1T1VRKqB4C4IEIg8f70GcrrTae0yJAXOqUKHW/JH/9whjTF8c0UV79RYX6DlJRia9rtzjvyYQI93uAcxC60XkyKv/TiqDZAzijeQDBVS8DNuOvma0DIHBmfUoy9ESa4qJfnnj0JptpF2jf4fVhvnTKanvXS/ULOCSBeEME5LUNnDB06CQ4yJ1gZ0ZmoIWzY5BpXxzab4wthB8BkwbcXBzdsYlSzOpwgwQnwwXfk6VwGJ8GN1RU95dLhIaJDdSa9ma5yiuNqhOd7Gr4Ejj2tuS8kHUVs7Afr+q4yWbJzffoJRrwY7VqFGImCKTtMsO0xipW8sl50Fbl/9G3o+Y9kFNxKlpZbUZiAJ6Ot6cDMqAbpU7GjDYMJwWfHIpqUQnhROspgE+kpkIAEVW7GsspfHpgGwJcRVBJgCDtrwvIy1Dfhk5EGTJRAEf0nVg+8FpbWvzrrUcLXOJ5RCVxMY0bKpEvwycnFOhACDRhnGyAzwMZn6B1UVQUxTt6jukrKHYBJSsfQAzkCDCfUOeG9ozovBmr5AJBSAMcRnTrKscWdhaorU26O6l+BZ95P3u8v4SvwraeCButc6bnHFIClzLcGekLfLwgsVb2J7xD5AMqycZAQ3hosk/5xqBTD/Tnr3x84WFBX/KxLvifqxEuX8aOLMR91GJYnoz3R4omgS1r8pt4f35f3e3bfqZaAUdfegkCk7wDasXPcUukLXYAT96+9cqTkFTkSL2lmNBff8976G5eAReIL7l/3InzHwOAFEEgiBkAGNWc9Ec2OvArw3yaRcAcU15kHsSKAwvYDXaibVeUEBQYzAc5zSBebKGEY8OCCQaq0aMoLRtKfcfZF+BI49kUt7j8aaBmJ6ipm1QHeZGnlsnUTzGbL0DnJkNjBgn6wvoxCdcO9Igb236g6ZHbS9sK8uRVqhqnxgui69yJ1aEIYQR9GXbcvEOB0TgLMkjruoPIRlHg/ssOhQ8sqw6gNY+mYkyH8kbGQif3hsTHqViJzPExMT8T8Hqx1uGgx4xLM0eAezTIfeWQsHB06K9EMHabnu3PRIoEjFSjyGcdljR5vsIYOX5PSAtVVdB1iFacGb31HMFYFcYwVub5lO9ajGGbJd+uUhaE+wtW9uwqBhIH5mUAX6U3l2Gb2LJirAiQVhCgd8NsbcNqbIzJinZB26Ex8uU6Zcv8vzzHZ69H7/gkPmC+DN39c2tUoG3yZEeSf/OPY2HfVuAH/WpqzsbakytkrHVhHegQiE2LnABHSzTjLVtfpa6BazQxb2j54PCDShimk/2ikEFeNxXmQWUccMfXcnYf9UoqaHrLzozOYBPuzd0rHpbrr5FDoQp3u042ZLWnAO9WbKy6VHjg+SPDo8WK2SiJGpYWVGmcz3r4IXwLHvqjF/UojUV1lmB87y9zPeznusN38LTBG/y8M81Fax3A0T2d4fqZsmIE5khSZ4oqV0C9Bkgjnw/YfdBn8tPUmlwVgE6PeFezpTiAtBtKZN6e7AotF76ZkcgiGjl4YxkA6WMRlLKv4jEyAgVu93lTRGw5nGQn3s5qwUvpSefShM3X9SesPM4Q/rkN57qkx8vUrb1CANMxE07i0lID5R3LMP+jHZwAOs+tgxOVahqZRV3GDpzDGcebdAmmBvoIHaFJJwfUtte6WsXynfjkF0j0vV1pbWu2Tu3aW08sOkR1wrOjNa87ccvnZbV+T8MWokzGoy4nouqhy6M+TSoTJJEX/fa0OLMJU0CAAjxO5755LhHkaCUHjeP7xG1BqovREaVFVkQ724QMhIpn+ZEgbJ8MtzcKu8sbEoQrkbL9BgfXLtmlMsqP0uMzgASOCpEpFsynFYK1Qaw58dI2KDRAYPau15IkDLm2wIP7gA5DKMRKZcdiwz2YOP+w3ocKmO6Ww+VXLghoLe41zYjy+3WwiIeMVl76quI6DJrkECdTq9VjIdx7pjnsELoABIkzZ7ensKN2NMM6+3BHwS+BI/C67f8WRxH4NweoqZjl1ylBnIRosfgxz9xfFJsMkE4SVzFFHL/Y/bnPNDkymsGRRmboMoboqAuueVIET2xXYMpUjfC9jMMyF6gTS8YcEAOFDCOvdeoIYgmHUPK8FQ/lq9y72uV26ydamuhig3HPP6XLiCbfoJlDcCIrnP731Ai0DGR6DAR+9wL8YXQNYuGfK4T1qfDB53XUQF2HXtMy8n2F0/5w0wlFX8Rs0tQVuQ5P0aAHE9Te6sE8zcP4VZoQWNUVaHVUF9ii5ZUBv6dbRkbAMeBRhweaE54/SXRKzrofkBKmgdSIkj39j8RvyjYUgEEx2z01kr4EpMNR8Ifh5yrhb5LlHT5THnzhamKd53xh9nPBeKOTMha1YhjksqjQnoY1w7EAQWQ4VIiQX7sIXPtuShx84V4GSaYKC9xsd0hkIBos4SmcJAAd1rILketCHijL8NUuef2ascABFuiwT6UTtpieC8jho7hkA4dGVQjiRPnP4kD8MzLK+LiWNf7Cy7NXYK6YM3i6h5EWwsCGMGzi/QRAonZpJayk1ycXnPYXrMtRiagqGO6C96mtyEcEDfqksxnVD2b7aETA1RzDZ/V8+uh/XfOQ2VcEG4A3e+N77e34O+nF1lelkHM1/+inmD6AmCneB+gLMXUEiST50SzHsyGUxZpCsE0ejYCDoiFSlqMsQqMLaC7Th79ptu5TAEobBdGQeYxPtXRwqZKTJgu0kT3jMETklDobfDB1of60bVrYDPBiotopg1MmJav54znuG2da1OkBmrpmG78e1Ga7FayDgxuoRC/VU1YZ0BnCysUGQ+QYESvr84qhbvwEnRQKCnQ3wdnX2AktKfjd+P9LMz8iWf1VFH93eXPs6jKngQT1qdy/Ml3sGDVAJyzBulpuMnAz9xzdcoVJB5p2Yv1nvMH2Z5eQRq19On+oUqq9A7j2NhzJRKohMhtXTWEgav7VlEqyT7rzrgoRRvI9C7JISAhfdceKeqkICGedHSI++zzLusuXVZ4+Wv71xqJad7xAUzDu2eQaOqGBMYES5KdWQfvi8qM5tPPxoW2lj9qYbpmNeAx/iAM1ttHmJFDfIO/hzeQbVWDOGDfnzOZH+F1vl9d+18lqmQ04okEioTCCFlO3IySQQGIrqhmRH6FSu/jbrMtRqCvR4/Oc3ll1FtyImPo/7akfA4Jbuzen/yrmX4fPcBPNxzZH3+WGwgIYLftr8pi0rvBK/SiK/l6aht0dHo656cnYkkjGHHS07p15WrC7RScdQnzSIgrnTaql3j51CXbI/GGZo7lOVQpWKrlA3NwOOVIVRVcFJ0m6Y2PTTJnPhAjT6rKJ1jTJRPx0wBY7GKRlVbyv0P5XDsothoup0GILH7QMPVXAigBBY7Mxd+uM5wcJIJeN69pIBJbl6jyDGH99r44ZiQXfUwPIQKGI/MnnMCbGsnL+gqo1MnhIH6V/crVQqsBy5EYslSY8jXi7SCwEYdd0D3jNGi3RBz6rBCHom9qkYDfNWrKYnyPH7GUZq2c2LP9q09FUWSMHDVVn9sF9/2QlBxHwbAx6UPOgqZk1RqWQ9A3csV2JHRAAIGXbkH2DOc/AOFC4JVrRO8v54H88Zj/EZ6Kss48eOpHHjjf+lEiffzZRPIwX8I5Bx4p4SCiWVjBsdn2csT+ZjUZn84WC5/WfnJQUh8014NMEAdWiVI72Z78M6pGEApSL6V7vv3vNl53ZH2mBaLe/BLm2Yl/QfDW9x+UrlGKixYIk1Y/Shl1s9as60iptexpikzmwRy+QEhD9dNvfQGGgAKBSEnIcKRgQiaPou9oIHONsgf/Z7ch00JtkTOv8ZabyAYErMj8ZgjuY+jgQHbhVrPPWa/cejCz7Pf7OzEzHUwo0wMXrMylJbF6//GoIHG4HGZN4BeThU2vtPdVVvcIRVjZmRb/2pKbzjQaYgE6TfpEHXbUxJQJk7Jj45z9G5bJfqrskMveGIwg7y+a6dsZE1n9FlyJlYZSxZqJ4AScHc4wR5GPuiVPStkk/c0bSX9rvvDZarrp3iWAOBcdkDXVymCoUtEAyO6gcLADjvuQpvUmmItMqAAsyuh8HksPkWww0DK2C62lle37BZPtm2U2pCTbE0FZkFwjURo0uLhSP3F1auk5s3b9ORvZEaaOk1dhgW1S3Fe2HbVBPoGZiTrpGFlmT9PCLTMX9hmDwLyrLQZLbT1iyZDpo5YXwSBF2k9+R8kecBFEhv9XPKqfTQKiIwleQIPHQSRug3wU8TwNTUPwcCO3ZOWH79tPqG47v0f6E8t+PlUSi5Od+B99SK+vnihVKcFQd7MuxPZ5XJWWfdLFd/499y9bXvSuklMIv9BFU0HWWAJVN0IeorSbCKwGghIRDIQifAbxbWQdzzX5fHJAOTzMvQzT3/kQB4651nqreBK678SLpfsU3oUfhvDxwnDz40RqMbOubop2GuKcERqLnta2Z5i6rPwoc63ycCPb2RYigVETxZDybkRsvfmrXp6r2SNtjfDb19td7B0EvrCP5QyRk3L4BYFjqgXDNiwYLyeZ0brjhlTqer0LqmQJq4EyquGpU0CBr+QFp4n2vGWiuwfuNivNjHiFKGFjuGUff2/WIVRWL/K4IHHBIYN5l2EsbtBQiM/rpEW62CkGUVvClztUrMZ2m1nA2moBSK6Rz9dUaQIXgQcNpsM7vn4IHeQ3XVKtm+4+m/d+x84YPk42Q+9Jt0/XVvS4iTz7AECqFlGIbOsvGcI+AoLFzC0B17g+nIHD2fXV4qm+Bfe0V1U4whzp/fFcNRMBfyLPBm0vHSjtHidAL6cEVviB5uMLTZud/7sJdMfucwGXvtfGm+BUyUun5YQmnAlrNk1BnfiEDlk6Oqn5g1FFQ5ZJjHAwTqGhtmZYczj2QaMlVMJlsEkBswJ0D1Du9ztB7KcJs07kdbW3Vu5E8bV1krquv1vSzM37DOyGwzhsKn0UsO82d6E6zzUL4Rljx2CTytukyekkyvgiI5rKjAhgWUNX7lCo3O93t3Sh+Z/e9eMuy61dJ0E95vvQMUChyIRX9KWXdgkniuM0lsGB7rKDfSadrapi07s3Pzs/65cc4Tl/Y69vzMUCgPb2Qb8CiBxdVtCxZoflRtEQALsYshJYIHHxwjT//5SDn7zCVy4cXT5TDsLa4msjVgL9UAEkwZ6ASzpkYdHYITfFaaBXPS+i93nCgvvTJIR++mXG5Ulao652ICvDkOzOaZ98h92MnIX3h5qO7JbmNXoxr4x/LT86YJOmd9cEL+qSdOketveRu9DCpYVyoKj4Qq7ccoM8x6f/Tj89tIMXC+cVcQzXTvGdBgv2UaaBLa7uWz5/033WI48QyA4MqUq3KwtRGXv/m6bf9W+RjchijAWIY7tc2C4OABj+NgR/ExmMgUjbmX76IjmrZZ/gfccQGC4GBKW8nRfRJwYCVThUTGTskBIFBGcIANW2nQ8n61ajB7kmOjKOZhtpflObeY1aMrcfA8SOqI7SXCCAzJyuc8TfG/EkPIp7ModQzv+tSbDaGNZzMyO+ifn39CxnSfL5FnEGU4eKh3/EE+ugE/jHxpecRJ5LmLS5TxMD0DgePDE46TJ1etk0dXLldmTabEOYv3P/q5ZP0bo7/lULUAnPzAoaAEa5esi6Ly3KtjdHLazzAMrQl/eUh6d9oqrQ8DyJYAfsFQdfSLid6McaK6e+9IkuXiuobnjh0mczavqexZUHxcx+z8Uw1QaOHxj4Bhzslwec57PM/IzLBU6pg7JzZqZ51dceV0uW/8BIg4WFMwDQnIGwGQoZEo0xGW3H/n+cqUzbtUg3leX9FXfjZkIMnLTTPny1/Wr1aau7Cl7ZCB2+XZF8ZLaVOttI7H5kFQHakDPgBkxnfgxrxvZkLd8936FOfJ7b1Kv3vZpN88lZmdX17btHHrB+fdf9PQTt0r+Y7ed3gP0tVti5bIauwJ75U+WBbWL6VPgmIPLKCkSSsdT5Z32SGdDqnBupU446cqkKbWc8Gg5y4o03QEagP0pMfA9+V80rSd1bK5wQFd54nT5njO/Gg6bPI2YOanZdKle2R93nvXJGdnwp1IxfbczdK1LD/83pWyFh4JmJcJKm1suPocsFl0gN2f2zDM2YAG6fbv2b2job90zbodrjsR59ZeMl1Dd7eOyJO8jjzOHNPmJW55+Z5Mn3a6FAWMdbgUcQ7cI74wAivKFKK9F2flTCxbeEgMHOBszI5ES9HM8bPzzKpNO0OXgIEs94tTr0c4x46CvAN9Io84gYKHRwc4eGrAwwAH7/nVVbxnVFb7DjjIHHuDta1qHFn25OV1mZvA9YAH6GSjhlfJy28/IK334Q254Gqg8k4+VsCIwEFe5g8isuSQrnLB+TclMAnDwN499nghc7r2s9kxiYPJX33tYRnQtEFaP4M6CvMZ/hADjrMBHG8lAgdpM1Clw3KSqd1RCa+s58xyHNg14LNiTQpVEzT/fOKZYQkMgelfG/UVXRj30rLZ1366aeH8X37l4nezwxl5hrH6y2Ou/QBy0cyZ1jyotYx6ydTbNd+com4zCtyJ/aVLuuqeDu++OyA2YmY5OPL+4Piv1DNv5rGuvkFO+/hTk52+H8HjF796ERsbrXbmFSCtcIHgxs2F8r0bvqnqJY7OOSInY+ZcTWFo9Uk3ffDoZ1i2lkmpo6mhrnntFX943gCkFzyampvrf7V4Zd7Ta1ar2swLIBYaIekSROi2xA6Yx4oVFidk+mS+Jp15Zr7ZPYMH662bPYBraJ9/xgqhE8LyrlDXYTEl58K4H/vrb/dJ+H6GZntHloGB5TfnNdgmmPU59qTFwv1TuG0t6ROo/MCU3drhK3s8Ke4yZC9omPJ6wYP3EgDE5U37ggmb/Pbr0ZT3/7N3HvBxFNcfn1OzZdlykXvvxr3jAjbFpiQU00sCCaaT0Hv+gWACoSQBDCQYU00vASe0EHrHYGxcwA033HuTbcmq93/fuX2rvdWdpJNOLtK9z2dv2+zs7Oze+82rw00qPXgtaeG+Aw7vg0h7vOBA88oECLkW6cFmokRyCCZ1lEnsO4jQluVGY2oIv0ZkiorapBbnCeffEwINO8Go0xPhwMHBaOChwEGZSoFHlV7aYOtXl5Ve2Lx549/+1yTt6ccfDSPhPXf/x9oRCm8UA6mofrxkPWZEzMcbhxF9wyY77J+UMjCw+/v2M2d3amtVQMd+941V66SLzYJ6H3roZXPy0G9M0YsCSBIBjGeLSh2AhkGiEY+elOuKzd8eO8mO0ql/655iO0Lfkl/ojsyV8QB0ffuuM6Q9J9kfM9dhZNbRvbZLR/ionF7/eebpF396/4ePHX7t2BPbD3wGBo4tQAGCa5RgtknyAvU8UsecLdvN2d/NtNKVFzxgsNzXy7CoRxm8MlIADDVVUbBodXIguS11/nPRcuO1PwBG0JjRK8ywYcvtNgzvky9bGxih1kmfj2kqADWox/ctn7/wWIlCsZwT8OCiYW2ubvzOmH4CkKntFCB5TvtcoorjWZ76eY35YNN6+/7Sk1NcQOR6fRa2oxFM2ks8Jzacoc2zzB3deliwHvv1l6K6DEkbvLtkmcf9Hw+/ao44Zl7ILrUpVEMgS567Y7H1oPq/W04uxdipW/vcu007cwuSTP7OBhbIqE0Bj3fCPZFmoEhAx/Wpe5ocO2fjFe8Jx0iSpfTIxl4d5Uf4iPIdL3D4AYOrc4uKxLlY0tUkJ+84YAEEnlsl/kMPhCicw+jR6l5X5AGigUNecmdTkJxlCsNVTMromXaRQBrhbiJJCAEYEKABOflhwiUOToSDh9Yn/8KoUgdXKXjIN2ylFFVXcc4rdbBfJhhSoFzyqKtaPfFYbvLGi/QSmNaDf/+3OeU335riL8Xe8bN8I6JaSkaz0idgJv3tWHPX3w4PGxHCwGAUUwcPtiKKlxk2qZtkmR1McMrLjxgACSLwymvrCM4LHU/5a7E5/fhr3VE1wPH8kCGGgLZzvp5tPtq81qpY+LPDRJVBUCeqEpgSzEwZGGqSBwf0tMy/QBTYN09/fexry7/dtF3sARcedHzX2wYdf3v91PSx6m1FPUow210FuR++t3bpq8e37XFZekrqIGwfMNxL5vxo1T0wW8AR0pG6jmRpI8foH0b1D/fra58DO8vGPdlfdmrQ7Eruwb3/PH+xVe9pfVzHu9Dn8zM86uzdNNNM6TtQYg92PdT5tduvb2S2ZAh8FeSZ7FQFj38edlGfMzuMEIAsAQ/aquo3tlfv3G0dBN7bttEs2b7LtpfjEO2BlGHbHeeHPoYACoiyfbIamqvadzKHNWti1Xte6VPf2bNPP2uOGDNPjNaiatQAPVuD+C40lyj+UyVvlHhYEUvjHZw4RcJWWidS6MmnzjJk2UWlRqT+J5/0NO+8290FW72QvoW4tm5Bm8cbJ+35e1WC/cpTUel9FTR0vyCpuEFmIHV1KQCJE1PW++zP630GHEgMzKLllRwkarK3qJIkj0Na52B+oIMNgMGPWXyY3U5EjaQBMclifnTUSgCGlrHAwU4k8KggcNjLq0NlVbWPS97XYOEIJxQNaNlscH7a5un6Z6K9MKyzT58r+vsvTaNGu228AmoEksthoPbqhXXk9/4hw633EWoQYaHitBvIOuzL6fXQa8NYYfKWYYwQw/ZlwhDFLsGEPBDGX/brPFJkPpnf2/xm/G/cUTXntW6MvHctXBrAfqIMlvNeYuQJI4NR39qjhzm7fWtr9GaUnVtYYEfmqHK4BnUOa5jrgIadRzerV98aHvYUFmxasXvb4jeWz5r53IpPVhbl7tjttRkAjDBbbDn/3bTJAgj1RCLaiX3lnr7dbP8g9azYteWhh378+OX7hp/+tV4DIGFDueunpW58ifcZeS6IZ+M4QYwE+BEp/uyyz4/87WeTprUwmZI+P9tyc1Gs160IeFCnBU3xNqNta3PzzBebt5nFu3abn3bmWkeHDTuLrCFdgYJrIMCkdWYd01KSiI0QwMD5oG/D+jIIQvYptMDx5x8WWUDUAQTfFTahopfFJrQtZO8K1Rb6JXI+pbV4aonlzTuA0O9TvzfW+l0heU564jHTVBIlBsUmZCVZUUVhvF+3IjNMvcddqCu9qPnja9Y9dE1oDnHUtxNYYpM0Qk12vSad3TC7hh6LBBp6jnVqcdLO9CUZC6yXEgNiqGr/cVvF/v4TetC91EprnBFL/zOXBi+RG0+a1W376s97bmvM5CTRmhBMEkBwGXhJBKVEsljjNNdVF3hova7UYW9WeUM5QFn1j2qCRANNTd9gTsn924huzz3y87Jf6ahSR3E0E7UITKuAYDdnX//EjHqb1skQiaC/VUnALIqCxblrc7Y90alRiytVBQPToA7+6C88/5TV3Re+LG+OOAGopRh+z5K01gWZ5tRx11mjJfdF2kCSeXPoUNfjCabNKPbun3+y6g8d7VINDBVD8clZbaybLW60tIlzMMe5W1ZP6P/mDffWNykNLGvz2AO8ah7dTk5vmJFeLJzZoSVn3vtxalJyO6+6B6D8cvP2egsFSH7alWO25IX07FzSvUG6dbvt30j8VoVUXYS67PxPH/ps/TlP/C8jtc4gjnNeAQnG/c3WHWZe3jYb7c45ghfriQ1nSEajUJ2SyNCIx9f2vN0fdHrxwjMoI45PYpVwgjwlqSXgwTMAkI3qNGs4/eQ//VnddHkGrlHbh26jmrMuyxwQov/W78kLbMkvea7QGbmTeGm1rFvHAoQ9hgeaR+3H86iUqMDx6stPmhEdfzL575XjJCHBeVM/Gm6uuv5kdxChoMG99BvFfvHy6w+azJ17TP77IXDV9hn5ZNMkIHFPkxKHAlXzmeK6cxesvba/gIVzUeVAQ+9FHJZu+1VUftCgHNKGlmcdLA7a6xsmp803i+qurS0AEpJnvT2xF7YFl48jemLg4kZtFwntnyYAAEAASURBVLXKzd+YaQeQpe5sQYOjSByAh6YXRuIgHN8BD7yiYPI2z4tH8ihVYYUPAGTFu7Ve+TrSw8BD6sEjy2vvoGoZEGWoykpvpe651jU3TiOR0Oh0QvFJrad+3aZer19hwIT4k/MHgwCJuqJ6TvfsAxgQ+nUdScNgYEK4987Y/PMXres1OvmyLu3aof4gVkGmiLDgccqZF5obrvzanH72F6bpWYLZErFOgNwHMsfCHRPGuaARAqc8c3aLNiFG5sRecB9RWwVQhczL3hWYn73LbBWmhqtpr8z61n4Aw4KpKmjQrryiglXXztzwEswUdohKR7TeBXm5O4QjpljVDpJIyLpgrHG5UBhuntmdz3GkjlW7N9/buUGLf9iHlx/qx0aCGm2MHoywZiRvVUMCXutyt7902bdPTqPOt1cvmnR6xz6PcwltpD7cg8/ulOHairzVqWTAMcpyzQdr5z8GYCBtyLhVpA2CPKG3TB1TwPOJBJ2SmpuUk9v95SuueuLwGz4+qX3PP6G6ohSM3ksWxJy+5jj3QKoBhEuR9LGQbTcbtK+guGhVbmH+QmuUlzZKbEwAQGcSK76pbt3XmuLFlC6bguuN6SVqJ9LDQwBFumXxxaFBiMPub7j5bZMpqQIADRtnhL3MIT5GAKruKQXm1tv/bc446wJ7hrrEE6Vf/+YPH1Ni19CrKrfGWwrwKA80ogGG3nV94a6R6V3zt09Ymzt/gjGr7ACxBksgPqjXbth763FzW4Rb6Ty3RhJxpRGvukrLaC4X3Zc14MGum2lSjeSavrhAohKYspGymhdfvK3Yl6vcUWpoHwbsqMl0Gshgcql/InEfWh7wYFuDBfX4BNzg4kIEAzI6HZx6/oxNU09p02zV/w4ZaUf4SAeM9lkACRbd508HYGB3eH5YPzepHgwm1KzglmunvTR7a/7uL1FZPNK7j1UbqcRBGWwk5IM6/aRrzemnX2OOPPQWc/HvzjTrd4QAC9DgnujwyS0F44W4B4syTdKHY4wnDoM1+3oehqhtYhS9Nmf7vz9a8/eV1ANoAJosMN0MUy+HBXDQBamDY6w5htpn6OvXvpCdn/sBDFKlDu5De8paFDQAr7/Ofu9h2oAkc+Gnf3tjw57sl6LVR/s5p4v3Xhzj2is+feJdwFBVVDKClvfKcoI8X2o+z8czIHUAVtyz6ys3Hfnp+p+u2F2Q9722jfpol/YZ2xDnAZOIzyfHaZO2D+nn5ulTzwxdGfrNKRYm7VBD+Xekpcm7dA6pc4SeZ63HUHaSfRgplW/HS6qiQtoYcchPpujL0Fm1mVEHC/uACeeZIhmVFipTpUCg7ijdjsca8MBeUZW60gNp23OD+Y0AkGtWZx9DwJ4FDwaLAIiCSFVush9dG/5mq7lhkZgnueWPnd205CutSBtU8vCUdRm851iZm+WCR3T1mdZr40CcHS946HkFj3hKG1K3ZS4tTEEaM5zBWGG8GLjx/METCYBAVcSCkRmvqfdGjLKAwSjbMjJhHjCbECMVwBHAII6A1BcwG0aqGIUhBQ9GnmwTtcyigAFDgAANpJ77evQJ6d/l2Ka87Jd/3Lp2glWlyL5laBEYNtcr81OmCEPr99q1d6KiUtAIgeZ5MpzNsgxWmSyMVhcFFq6B+QIeXf993XgYLsyS+kPPHQI07utfaA9lST745srZ105Z+J8FHMM4DyPv+8bNN9A+ZdzUx3ntU8u0YdyWSYfOUZY2cC2GcNoXeh4rbXC9LBPs++U4z6PAyD2RPk54945XOrx+1Ykv/vzlmOU7Nz1EfTgPcG/qr+hCe7n2leVzL6JvcDxIT6lzCN8Gz4B6TdWJO6T2/PyU0OyKNNIjHXBfSzJcIm0MMzCSC0y/Gda6aNE+/VaLNCzzcUgqfQBCQUfP675NtS8H8cBToq6k5JQBuh+vtRc8/Coqr7SBakrVU3pvAIPFuz8gM+vEa1btONaqwlTTUIPAY5+oqkQ2b8e/hJzyDRYkB2Xi9bRVWXsK57XbJadKE1KHVVupyspbpAyVFVKHNZQjdWAoR+rAywqpQ72svHVF2QaUrL1DVVZIHU5sR3kqKzyrrN4zSt2VPQzDbGH6ZcBYRed+KJ5DAAgL6h6XSNUBqR67IAQYMAcOs4a5ARjo1VHHHNW614eZgfSjAJl/1zm4lCdSempIHcb1lik43jlIGoAGbQB8YGKbcnYtOuzNGx78/rSHmuCNBGNSps31XtLjymBP+2zh5ZyH+YdG5khaMFmYq4Y5YhyNLM1tMG8liypITmdjUDcw3B/G3fM37AVy0AJoaB1i7Gxrv9AGJI1XVkz7rcZZGJFg+MNQFwTD/e64O25sXa/xhRrfoYzXFnB+FDQBGp4JSYhTzjPJln0epzRtmcAxec63pIxMyyvPgOoKAARAKPj7zx7/UfplFu/s3A5HtB/ZsnObHpmteuMokJ6U2jQ1KSVLnqEZZZXkPW/KLsxdxDuZvWPZ59dOf/EnlWj+Mvykdhqxjsows1gUgkIqJRDfMlxsHMX/FelipAAEOb1CAmWo+pXSnxLUmXZRkZnxTndrW9PvxC99NGsqj2+zGNhPMHS979eCE/6MIsHgtu2lXLOtXWg/rN+8RWLfFqb+QiCA2sq0bdPKut5SiRc0IlXqBQz/+ezAng5122Z2uHZN9g8bvl3yow0iVPBQMPFfdIDs7z3goMNUbPudaHXFYXbDMfkmr2lKsNX7qWbMnKzkTQ3zsXeErLnROlDBA6lDvas84OG/rBzwgHvsQWUVcs9FZUV8Byor3HNDto6wOiOAh563qUqciHJUVj12Zix1P5a4fij8YQbb20qc8s7XV317Pa6bovB3DcBumwQodBumqIyRYzBqGOSKXZsexuiLIRapA/37qR0HHwXzFxAIvDZ0oPVEemXdcqv60vpYYwPpk5VlbRqop2A6XKeABIOqX6dVUwDurV/cunhEs873agyGtx6YK9cwwl+bs+WJoe/c+leYGmVCI3O1A/iNoS7zgAu5zyrbsj9BpJK3BGAzhcflpFKf2guOad3lDEbYtCW8T4oN+n5pw79Hv3X3w/QHDBvwCrWD9piC3SanHvUNeu3K28476KSXx3c/5Ogumc1OTElKPig5kOSqPHE6KCwuWPjdlhVPn/bp/f8OPVNKKpJEiW1jprfdPLLs81wT2OYZGFAVtTD1HNsOh1NSAQ228CB7YuHbS2TzM/Yh3mVoq+QXiYX7qxQGCLEAZOmB9KySkqIiEm8rXKiVJj8y1ox4bbEhuJQU7DaHVIY0UVLGBCW6myltmUhrT2aqefHFYa6Nww8a1Jeb43SPvF0Z2pWSOCxoCGcilxhErE9kYtDgvv/IRSp61OFNDnisEPDo4AeNSJKGv3q5plS/bwvuOkwApO9Nq3Z9nf6pqREeWPzZ9g45wIFnVedXxHgkCbeWXJ0b2Nm9yBz0f/WKUVmRJvjxQ1dFbZNrLFcvK1qu4FGGl1XV3HO5SewR5cFA2nqmi7S6zbiCBu2B8Cp5SzxwQjEAfz3s1wd7/f4p4WWI7CvpyB5mjdEX1QnnYCrKSOafNekRRuZII9SD3QNX1kWybMwLGT6ZJ7uHqLRap4vZSM6rMVnvixsto3y9LwxKmGzPGwccc0WTtIxDCaTjXIi5Fi1cmr3pzad/+up91ELqVQSDDY3MUU9ZJuFnslp9pDWMRZYpaRihUQ9Rr9o+iAcZ12ng4Cap9VymuSh73TxsPQoYVFrShhLPJ299yoypGxsIo3dtzKwN6/aoa7AXgGJ4JucZLHhItVuQoqxkzvNwH+plrdII22VRCLxCkhzX8nwv/+K68Ye37P4w75vBBJHxx0z7wq0GG8P/3fCpzSFV9IiAhzZHSpA2JuVXkhl3XMAGmWrOKi7GxoYkum5XyAmSemymg//cbwr/Io+Gj1JrWVR6YSjLtuO5l3JXsfnlUTeZhT/Xt9KPnBHjTQOPZ5V/IEGJKpDDp1Ax+cGjPOCIBBpiqWkiCrmtrGkV2z9sXvcJc3DYVh6gEoi8ub1EnhdyzJSui+SuLnAw0XrXielBpJB53Xbn/2/A5ogGcxc4aLKChwIHxxzwsGol9oU0vqNq4OGJEXHvGx4Y6PWwSgkGN7gfRqgZ1fEr746Yji3J6qY6uM31zZ8b1WVCi7qZZwMKqE0ggIK1MnTOMbJftH39Xw958w+PwHCU+VEOoi5v9DLHYChel0+OuSowuYfWr5IMhtyT373teQUB732QQpTB+pmrlgtn2FZF5dHB2btX5MftJ2X2MEu9B6NvbyX+c0gZ4WoySsM1Qwxcg/aoT+tRxqz73nuF1zcTFllRIJTnsGo59/7UryDCtgIJ25ACiv8ZVXKiDNdgS3n18GuPFynzXxyz708kR28sB8dh+ldeNs1ccc07pu5uCZLcLKABhHUIpVX5y+1n27Qg6tkHaHQStvlq/1Hmd/N+dLz0QjaPqa88YfrXWWHyb3GkF3HtVrLZfUWCIUPxNzu6W68qrZMyaXmt/zJ7w0W34CBizMyw96d1VGntGeRmd995cHmAwb2igUakdogvWdOGxRnffbdr02fu4FILVssgUyuP33qfAsf8O3ICzJtbJLI/E64zwTqzW33Uf0tRNHuHCx7KwOkLBY/KSh3UUcHAQBeUIkSUU01ScfHSvQAa3EooJHVgKEd1Ejom8zsffuVhYqe4WFUxehwgCalhtv+bQDbvyN6rioGZwFxCUszIt1X3DTAoCGmdrBUw2FbQQJJBLcQxL+NSZsZxLynjVQALZ7CVBg29hcN0SzN8LeBda3sjtAHuxhKxPuqI9Hzat+EAFLP0RPWQB0DY9Qz9Bcw4ouQFldC99Uy45MS5Zw67bMQ5nQ79WEvo4OK4GdPrzducbZ0eOAd4aA6pLjLrY87uujaluj/SG9sXaqoXBw+3Ni9/bNBBHXeZqW/db9JmSQLNR0OBpXpvK8FcWmTyB4biOLzSBmWOrrdt5MSFE6dVG3BwEw945Hbd3VOmDGvDYSWvbcMPGn4pQ6/xrgEP9gGQnWu3/9dVaXPwAACPvQ4ckhu+s6T3XUL/KHCwDXi0e6kO9g47HeIb/TYURLN3lAIPBQ4q2odSh0kuXj+jV//ZcXvx8vFO+DSU4NF6pJX+oOT9haQOmATgoaNbugJVzPCWPXu3SK9rfRk35e5YjxpGPYMoA6MOH9mHRtLUxfGHD7/wF5obCjUG1/iBQo/BbCBVf5UGgdAIWUfGXiYbnVlTY1zUEWHMnlq9jFXBkuNQBZi8pz6uCDFtb50chUrqYs817pcMsTlcOXL+vyqJeCvxAooe595eCgGpuFPYgMM1pz88jUBJSugAAJXVeT/MMl7wABQ0sFRrI24DoICQNPCue6jPIJuqBRUmnl9HTP+4Hp54lAOASGfz94nPmqYNd5viGdIdkoVA3FdM0oiAneHv+qt/YzMeqLRBvSe1bLtw0v91Pj5w1hfL7c3i822EqvL/OuABiNy0enefHcHc3up2q0X9oMFxVUtpGV0rWOi+d90q0OT1zJ8aTLeONNwXKv1/916yT7edD28vtMF5CdGAQ1vQ7faQvaOyKqs2W+raZ+qyLiP1oE2ZbZhq0UaoD9m4kHvEQ2XlSh22wpDKSqICNpy4td8098VX9aVLf5GOxe2X3K5iTBUWWmrSlpDU4VWdoBrS6yKpTThXmqmrxxJn8UYKSTGAB5LHiW0G/yEzLf0oBQdKeQlpBpsGRmBcRvVcOCjp0dJMtmRErKPhuDJYvTFr+T5gtF7GqiN1vTfFlMmWKxk49XGNt072vVRtz+O9iW7b/4Du+NYKWE67p6QBHEhXs86693GvXUvBA7XmjT8srkcaeQhQiETqYef3rqMsThOa3l6vBzw0V9WQgxfLtL+7TO6eOmb2zC7muWeGu0GlXK+2ksd7dZP8XieKJNtRBkM/E9Gqz0Ox+JOHiYtxuy/g4b1JRYED0Khr0jZHA488UyjeDPUWNA9mvn1vu/o/2Ht47u295/6wXdYHFtf2abqRpy4NHimK+Q9zGxUHF9+WE/YFInV47R3/G74lqouuSh3Mw8uUiu221C1mIneAAlsJjUftpXaTd0et+YxjVQMOavAZyjmUFNzcIyf9K1fcrCpoSJU2gIi6hTRZIttumvawe5QGD8oyoveqgDgGqeqEbdx6WXtGwrINYw0ZlJE8KE9dqMBklrpTMlPSe9hL5KeguHDLtvycBUSd48qL4VltGuGgoYyTuqFITLbCzDpURdV+pR3aFn9FFiw4GCtTcp7NW2+l6/I3qhr2Q98NDhZU/uBhlw38VcdDP/JLlOzj/EDKmKd/Xmu+lqwCGuPhbRT2jF8362Eu7NQmp05aWj31rqOMBSEBD53HRMEjkvRCeb8EQ92Teora67TUYwO/PvI9R00Vi42IaitPzsBXIsPbE+RHRX7QiCRpRAMKbQiAUcekbGKfbdYAyNzs7VPC7B9h/3dK7VtyPvTqb0RFgINW+O0dL49eF+ai2zw7LT8aUHA9YAEo6aTubD9+9LJv1EhOmaqBhw84xNbRIzft/biAhvNxAhoED3oz7dJuBRALHhElD0qF1A+qMlG1EGcYVbIOH90rQw9jkvJdlKjAqAPgUHWSeg9Fcu+MLsmEqZvK+u5iZdY8UoIq1QPhNjLer8Tb3K7Zf/0AgtTAbcgy/KXk5dqSny+LzGWQlmK61c9wp+vFYcIJtmymqi9v8+5csNQmUOSYAoj3vG4jZUAEspLJIDmQ91Lrl3/xa2PnpbFedpVxltDqY197wGNVcfYv/BVEA45okoaChgKGv77mxQ3/u7/aP8r6A/ufo0r7XuBIzzUf4Xrrlzj0BoBH14fTg02+T7b2jq87bCuOJFFQXoFid9+iQG6bYrOzd1Gg+fup1lbCuddGr1m+tmXuesoqeJQJHBSMwVAeTEv+0B0ZVGVU4AENpq/15rzyAgjgERk4aLiR96mjXR3RqxqG035VjB0NR2PUUldp8KAWlWLYVlKVmEozJXp9C0x79w+ujUqsy+sB+45RSzI4UBWnBkn6bVpIDSp9RKpYU8zggEEKE1Lfeyek0muQXlBbPbnuZ2s70eP+NSqvC1p1NGe2a2ltJMd9NGfgR2ueXh6yJ+0D4KCBnv8p0eHa5migoee962hA4S3Ddr6ot9JEvbVya85Lx2/p+4GrBudkVXgN11eR8JreqyRuH924YWGrYACAEOf6UsSxVb/KC6Ssq2vjO45dl+WqtAADQEeBIq9lcSCnQ5Gti4pQdTX9IuTNi21jTfNcd+YATYJYTlBghBb5m+gkQYwzaOA7vqAgp2sgxezSnFcAiFf6IGlit1xm+I5IAgIWDBgQiBhvQcRnEOU6ypQKOvNXSBnqCA9AEwYj6qhSLpAZYdIMwXrnyVKh+/jvm9jfez0g75jcWFOKxM5hAyQZFBDXIxHxm5A8aAr2KwUN9lFBsfYT7tpIGrfM+M/lBCRKjMybEhtylL8c10uOsgABo59t2hrQDMVarnv9ejbVOxNnIeUASKt2b7rxozWblwjISWboLFGv2u9cL9l7axi2gMfMQGDdQd8sfqlB60a/zEsq6OSN1ahIY1BPlQUgChqsWzZJuWJRkxVjD549e/L0QOAnC14OgFXkXtVRBgazV0glDlKqp+WaR7cOKgouuSI3EAk4aJDaO9pMqWNHqwoUSBTqwqsN1zpSdiWZXrfWK7FrDF9n8wtRTg3aKnXYY0z4ZDckHQnknfSpHKkjOangLet2W9UX6FxvQSM9p79th/PjnySKw932ZKy3ajFvwerdlm8EAIokwXhvrNLMXrVTeBuQ2K5UD5Soq1TqIIgRzzvJyDuOibBIIU/VGhfkvY06S5CeZdH2DU8e+cGdT3Be09ovPP3uVzQFvV/1VZb0Qh0KUPO3rb29/5vz7ghNJ4BNbj+QYj3/WwUP2gxFs2uUBxShq0v/InUAIJxpYbLe2LM6+yVXNc7BfSB97LfAQX94JRK2lRQodF/XnR4rUW89dsTy5fZ4ZWM7ogKHvKc6he/M6D1gloqtev/KrgHVN5vMHZEkqdqpwxtM6AePX27rv6y0Z1Vl7xzTdQ6AlHeNHQlGHJGWd2Xi/D7pAee9hkfXw/ixYbH++4jzDh/dsv2RRPvL1+9G2YveZgvJMRft2Pj1uR8/+j+i7VXdxZOgvgzNZDjybVK7aBYC71MiyXj3dVtBhgSZzMWC59d2eLJVt8YUOKlVxn/tgAf/3/VdNp+2I2n3UOwZ3MgPHoBGJCnDK1l4ASJaYwsCwUYZwTpLvOorOyg/XPK17UUAqV7gkI4lDmGCPJRdi0F3ymXBB+rkmKvXHV0QXHV2XlSJI1rHRToOqGgMCKosDOobsnJWu2XjFtth7STvft+//xdxAQ3nwxs0Z84o5k0XsYgpbyUDXGTwqP40Jm6Plbfh/24i/vnLqyRxfr/pAXmfpe1ZqK1U+qCl5L86rdMw6/nDvk7li11LAUOdI9SjrwQ8QtPgqtQSCTAULELBhwWryEp8xqf3v63uwiEPQI+04eEve5Np8uwu8R+GhGmTDXd9YFsp1VxFQMOtL8IGYJEaDAhulhDHmgQzpi3dvH2yq/ng9F4CDz8DKGlZVbb0hTqePyBi+1fMaPkwrk4KmuNxkY0XcAAaGnVOk3Hh/bFTtuTUFNLAwMpKHdQhkgcJEO3cHXWL35/Rr9+78QSNIfNmDwzmJQ8LJCfZkQq3VPBgU6UPJA83aSInEpTogbj2QGmXbmX+5d3G7xih5VX1xXlA5/MT/nCFN5OwltO1xgKRswyVV0pucLsGooaBhsNfuG5x+hKbMcF1GIGR7yXmqe22/IAdua9kwh25Lrj1VPecs+FXU3klDX9Z9gGGSMf1GECigIL6qt3i5k+iidhb0kf8gEPBwiMyobc/ekpXyZtkLg0GTX+Nr8C4vea8vCQSHEZTO2kHlbUGNOps8dk1Bm3MN5qORIGDSioLHqismLsj1Xw0o3/v1+IJGmLs6l5UnHwkzVMbjJU6OAB5pA83/1W8/hjU46W9/Wfz3juxvZ/0AOABlbh0w/w5Aoiw9pO6aIenZ6FU6VxemuSSxJIdMhp3q5uSaqUX5orfmZ+3lUzKpHpXwCjx0HPtGhimDdoLBQzuhMMIazwOXd3/vvienf8mgYIrA5vPo02QHzQ4pjYLtpXKAwstp2sFD/at+mrHrgdcFToHq7EPwpkHN4uVIgAG0eHyBV4h0sVZUl0LAAMVEvNvSCp1vKDC7Bex3tJbPsyuMXpFyMitwEHBCOChTLpcQzlzdsjcHcE6hdNnDuwz2b1vVV6I83HZAL89wV+F6iw/iWLcAgz1fXnjQCIdcx82sVHLekB4QrgzhMYEReqH8JggSqhzRMiZQl19vdILAEJJjinw6D7qMVV3hcDIAxqiKWZEraChgMG1OmkarutxcY+n0sqQ8/8mUHBR8YarylJTeatX6SFW8KAOL4C0DTZ9RqWPuAxyvY30bFceOHzMJpI6ivuo6+zGowsCeVkhd/6qSBna9kh2DXJbaUS5K3VwgYJHrFKHTPwUzCieccKOXg+6PtRxAA0ksYVp+RfJ/0Ay8zieXU5Eum2uAp8mUkwpWOqOJKp6f3uDQDD48kdd2IRub3Hkirg8X6i6xG/N6AEHQHgY9aiL9mAKFmGOER4ACpc+qMUfC+RXd/nigLChWTua/e84Egb1KGCwrS7s+9wW6IAHg8PumfWu90ocsUga+YGCxjxXJEoLpm7zH1cAQfpYvXnXna7toyo8w38TZ79KwIEohHSRHDRH8ZVInWHSxfb+hWbbsAI3xiIegEG7I9k1NJuuCxwUdBlwcWgyAI5V1FAuswYG6+d/d8KO3vfEhanyMTk0eNaPl4jNpEcwhfnNIAUPtktHpgdTA19VeRTlfMwWMAKBO+RGx8kiMylYWiLDv8ttKgennHM8sUr0gPPdamCpv0MsWHAwkoMEbEEWBZ4QgFBYVWBsQ+FZDbyu3WFgZBigvtViQTMvYHC9gobdLgzUt6rd/v1l5ilnzu9qYJ7cKyo5/yOALq1txu83me2j8JqivB88IkkZZYGG/55eEFHwYL0u21xQZb7hv5mz7zKzKOdLH3Y6xK+OoiDpPYi32D64MK7qKG8jItk1/PN3uOChwEEFMUgdBAiaBvkzDsqve0/cdKZOvw2ZM+80U2DGSBs9IwZmHbSNdObILFFdiTptXpW9uJx7O6DxvdxJASN0W/0NBq8JnDVmojWweVVZej6xTvRA5XrAByBU4s1owL6CBdvWc8qVMjjiknzLgxcsaKnA4QcMLZeEa7tkqz5+Y/8f4jLw04pjWTv/O/5Pq7ptvECmAR7nd7n1g0YsgEFTAA2uiQQeeF291LbjddWhsoo5cty61Yp60pEyrvL24+ZjCwLVIWF478F2g3nJNsgPu8n3nbNLjXQqO0c5dduo8vSCeT3iCBqWEQcChUPmzv2FSSkYZwpSd1kvLe4nHlvyG3XK2kBq6hLaVWlyPl778bz6yRSpJzJocINA4AEBl7cCRwSWVsfHxi0SVCt7QP6jKjm4kkuUjAb0T5SsBvotz59fSsLQXrWAoTuFqV0kPqq+/P+mTZD/317/ph1pZ4IoSUygxeRLV27asTpp02+0ef61AkAk8MgNFrpeVumBFNc1V8vqtdSpYLTT5PREXUaUe7yf3fGi8D9C9P0JeE0JFQXMB8UB86BsbtDS7V6uY0iLTkwFLrJEciMhsMSLUHcBTthOMLoPWpZZttTEHOUQc5QrMUd5JCoMNA2kFa/uUVzntnhJGjp6x+3WpBQ7xnC5OZ5asiiAhMCDRmH3gJIycNGtqqgJ0FNb8MVPjpaVBHCVQ4HA7ymh15VTOnE60QOx9AAAIoZOd/HtW3VXqYGgewNH3aTJPotFJcXCeQDDBY1gcoYkprP/e+Kj3m4y/yRURq7ayq1wL2w4bYYPPNq+2cvrtxY+XNZdFQgoA1jo4r0m0jHOe69lHwAJFhR0ZTveFDNw2M6XVpw/KbDsvEmBa947b0mPQmPGKoiQlZbJmJjNr9N9kuq8GkAEIMKdF4mj9+KMtN6r6pcavSB1lOosL3g4JyUNjy1HHiuTWrgy2DD4x3iBBiiPmGw9qALmWrc99QrqGxaoDPDAtuFeU9WN5GDPClYxlHI6QKjgNYliiR6oTA9EB4kyarP/T+d8NMAwwWLhDrIIBYuKmy6qu2dctYEH/3MBBhY7sve3XcADPsB54sDW78j/I0VUMvAX132vZKHHvOtIAOIHDwXTeA8EY1ZVuQ2ns2Q0O2F4IPsFYz6W4x9Lx9xAoF9xPXMCrrgCIi0y35coDiEkBBIbYjAn3xQeVpU1lnMdMSCrzsozAlBmzJys5E0N88PSr7vtZANw8No7OIbU4RjKAY9AWnBFMCt4bVVH+FRtyRGr+VgX5eT/SRytQx4SwUCJbQPwyEndFQIP+cBdtZVojZKCK2b06ht3EVObl1iX2QMElY2R5TBZBshCniBUBUysBTPy/29wF5R0GGaHLLzfzbLMl+UjWT6QxbFhyVaCqtYDzv8Kz6mkQCHvJkSOhKFgwUEdFIa2k5rjySiDuBfjpbqxYIEGBmDAu1iJNkKOtKGHFTwm9A7MknZc0CGzzr27A3kRJQJAQa9jLQEMYQNhmandujR7y0Ta1gDieA8E/X+ASPeOfEw7ywEQCtExsioFIqIrOVxApH/qOhOQVOk2FfrmUQVm7Sl5ZauZIt/ZHgU8No8uCDSak2LTr4+b2yL18UNXhV3h2jq8R5E61FDOcQGQQGpwQ1Jmzg3Tew1YZz8G9KFxooVpe25OyszvHSxIYmJM+Zh8ABIRPEQQMUXfxqkJoWqKAgtKsbvIN/iOw3ZQ4P0zRC5bU462kge5QpajZOkhCwARK6GQbShLe+dCgIc6IZwe1sryiSyPyWL7WNYJirUHHGZ8woaem97OkonyygEMVL4ltxA18J7gBRJ4+6qbZdbH3EvKlrMF34NPyBpHIVGydbRXBMzP5wcCy6zkAYD46nfBo5fNrnt5nbYZt61P2v5Lr3GbepA2FDz8oMF5jil4UM4rnXjtHXiXUT7eVGnGHbEhpUHEFoMZI4mI7HECIKJR5Av+kGslh8pKHhXxsKIBpbysPMBhQaPJ7vH4PFvQCIFfxMer6EGtZ/D3P1waaJh3SSAY2KnXugDCAa/0geThkLR3zsxBfR+1H5/vw9MyFV57Pt7gKx9/IdcdWsa12XLPQeJZVRuM4wdJP9whyxGyZJXRJ9VxKl8qXSzLc7I8IAv7CapoDzjftLUbFiT30cu8EkYpwNBC4ohi7YoZhc8SG6X/Vfd0RTac+zObaWrA3Ac/814mavu3RQS9GnV+1P+wUwf3f6vhvJszWxb+2luHggbHSoAjKOrtgPAJXUt0gUfy8IIH12UUpy0fsrjniXZA7+EDnKsqxRc4vK2RhqpezdtwVDfHTOm6SIq2WHJ1biAeaUc0VxU2D/+MgTTJBQ52UFkBHEgeKUXrk5vuPqM6QMN6UGXk3+UFDW4PlQceSSkFD8Q1eMf5aBx33P9JEyKKxyJs22k5K/Vnsk+23/8gYd8my4WytCyrtTLZl0lNTTVpsqTIxENJSUl2SU5OtmvxvhOeEHSrKC6Sv3exTOfDWpaCggKTL4u3jFs4fAM1lwydzT9keSL8VGIvYg843zO2w0B+0VjKlICGT8JwK8BzUdhuYcDaPUxRcsPievlP4+puv/fDQyont3iUDf1vMD2EMM9JUYpxeENhwBxSLnhQUgaHQ2b/cG6D5kX/x66SgkcJcHCmBDTYiwQc6qKbvT7lhZmD+typbaZ8vKj6gMPbQgdE0LMBJp1fMavkdIWAA6miPImEMt4ZA0VlVeq5XPBQW4eAR6DtrtMrPerwPp+zrS/IjoTqFj4VoYhoqkLSRzTwCO5JnT1zUO/7oo5UIlVakWPOnw3gfn7FqglyyQWey+YKaNxJAKA+g+dcTdjERvFPWU6WJTXSAwEI6XXrmrp16pg6sgAa5VGTrCxTv0EDkyrAAgE2Chq7c3LM7l27zO7du02BTLG6Jy/PLvmyXQaJAtZMleVKWbCTJKicHiAuKlhkOoQCZxU01DORi32AgTcjJKmE5JtPN5nFr7s56DheloTv/IdQTaUEzRKKl0VIHuJAdGKZ/2XljaLpYLDZoGnx/VqnAgf70cAjEnDo9bs3mnFxHYBqxbIuxWA95+K76XQ6jKkiwKFqqLQtAZOfFTSarkQb5QcTXH/x4spcl5Q0r9vufH9QINd5wSPQLvsX8QQN/TgYBSWl5b4STClurW2166ISdVVZ4JGUb+6orpdt20hj5M/Be7htw8fyh5NdVFOQ847sds34YZT5mCzkTEv2PxIMPyMjw9RLTzdpaWn+0+Xup9erZ6+zkolcnyoLEgp11XPqzRPA2LZ9u9m+bZvZunWr2bNnj11ycmUaRwGXKBIJogw2LgAkYQ+J9CacbzWUXTrlOPmKiYcKSRO2vA8wOAZoABhKpBQqTsqSYN+prmqYc1HAQwdVTA0hzj9XaTVlrcVYOvb8RwM4DqVYzUuUwnqexKeNm6VO2WFyO3ntHFwWDh6hiiIBB4BTsKHuP5E2qus/HRoqRXmYfXVYQUOBQD2y8poWG51X3D8LYJFMFIiLbubd6QYX3VVZewo1DQnPAWhYY3lK8cZqAQ25By//bTPnr8npwW6FMuVrWP8lBxuIId7aOoKBYAPAI5BanOlKHmI0D+amfTJ9UO/Q1JBRPt6wOmPdoU5GOM5HPMEYFzCQBCfE0Skg1qZVQ/k/SJ3yiCYMEZAKMoThN6hf30oWVblvrjB+lqgk96on92rYsKHJEumke48eJkckkLVr15oNGzeaIlFlASBIJbkCKB4QYUA3XJbpssyVBf33j7IkyNcDTDUg3lIe0CgDMNRpH0nDIfkecs32uucO/n5exkxjQqP9KAMoZfwyAjkcZK8IYdeVch+XV5a67f9yQOAn0QocuyWz4J+5DQvHesEDkFDw8AIGdat9A9BoGqw3q2F+6kPyPNVGex04UFc996pZn5ITXceMNKGggd2C2BA8snTQyDFNbwKQMO84Ugn2Eub5II7E76KrHlbBVjtPn1lZo1iU12CZrrz4t77/8eZUedmFBcHdKakBjzeHuCfJMXH/dcEjUlVMRxvpeFyPIW3gLcWfQ0mP6f6Bve4nzacf23sfAxsFYJEpqiXUUgUyj3Wx2CQ4XhFKFukEFRblU0SqwKaBNIHqKSj1RCSxgQAULOsELGQkaxo1amRatWplOnfpYtasWWNWrlxpgQwVV/bOnWaXqLewlXiI58EG8pUsZ8uCmjdBziDohUAgW9RVK4JFQTu9LR3j2jG8ailOeABDvLGszUPAOl3+l7vN1rRzJYdc1gk7+vzJAoQfPJx9mLt5lcriT3pfnknuM/6tPfNuNi32/N57Jz9geM8paJCj6u3h3XB0KeXV5S1fle29Dxwysi2vwaRKR+UkALFeRD3rbUBsiFzXRUTEobJuwXlZbFUKJMSJIJUgoXCeqHJRWdkySBzBNjt/6RrDhNHbE1X80dE7utaUprm/94KGd3QAkHjBQ6UObo/kUZxd5/3pg/pUn7Thf07+eDWP/iKPhKThgiISBoDBqF/+SGaXMHFG9kgCFQUNuqlIgCZHFtRRUF2xhwACmZmZpq6ouqAdO3aY7Oxsu1hJxGM8twVkH5UVC0DUsmVL07dvXwsqGzdsMI2lvkbSTtoIiGBg99Ahsr1Clpdl+Y0scfl+pZ4DnpKCBXOLC1PonxBVFDCc4jb4V2yfrRc2PrPjF6aP/KdPsdK3l/E6QMXx5y6r+F9H/mULtVkVWjv3MZ9K4hVRNQlfWdigWcEdgIJX+qAur5TB+cIdKR+uM+bGuMWildFg9w9WRpn4nNKXIOvnfme+F4ljQCR3XJ1fQ0ED/aAXOWHU7V817cmVJXh6kBUbHXc4nSgKIKHR7NsZATtk76kO0NB2WWN4RsG/uKdKGgoaHIMYKVjgYMdRWYXZOooDt8YldTr111xqJY+GvWKYLLhhYkdSnTWDoBBXlw0IY3eTJk1MskgJO4Sh54paiH0M4PEmAAUQadqsmWkmC9LMpk2bzCZRSW0XGwegFY2ymjY1DeRapI9iASeI0hjXtwsYFYo04iNxyTTny2K/Od+5WrcLT8ClNVAcaGMfXu0Y0SQMp4csYDjbrdentzzt8zad2JU3ENEuoYPEmGwcAdO1TM8q5/6lVsInJ6A+lgEudo/mTdMmbg7kDCxVTg40NOnLt2wqnjSjf5/n3fPVPDDce8DBEzngIYg9C+BYNj4vSBAfqinsGt55w70vTzsDNZeI++H/QKnzqd+ZTgTgOPpEVyrhOlRak8/+8fB4Sxr6LDYyvOGuF016IXEBFjj8oMFxFTEtePiAozg77Usxzv2f1kn5BLk9cIRsXSfLSFlC0ffuqcgbSBJNGjc29cVAjTF685Yt1kuqmTDoWKSMyLVX4CgqKbl/8+bNTSuRKlBnrV692qwRdZUCQ6la5Jr6IhmhqvKCDNLRTjmGNONTYVHFf2UZJ0vtlT4cnoLEb7KTTpUg19yoKil6TMgLGOrG+4tvWvXsvjrDutIJg7nst48GJitQhK6SX+de3pAC91yEDdIwkZZJr4tQpNxD2gbWbzf+8WyTVnR0y8y0rPXZ+VuCe5JXBVKCX4RN8kaNfh5Z7l1iL7DXVVWRmugHDV5cVE8EXp4QaGzXgjkW0Y1ZJvsfc4wXO2ZK1yFSoFvqjqQPBDSW6QvgfDxpYVrelQFAAzDAhiEESEQCD1fi8DUgUKcoMXIM7xN0kNfLQn6vFuGnyt7DftGqRQsbe4HX0sbNm00dkQaQApKEOe8NQj2Gymq7eFEtX7bMtGvXznTq3Nl07NTJLFm8OGTv8DdEAGKXqKf8RF3YZQBBvLMAEQ/9UrY3yAK4YkSvtURet0CK+aULGo4Ngw6xdgxZRwIMzrfZmN4AhxrVVKDJ4HgpctRI2CDGXBr8tTDPF6RMxO8TV9yfzzA3lBnpUeoGpQ+o3WOC8DkT6PuclGAJoxnCEy1/EzVa2Ilq3Nk7/yR9AAex/RKHV9KIivZaR6Q1HadA4pdKHKCJKwo7z4EIGaxf9AT2CtssBzhQV3mBI0zaoKAjcbAZ3FHn3YS0QU+4dKFsTZQlwz3i2QAYcHfF7RU3WNRQqHMY1fMxAxDpYnMgbmKjqIkojy2BcvEkbBSovVBPEcuBWy+BgtzPJQEDggCxVSA5IFFAOwQA5s6V0JlwG4Z7WVkbGOSRoDDuewhdFnaPFz3Has+m838c/P2Pt5idqaMFbMXLqnzAsB0kKYcu/qRTJ2yi2EZxxBGsnnPupMDAqJKCc79IcxJxbXHQPPrbSdYNPPQO4iEByD2t6kr5m7PPDSJqYkJ3rrbffSJxyFe+Sm5sE5QR9Y0XFGhfKdCga+TFTPCK67xYIdvRFql96i1OVoGcegslTeMwceGwrrUueEi9SBYpqR4G4hzz3xIbR1JS0RT/8Vq630ue+01ZuvifH4kBYzaAAGD4CSBZu07yQYpdgW1rXxBJgy8KlVU8QQMVVGeRHqyxXbiEnwqFoQNY6qYLaFiAE0DBKI4hHelhyJAhZvp330VXXfkrdvbx7MIra6vUZdVaoeN8bIx+0YHfEDpU+36DyUWfSbz/6PIkDNszztQKo3/MSlPQYD4hpoaQz6YlWgski4jg4Uge5xuzXHjPNVL2tjHPdG1Kvec/Yo8FzaQQD4rbgNXP4/z7e/l17xPg4BkBCklQaBosCCU9dPSBpfWKlekQXqzQBC+YVKaeKNdYhJdzweJAhzDW4VFXRVNLeaUNx7ax9zypojzPfnD4CmkDUkaYWEC8BWoamKWfGMETA5EiDJnzjPhR9TDi3yIj8qAYlAnQA2ziSQAB9grAAZDi3vb+Ik2wj9TRQlRl2xzvKdZ7pJ1+SpJyUd14/YV9+6jcmjpG/i2iDqMvHEK910yW85z9WrXqmVtvzqKkQhHHUtp7H1ztGPaYAxhst9lSNzBwcaO2bAMaZO2WTTqzBUAgSJzNuYjkgIdVEYUyhIfKPrL31UYR21fNB/cZcPBcgAakRiT7EhDF4k0esY6q4yfaBXLVM4q1lTo84FHqMRwVlV6TkDYsUBBzga7eJRhxlozsSenRQIADryQdwWsh9AlEfDPyRlXFtozurFpop7izQrjLlkUwXFQ+uNpK+mlrC4Hxl0U2jUi4ncEtjmdVhgAI7r8AWZs2bUzXrl1tG4njAGwYzkJRjeRubeVvILkQ/Y4dhzgQh34ra/E9tulV9FjNXjP6FuMxUzxIIN8Ms9X0DIh7bTTAsHnqpEf6LWvUGM9LVFQyOZwdtOBMg7oKZxspsky1CxE7UEf9jobDltFjES+oOQfL/pfE+TkjvQSMSOp5MCHOaiUXiCK8TO+5WB9TnyOQbP3qbdJCYjHCwCNKpVrGsW3UZmmDPyqBbaioLAEGWTKS7tChg2nVurV1ZV0nKihltlpO11qeUfdWx+WV+AcqRiWkOaS0PGvYto2TEOM10gNeVqjCkBYiqcG815a3TU4qDOIsSmkCggBgS1EvqXF8q0hE8SJAFmeA9QJKqMkcOknWz8qC3aNW0ARnwBmoU/DxqDmtrzpoU2ZfffBV9XPdjuGYZJVIarelbjFeVGg+yDiBgw5ELBjBxhIW2E12rbNNRHWVLe38CH/x7taG7b0KHP4OtaDxiLgTinhnz8XzBSBlOF4GNitsUaCr3v+cLu2mMTqxHwSjhRjvqx+pnaGvIOk8rZe1ShNem4f3uG7XcmmD726eLN3pDwg7QGthrgTEwfzn/fijq8rBpZakgRi8GVnzscDwuYZAPOwNnMPYjCcVxKjfTxiqGfUTF2FjPEQi4XoAqLoINdV6kTZYMKgjhRDrsXTJEivpxOO+SEkKHoChQ+fKGoS6Rg/U6DX/YfkvzwgEZl1+WXC2BApbFRTP3HtdRpr32cWDyt0l04Rm6AY8CCDGL1K4QolnldTNQJOL7H8/Rn7h3qwGbVTfPyZSJzlMGm8EAvjeP2/JS3GbptVzPytNSOBM8IWPjzEp5hY5RdqGTE8R9JHvyId2Kwn+tLznfPmbzrMw54ZM1PQrzTmF5FHWxRZQdqX/xc3IWfs+Qv6Ai2TprP0EE+/WrZvpImk4Fi1aZFN06DnsGIykYY4weNRLGL/xosLDiFF+UI4jLahnVUBApV3bEN/QRIIADSodwKaZSACsq5sAuU1yzySxuwBkPKclaW9jkaywydD+eBH3WycR6B7Jg6ovkuWJeN1jv67H+U9i2D72ma6fyafSn/YyaRypidLXJLnNr7M5yYLExqMLAuS9gwAO7xQNDGzFQ2riR+ctmeGdrhaAsloH4TFuhbVsY+8Ch79zedFQHJmngoBIGVdLvQ/4b+nbzxa/7zOqkk6c+73V8Mc/C3gcquCh91AQ0eOh1CJ136iWtOl60/1//a008WBtJsbrPn36mBYSLDdv3jxXytDz5a3zhPESHMfIHn0BHxQeWE0l2A+VFPYPAv/WC0MlnUdDcZ+NJ5G3CnsGKiOATUGNKPV8ATYIKQApCqCjLCBiAxGlvDCheDbHggbg4bF5wBVJmPhdXG+0v1bmgAeDUxkavA54YLdYft2eJH+GbR7Bm2Ub4KizJcnNk8d5J7Zjg4DIdyLTvCPm8w+cuDFO11raN8ChiI1ect+Bhr70ys9653ykDnhcKIGAx2ul3jWAYcEjL+WVGQMkiMe5zlumlmw/L8/5a31WDNo9JGMs7qXz58+vEhPFSK72DUbzSCBkoG0uaiFsIMRcuCN+bUAc1pkCRppCHcDCtoI3GFIGXlNITNvk/sRebBHpA5DDjRYAAcgsgMShHd4qkLwAD4+3Fd4CzWUJ6fG8hWvgtg4eVfIgSwUAEMvEcfVWJJtGM1OCGT8k27x5dJMXRJBE/OmQamBXRn2kfQMcUZtThRMOM3ZmufteaoplaPll4IwjRlsQi5WpUx4SANS5AQJ1C3uIsaOxTg3L5Exkvq22eTZsA/b7n5ukhfdoKxmhd5ZI6q6iovpBguGqOvLGfkEsB8qIFhLwB6MGPBqLdxZeU9yvXBIJAJVYZQLzwuqWeggMxKuLgETABcoTWw1pR1asWGE2Sx4r1Gh4jQEg8bazYBNCTeahabJN2pZaQVUFD6QPCImEuX6av58abPpFiXpTXnHZQYKhy2vsb40BDv1QZF7t++VtxW4QrMq0qR7w4EthpLMws8Ba4E7Y0HOTTRvAiVhBiWtqBvWRx5gji1UyW2OuSBn9xBCOTaOyjJoRNSk4UAuhBsKllhvAsHeIaghje6zBfxiwARukgkjxF5V5HXhWEb2OYRyJBBvEip9/NkvEQI5UBKFOi3fyRZXCPG3mf0G8TK0g5QmqtkLywPV28W05JcaOMnpCVVcN5iUHm/4vNeSmK+UBjYKguS4hcZTReQfMKYcpC3B8IW0+tBLtfiBw5pHX6sdWietDwMCFfvWbD1gqVfeBexF/UvIp2chaVDN4ALUTl9tsUdswV0V5ZNU/otrBVoDdwh8DgWqGPE54XzFyh1EDGDDjylILAR1UTqtWrbIGbAL2Bg4YEJJIhPET/wHgAVi0SaeJLTOoT9qGGq2jPDsR6EzgtHDBArNk6VIrfXC/pmK4j5f0AbCisqJ/HMLlqrUsYaKInqyJa/0/a0Zb7B3lAYcCBlKGqqpQUwEYpBNZfqZ50h0M1sROq8AzWRezCpTbv4s4oMFHYjZ+0rKSja3sdSW3U8BQoNAzelz3a9d6qjyuy8EJ7KvDqFuYbnmgAWAwSmf0v0EYYDR1FjEYGNdRT2FTwChNVtqq0AZRe9URL6ju3btbcEC9RH6pnr162dn8ItYtjBr1EwZ57BpEsKMmc0nOb5NjLI0EQLpI6pLBgwfb+uZI3Uwty0yALUS9VSHVmltx5A0ACA+ytevXq70DXQsBlyMiX1HDjsr/cIK45KMBSJpiziLYb9VZBdZ7ymsU9z41oNHgp2TTZkodO6ePAIYprGdmy6t7dNkZDmBIOhEFJO+1tWm7ZgDH/vbGajdQeN8G3jzj9ACRzhiFMYqj4y+L2suoHDvBfBmR+yWMaNcxWodJ4lEUD3dbbBLEkzQXCWno0KHWZrD4p5/MZgE/3Ic3iw1h+fLltjk2pkSeCy8xjPC0/6CePW3qEaLGKesFPoIEZ8rSUgIdqQv12rfffmvtNEgJxJcAslV9Dq7HhoJE5hDv5BRZAPQaTRqoe/SUrmfLg7ZATSVpRZIUNLx2DG9HYBQnf5WAxnrxeZtQCjAEjCZUUzojbzv25+0K6fr25wewbYNRM7oI+VWvr2R7K3tdJW9XKy57TZ8SuwYJByEN0tNzYWsZJfcW91ykjR+FaQMauLyyjwQgepyw4v4dclvF21bA7HzfCFNHehh68MGGiZewT5ALa4Cor1CNkfEWKeVnSaO+QDzEZkyfbj7/7DOzTNRQSETEqBD4528/gYHfTJtm1XCHjhplo+aRFFC7AYJIL1Ul+sQHQJOrWud+f73DD5AMJIHIpUgbu/sWBXDJVcBAsiAzN8ZvPeZ9LnHBfZl5OThmtRmsa3HshrdvaozEoaMLeTj81WO3cRSa97wdk9iucg/8QWpoo7U0kRG1up4yX3dEAjR697ZAwex5fcR4zkjcy/SwIWAQRw20QRirP4cVaUaSRaqJmQAk0UdEIwAMECDBYSdRMSElWJuK2FIGDhxo24L0EdYeqS8st5XcAzddvwRFEOCPP/xg2kjQ4ojhw+28IT+LagwbBe672FGqMgkVQIT0QloSh1Ad3ijLX/VATVsrP2j/ihktb7U/0oYE+yURp+E1dgMoYscoJs5DAwEj9UUCMMJ7pezhW3jZ/XsPu4JIHpV2xz3zyFH2AZ169u+H3e9bx4CEWYlERAhN4YoNojzqKAy5k7jowih3ilcUdgKkE4zieDqRzpyocAjD+noBDnJZRQWi8m7oOU+9HTt2tMbwinh5IWW0FUYPs0easiSMHpfgnwVAUHNVhphCtrNIJ7Nnz7ZTyQIe/EkBT2YUJBtwZWmDgDEeaA4R09FAllDYtB6tKWvnfyxG8Tfr5JgTtg4qCpJOBJdawILHRBXFWvZbAiwaJKjzA+XVMxPJo1fb7Rn0kZ9qhqqKpxLQ4AWTQkSGarf5H7SMfQIAz7PnE6BRRjfFdOoeKW1Bg6sIviuPGopkgbfRShlpfydqnh/mzDGrxaOJzLgwTFQ9TJ26Subl/vabb8zMGTPMGhn9RwINDMx4OsVCSDIY4AeJsdqqlMq5GAM8EshXX35p7SBISDD51mKzGDFihJWWGovNxa+aKqdas1OSL86XCPruItHgToy0gBwEmOG6S2R6ZQmpz0P1ZPtWz37N2XT+x09dGjxSclYdLwARJBM38/7wkBi789PNpe+dt6RHYcAcAoBg0+h0X91i7B+kJ0lQ2T1QY1RVPCbipAWPIwITRfLgT1vBlCNOvioxepXdXYmzFegBBiO/13Ka+lv3I66FObZr3958JxMbodpRIk15f7EhEJG9TEbxuMb61Txa1rtOkvo2irSCoTqWOA68vDCGDxDVE2BFjEmYV5T3Js42wIUNhAWXXQzRSEe42/bv189KT+tEMtokTN/7bBGqcg+huloqoMS8HkhbBPIRoyI7dptoeAAlVkJqweWX4ECHrpf17bpTU9aqphLbxgkWdZ0HEwnirWKJ+F55hvncqp7EO+oFSXYqcR6HmHTzlYBHy2631yvGFlJT+qK6nqNGAQedFAYeL3y8wISSHPptHiVJDn9dySSH1fVGDvx675JHcKUNGGl5xJSqGJS9TBpjOIZnYhCQMPyqH6ZrhbkjJfgZMiN0Rv94MlVEReZtH3XNEADDvjJM7A0E6q0VA3aZ8RlOBYCtIJslAABAAElEQVQaKdPdtOnC3DGgA54Y1LNEAsE+U5HkhgAS7rl4oREwSDAf42D6gRQqeJBVhsgk7AGO+lLH72R5pDJ17a/XTHBSrAtIvJUcMIeLRe1T6buHbY4ppBEhq36SvIaszz8isAzwCNQzr8tcHP3Tv0jS9CL76yPu83bVWGS1HwYeEPKhSFBgZ5l5r6vb28nBJY5KK/T8CfdZt2visLFN6rA6ERhmZRgc9oMh4v7KKB7vJXmHBukD5otnFkF06PoXLlxojdL+NuN6mi0qHwCksahnKpXYUJg+NgzsDTBuVGjYLyoi8fjbE499YlRQv/HBstAHkVLHV+ReG0WtRryLQytl3UF3avIansDzWWDx/OeVV2iEuXxu/SknXlUPJmwc9ERpqnEShz6iSh4TZFRhQcKYpXqOtf1Y5JzI/PCXBMWnB8ZJNa4inTiMWAkjdV9R8WDfYKRPPASSBTmdLMm/GtUN9oVIAYRIGkRkw1x5sYAIIMPIPSaSemgDxve27dqZDh07WjsL83lwjPnD9yYBwNhuNOstU9ISL+Ia5mNoDH3pAY72culAWWbFUMWBUVQGjaitaCxgMSGKKlp5hSN5nCqWEJtV98B4yH3TSv5fNZ88HxAP6x9x1PwO2GtPOE/u1Iu7EUvRUnT0sVIPCZrDEIwOn6hxm9JD1Dt4V+FphXuqpiuPVDegsUlG5wQZci0GdQhJhXiGSpO0ByM/OaeY0Q+1GqowQMyCiABNdRMTUK1Zs8YCYpLcjLiWWFVx2sY1An7YTxwSg6AZqzu1de2VPKR/rwhTbyUGmGGfRe0AjrBHTuxUUw+0k3pXat3EHWCIjYVQRZHiAwaJnYCRfSSpIlqdSBukVscojoEZABl/wkjzzDvTxBspaBqLfh8df5VJQAS7DHUxeud+uLmiHsMLLJY2x9oW6t8u9+GPy4LdJGZpSq6jn7CbOEQyK0m2kSBU27YXEkBR5seQAI4yuydxMoYeeEbK/obyyaIaaivSQiwfFyqqYcOG2cA+AukqEksRrW3YJEjb0bVtMzP35VvNvGVrze/uedF888Ny06RhAxmp14tLLij//bHN6FS0Nv5EwKs6aCVuyCJJIXWQzVfddmO5FyqvVSK9eOh82X7as197Nx0NxQRRbyVU2ZE/g1j+25FrSBxN9ECoB8iNYY0aGKMxSsdCzKFBJDapO6pCgMaGTRtNWkqymfb0TaZv11DwOtLIU29+bW566HWzZcdu06xJQ5OSJmlMxOh+oBH2CQzc/HlZcP2tjBrOFxA4R6oacKD1RaK9+6YHKh+Gum/am7jr/tkDY6RZF2nTmootAKkjFsI24Xe5jeV6ygI8MMM6qSnm3YeuMEN7d3SrwGYy6KD25pJTR9vYji9mLTZbt++QUXuRKSgqtkbmysRGuDfYixvEY+DWS2wHwMEkVqjMYm0/5T15wySRlrlTluo31uzFvkrcqnp6ILZ/d/W0IVHrgd8Dz8gjdOAxSAdeKffXKvbBDtH7E9/Qtnkj89lj15shvWxzStVaNy3VHDn0IHPpaaNNVsMMM3fxarNuo7i6CiMWX1thwhIDKgyVwMFYGXGpm1XjAcDDjccQAMFdmRkPYyE8srB1OITmS3yfjUzHmKBED5TdAwxYEpTogar0AAxHEjUY69qdVYX4gso0ggmViHHAg2rswT3NK/dcZJpkVtz1Fq+rT2f8ZN74bLYsc8zK9VttM5KTk0w98VpiTA+DhVGTQJFtTdZYmfbG8xqvraOyHlakMcHN16HPZX2Y7iTWiR6I1gMJ4IjWM4njFe2Bc6XgsxRmhN5OjOJ7i7HaRIg7tluGPvHaM0QNNarKUsJPKyWFuhjRv/1xufl+4UrD/laxiXipjkgtgIhkXAxl7nVG/Lgg761npz2kXGfhT4x+qa3kyYo1rsNmGhZJzSFykVQcdfWqxLrW9UACOGrdK4/7A0+TGpkcyAakVTauABfcimZ+RcogrfoekTIG9+xgXr3nYtO5DZnCq4e2ZeeYJas3msUrQwtgYrdXbTTbd7p5n+zNAU/UXHhX4SaL8b26wATPKjyjMPwj9pGCPtagS5wJVkugpYe6ynZYsKznXGIz0QO2BxLAkfgQqtoD+Jxa5TpGceIbYiUAAPfQisR9oJMnGjxVvKbuvfIUc+WZRwpj3nef8ebtu6y7LxLKx98tMhjdc/aEu+HiKMCzKZDE2j9llWeyJ/J5ARy4A1cm6BLgAEAculfWN+tOYp3ogUg9sO/+cZFakzh2oPXAr6TBL9DoyqqpsDEQ6Mcc4WV5YjG61jnFh/XpZF6660LTqXX1SRmVfRGM/mctWmWmvPW1ee3D7826LaJKEikEspKBSCOACA4EsaqVIrUJo/5mUTVxB9RV7SS/ViwZgamT661zADvG/CBLP7uV+En0QJQeSABHlI5JHK5QD3wtpUZQkrxJlVFTEY+AtAFwRKM8osAltQfl/nTR8eZPFx63T6WMaO2MdBwJ5L7nP7CGdwzuRLCjugJEmFKWeJeqxJLYOUokIJA/MkszSblOJHsspGlanGvIfhhbyH8sN0uUrRE9YD1hasSTJB5iX/TAIL0pc2bESriT7pFgNma9i0aUwZ6RWT/d2jKOGtYzWtH98viogd0My8ffLTSXSfT6Tys2WABEtUR0PHEUMHzApDISCNIF16Fqoh7UVrECBy7UHgJ1EOU2e44lNhM9ENYDiTiOsO5I7MTQAwT9na/lsW/EYgTGfZa4C0beJCCMpKbCY4h8Sv26tzPfTLnZ9O/WVm93wK07ifH+wpMONcvXbjY/LFmDbk/iRoptwkYiwXdKACQBjEgfkfqirAcGLAgCBDhI3RJr7ireG95VvAuHVsr6O91JrBM94O+BBHD4eySxX9EeeFAK9qAwI9ZYU14Q4c3cFuRaipSeBFDBED7u8AHmvw9eYRpnxi7RVPRB9lY5DPqnHDFQMgenmo9EAoHTw+wtwxamzZpARgivrIoSEeSAD3UVyXZlAjBxUPAYyIukqpcqev9EudrXA0jMCUr0QGV6YLReRArzWAhpQ1N6qycVTJNRL3YMQIPtq84eY6b+9VIJxDvw8klF6w8M5Tefd6x56S8XWqO5k4vVFmfWP1RPSFokafRIANGqs8exlUDIC/RfRa+zFzk/PjtLL++5xHaiB/w9kAAOf48k9ivSA92kkJufPFbgABgYHUNMrQqzw0iOrn5H9g4LGjf+5hgz8bozDhgjeOhpKv575tFDzJQJ58kFATslrF7JFLWAC+BKVHdFiKh2Jf7Q9Ges5K1Drm0d6/WJ8rWrBxLAUbved7ye1vXzh9n7mE6Z90Adovp41FSMsBldM+K1c1rs3GX+eP4vbYxGmRXVgJPn/nK4mfx/vw6pqzzPExDpC0J9tFG8ycojQNh6ajkFCaaMlXx5rhAhK64ri/VmifIHfA8kbBwH/CvcJw8wSe5qp9Mj4A9X3IoSjJDZ82B2eP+g02cb8MGmcc2vxtYK0ND+IvK9ULLzfi5uu5BKYrpGpUd6E1VH6XX+Nao9Yl24jrxV5ZX3X49BXu0rzrmvZE3SwwQleqBUDyQkjlJdkjhQTg80kfOuKiMWNRW6dzyHlCli0AVEFEDOOGqI+fvVp5Vz+5p3+s+XnmhOHTPI2ihcvyZ5TO0nAvTKUz95PbFQd1WGbP6tkguHlmwmthI9EN4DCeAI74/EXvk9cI0WQT1CYr+Kkic6OXSJMDjSZOzavcuMHtTNPHP7eTXWplFWH2HTePb28XbSKY0y1/L8QQFcvNDKIm+eL7ysKkO+OJIDK2CmMg+cuKbSPZAAjkp3Xa298HR98likDa7RubL1esbFwWCxaZXV0Lwu3lPMlVFbCc+xqX+TPhBXXT/bR/IgVsOT/rxUN4XF0MQHODqVukniQKIHnB5IAEfiU4ilB8g0gEeVpViixVG1+NUtjJIx5JJ3qmmj2JMjajtqyrpru+bmkZt/FV1lJRH00cgrqZCGpDLkVXfJ9a46sjJ1Ja6p2T2QAI6a/X7j/XTjpUL7zcCoYjGKkw8JUr09o2pA48+XnGhTctiTiR/z2+NHmGNH9JaO0p4KdQqdDvDiplseVSaOgzp9qipsWQlK9EDEHkgAR8RuSRyM0gPn63FAwzvK1ePR1qTU8BLXDuzRztx03jHew4lt6YF/3HS2zE0iiRB9vQGUbJWU8pEolncR6XqO+YAjtqjOaJUmjtfIHkgAR418rdX2UAO15lgS6TECxq1Ux9DWtiEVoZaJNQW43r8mr7u0bWaj5iMBBxJHeRJFkk9aqWhf+d5FwlW/oh1XC8slgKMWvvRKPvIYuc51oYrFME7An5/OP3GkGd63s/9wufsEEOLGy0KAXE2lqyXdCmnYI4FHRCO5Byz811S0j3w2Di5rU9FrE+VqVw8k0qqHv29RLpsLZTlYlsaywJnIEnqLLBXL/yAFayhdrc9FUsMITEZPl1p79fIwNWbsu1Xm1CiPGFkv+flns3DpMlmvsGqabAl081JKcookWMwwjTIbmpbNmsrSzLRt1cp0bNsmpjZ669wftts0b2R+MbKPefuLua6kpu0i2K8s4K6sxIG6i8Uj0Rwk91yj902sEz2gPZAAjlBPoEW5Xpa7ZfGL6APk2JGy4E1U2cGcXHrA02h9grKYlpbxrnWETCeT1O/Mo4aaDq2yvEVKbc9bvNi8/eHHZq2kIymLCosKBVAk/bosy1audIuSQqNLhw5mQO+eZkCvXjHFm7iV7OMNMukCHF6iDzVBpP8456pKDAg8WXK7Sn0fVbXOxPU1rwcSwBF6p0/I6nw2kc1PGp5q2soUnFslYvdvH+/gcBdZmE5zDju1kABNd7alWIFDGR2oS4jBdeeMjdqFgMzU/71nps+uWlejHluwZIldXvvvu2ZI337mqFGHmqzGjaLee387cezI3lbaoN+8oOCL8C7V7KqMbrBzFJbU2LFkM7GV6IGSHkgAhzG/k+6woHF6Z2Oeeuo+Q/4laMaMGQIcj9tt+dmjG7VwfaM+c6xJDbmOHEoQDK1t88aG/EyRaJ1kg33sxZddz6HmTbNMj06dTddOHUxWo8amQf0M0yAjw6qgAJic3D2GGQLXbtxgVq5ZY1asWSsSykb3fnqPgoJCM+377823s2eb0cOGmhPHjj0g1FitmjY0PTu3MvOXrQsDDo9EoI8YOo+do5LBf1qRTwWZiOXQjkmsw3qgtgMHaRXup0d+2cKYl1+eZLOMag+9+eabuom+ZLHu1MK1a5DQ+TMq2gcefbm95IyjBke8dOGSpebpf71mz40ZOdIcevAQ00Tm445GuAOzIEG0b9PaDB840BbFaD53wSIza94889OyZcabfgMA+3Tat7bcycccGG7A4w4bYIHD2w/+QEp7zmMc95aNdTssAj1k54u1ikT5WtADBypwkJm1vSwYrDdV4T1NkGvrMKx69tm7wkCDZHyP/dfVr8PRQsNm2ahlRCBYK33mWNxwuQYm5wWP40eh8QunGXN/MKiTjhk9yowcMrhK9gjUaMMHDbDLLokdmT5nrgWLHTuz3Zt+MX2GOXrUaJNRL909Fq+NXbtzrK1l5dq1ju1lm9gMikx+YYEpliy4RNvXE8ADgJvKlLlNmzQyrVq0MK2bNw/7/rQ9hw7oajfD1FUiVdCn3tgNH8PXy2Nee+uUi905V2KuKHFBje6BAw04+JDvk+XXsmgu7/my/ZIsL8sSSxrovlLepmL94/n9TVZWuLH22WefNQ5sABgPylJb6Rp9cJgTHlWxkKqpuAY9/aCDwPsSWrpihQE4brjk4rjbH+qLWuvIkSPM6IOHmpk//Gg++vprSRYoad0FzH5es9r07uZmTylpUCW3MOL/6513wwz0EasSu1kkYj6Szu3bW0M+Bn1NHjm0V2S1Hv3qVSthm7BMv4qqKh8AuXatSG2uQceS5Flq68CwUq/Ra3OrVAV78SI4+xey9Czjnt/KOeaKAEjyyyjHKYDmzHbys/irh8IYIn/KngdfZn6ilDH/luUUu1U7f2Ry7NDc4jDipj6ALa9LsEUwkx1MrVnjBmbD+39zL8nPLzDzlyw2/Xv2DBs9uwXivMEo/afly2W2wS1mmEglvsmLKn23Ldu2mb9PfsLk7MmtdB3eCzF+jxg8SKSiUdau0/YXN5m1m7aH2TlaicuxdwItO+kTGXTl283MzDSNylDzee/l32ZOjm0l0emoZ7v7y9SQfRQN/5TlSFkASBB9rizPyPK8LB4fAdlLUFgPHCgSBwAHo+9Jgyec3N6cccYZZpnosF99daqZKg4420OPNUxWLHfL8pAsE2WJZNTuJMettHH9b3qHgYYcN2+//baCBrt/56eWEt3tDstj9aaiz3QqVLZ7i6HXS2mSDRdX2b1FgFePzp3tEs97vv3RxxFBIzU1xTRqkCnMv76sG5gGDeqLKy38KChST7HZnZtjNkriws1btobZYgokyPHzb6ebb2bNMmcef5wZ1reTeePTObYvo7UbpwWrvpIClU1ySN0+iSMj2v1qwPGn5RmO9jxHE9k+3FkukfXJsqyXJUEReuBAAQ5UU2Np/z8uGmQuuYT3KhxNVA3HiJHzEYkgfvfdd81jj71r/idWD9EHw6EAjwtlobDfF/1aOZaMCHPBBRfIbzg98MA7euAb2fhad2rh+jx5ZsR4KxHEat/gOmvfQCcv2/26teFQjaPGDRuaTAEHjPkY6tu3Di3NRDoj2LE8wktqg8yMuHDJMjN7/nyDfQRCIntu6n9Mg7pNLRjYFxGlMu98HBGN51Gu8x/2BQ/W9Z+vIft05RE8y/VHZJrRo0ebdevWmTffnGneCUHFcDn1qSwEAmfLkiBfDxwowEFwnhnbWFDAAQ3vc6B3P+mkk+yyYMECc999E82U2TLyCsVfvCtlkS7edK4BL85n+3fiSpUh6hcvzZJR3qc73SP3u1u1c8NF1boxJjXU7gI4AA0IV9yaSCceNdawVJaQFtq0bGmXMYeONKi+vvhuhvly+ncG6WPHljW2avrRhaEIXlTYPIqlvNeuFGubAmIr8VAdz3ZN2sSegZKiGSq/E044wT7bxReLjur55834iV+gp+ohBx+R5Rx7MvET1gNhX0nYmf1n5zBpSn+ac/PNZ5Tbqp6iL3/iicnm28kXq44lVS76lyxDnIuvkLX1p7n88sudQyWriRMf1Z2fZQP7Rm2mQfrwlVFTca3XHZa4hASV3wNZ4m110tFHmVuu/L24GQ8wzRullbrIBRDPGdyTAZdowMFxUtmXRT6J40AZWJb1SNHOfc6JN95YFHb+nHPOMbef0kGPoemwKm09kFiHemB/Bw4+3FtoagtZHnzwVdNjyCWmiyxDh15iYPxffvklp0vR4MGDzSdv/Ml0DJ3hn/eQLBjEruPQ+GEpprm4QHqJCOf/zHOPTJItFNK1lRiGuRyrssAhOi63/xLA4XZFhTbIv3X2uBPNDRf91tRPTynXgaCxqMqSROqIpqrCfrFrZ4k4HakRPnfc5EhlasixV3iOzyXb/9y5c8Me6eabbzaHpruHbpOt/Z1Puo3dWxv7c4fQNtRLVgewQTZ+WGvMQaImH9xZOJqwtCe+KTCjrn7OjB17iVm6dGmpPmvTpo35x+0n6vERsoFXlmijjbn11lv1uLuePn26V6H5hnuidm4gmVnCNdTr+qnHK7L2fmB4VSUo9h7o2rGjZBLuGmYv8TF4W6l1l5Y/BsbxaFIHwEJ8SzTy1et9fdEuOVCPo01YReMffPCfYc9AP95556/0WB/ZOEl3YlhzHaDzsSwLZHlblsrUI5ftf7Q/fxgXSnf9gi4bIoPWBc9fY5bPmCyi5WTxpJpsvvpqstnw0V/N3ad1Mt+ItnLQmX81U6dOLdXDxx13nBlcclQgR2wbYxqZlqJT9tM8iTZ2CP1nuAyrZ2rPeqQ+aixTxOo17tojcaSJl1E8aI8YjWsbDenVUdRMoVADfn3eT253YO/jTx0pLQmFUGfhbmudFtyrSjZ8No4ScbGkSE3ZQptgEePFORJFjCuzhw477DCv1HGj51RZmx3l5B2yABQ/yDJBliNkOUiW42QBrJ6SZX/mu9K88ml/fQBUJHfR/FM7Sl7z7yabgw6i78OpoXizIFbOeul6g1bytLveMzfeeGOpP80pJTpLa/G65557wity9jaUZGJdHbFA7TkI1mbo41ZaTSUVMILVUWxyBTyM9J7bd+aYf38yy5xzy5Om60m3mHqHXmECoqJkSR95uUk++FKTOfoq0/fMP5vrJ75mlqwiiUDNpf7d27oP5wb7uUdKNnBigKIBh8Z+5EiOr0ik78o5V5OBg0d8QpYc/PWffPJJ9sPoxhuP1/1hssESjQAHNBRLZLlFFsusmsrG+H7i3imD20NCr0WOmPGyWN7GzoFK++uHcah0KGol892jF5lvv/3WrFq1yvTv3996TkVyC+WPcOml15jn5htzmOiiXnnlz6aFpHKA8LTqd+5EU0+2V4qUAuBEItRXd75rGdBMOa/G9EhFa/qxV+UBT+ch00T10TqCdFbRDiB31CZxNWWEu2jqn0339qF3Eun63LwC89bnc8yz73xj3ps2zx1hRyob6VjvLq3NE7ecW6kJoiLVtz8dW7B8nel1+gTrVWW9sMTlNxqtWr1a5ihpEPU7530ALK187zVFUtEzdwrXewjPqnzPfk3bBDwuYOC59NtHwlSyqPt6SCAwaCD0kiyu/soeMQYNxgOyuPrwRrJz9sHJ5tRTTzWHH364Wx91jR9/mXk2pNTAQwHV+XeyHJC0v0ocA+jNJrIce+nj5vKn55p7P9xmfnXfp6bPqKvNZ599VqqzUac8++xk88gFA8w3u4wZftyfzHzxiYdwsSuU9dR7z4j6Z6Jcfr77/3A3OF4LaYw+czRpI5qqQ6/TtddLZ08eb6GEiouDZt6ytebpN782p9802TQfe5058w+Pm3e+/KEUaDASbpCRbtq0aGLay1weLbIy7bzcJbUZM2/pWjNi/L3m1yKl5NtAO+/ZA3u7R4eWJjNDhq3SD9HUVPqE/Bcizbqo55FKCuRb13T3ejxVBgne9+UchxfWZLLqqhXyhO+8807Yc9LPl5/bS4+dJhveQKSBsj9dFgsafWXjsUuGmDWfP2AeeeQRM2YMMzgmy9EQUdejj060SCNHOHGnc+qAXO2vwGGVuVulS7FETPvHeFMoo4E3/nScQbt9xHUvmosvvsRsL0mN4Hb+ZZddZj544ByD78ghv3nQ3H333eae9zab41sZ+zLdghE2EsBhO4XBF5htKRpw6ORMWi7a2qszz/Mxc4LjPvx2gbnq76+Y1z763uzKzQurhvOjhg8yU1953uTs3Gb+/dAVZuIVR5in7rzA/OvhG8xLt59snrntNHPa0UPCDMcv/m+6GfqbuwzqrppC9MXBvTuZ1OSkcoGD1DB+UPD2A3mxIL+RnBQsPlUVxWo6cMySZ5zGg06aFA4cHBs/frxORINb/+85JtRFlo9kyWosP0/9friZPX2Sueiii2wSSzkUkdCU3H71KD13tGyIIuvApP0ROFKkKy+nO/GI+/LDe83w4cMtep944onmB1E1XTI0yTz5veQfGXuT+de//kXRMBolOX6+fvE6g47xj6//bLOX3XLL+WFlIu0kgMP2yh+0b1CJoKqKRHtEBVURYgSrzCiUbsOYbdk5ZsW6Leb7hSvtudSUkpEZdRIFfdapJ4rBcrP5fNpMM+7UM81Xr9xltq1batr2HGmOHH+3OfSsP5oRp95g6qUGzZmjO5hn/nS6ad2shMfNXbzGHHLBX2uU5DFcUo/kS6bd8iQOTUQZzS3X2jnkvZAB2ktq/9D35ZxzBxHesjVs2xo4PtkkBg+f7Ye8X+ePqqePC19qLsvDsjSmYz587BILLpHeCWq/Dz74wNx7773WFnvXXXcZwMPjlvNbqeKAJJj0/kaXSoN60qhJV4wslawN+8SkSZPMOV99ZS6+6llzxr0fmhOe+9D885+3mHbt2rnP0r17d/Pak78zAy54xL7pYcPKsm2FLlPGJnu1WVV1gnZiNGmD80Q0E0zmTXWh13nXVuIQ+wa0Jz+kqioQ5oe+PmdPeDdj9D1TAGPyU8+5k2lx3dKZ71nQYLtFF7SYIdNc6x4Hmxfe/9GcNba3qZtSZCZeOcZMfneJZMGdQ1E7j8XJ108y7zx4hd3fFz+btu00n874yXwzb7lZs3GbyZM+qF+vrunZsYU5bHAPM6xPp1Iqt2jtpCzUAJVVOcRkZDCuSB5xAAMgkSfqKnTvyvSwcUCc96giawNwfMBzI+/ikn/44Yez69JNN91kHvviNiPyawM5+KEsaKbMA1ceYgYNGsRmGDEAve+++8xEGbRuDDuzTfZWeF2qAKL3ZHk/rNgBsLM/AsdF9JvE55nf/jY6IB9yyCFm1tdDrSrq7rfWmt4n32nulISFBAXqH2Hy5Mn2FYwnV0kFSOL/lMKV8Xq05q9hEq31MSMxHT3HOk9GrCm+lC3e82wjcYRgw5jcvBBQNG/SwIw7rL956b3v3OKHjRxqXp36lmnuODS4J2Rj6cz/ubvvSU6yS/odYfffe+8985/PF4lUUWTGH9dfGJ7oEsb1MS1atzcvvvaWLfPfr340z7w9zfz2+BFuHdW9AdP9z2dzzC2P/McsWL7ey4RL3Rqw7CEgcumph5kLTzrUpNcJMe9SBeXA8L6d7TNm1qtj8rVTIxWUYyRW3LlLjH1RCKkEOwdZdXWAoIMA3lnI8ddeXBuAY6U8KVy98eLFi0sBB677549IM/+YZr9fCxromM4991zbQd6fhQsXmjPPecCm2T2yoTGXXXaUOfTQQ637/2ZxSpgzZ4447rxqNSbSx4jzb8rCQHm5t579fXt/U1UhBlq93x//eLztu1xRiawWL49I7oWoUW677TYzW2I8Bog0eZW4LIwceZmZOXOm1fG+NL3I1nHaadi1yqd69VwczSi/dI0sca0+FQxN54TQY/51WXp0LQuIh+QDARqPjWPswT0F4PWMWArv+XtE0MjLyTa7tq7T6syd90+WrAFDDfE548aNs8c/+G65jJxDnLSoYI95+MH7zfhzznCvufgvz5vsXeFqGfdknDfwfup+yp/MKSLpMOWrZ+Qe8U4E61Huyr+9bBoffrW55v5/mR27IqsBmzaqbzCSF8ikUOURUoO65kYqq2op7zt0JQ55Zx6qDcDB427mJ5LdlOMPPvhgmGX8THHx96n0zHPPPWeGCmiskPIvXX+E+eijyQbeozFjTZs2tXbWxx6bbOZMuUJtJ3it/Y17HEgU9oXsBw3voG1oLPl6TjzxElNfvKjanXSHaTz894Lwl5hvvvlGi7hrYjw+++xRM/niweYnkRUOvuQxkVYu11TrpksXbFnlk2cOgxJlefmX1aQSZ+vDpItnTlkEQyzLcyfsWkQBoT3ibqt0/rhDRAoYqbvmlRemuNvejaKCPO+uqLcK7MCAbMhqkyIwToPjKFwo4PHUc6+YS88/x16Lh9W5fyLuqnpp4osf2bgSf0xJx9ZNzSWnH2Yevul08+ANp5p7rjrJXHrGEWZwr47Ga98BWCe++KFh/o3Hpn4REXSOHt7LrFwvadgFcMqjsuYbwX4FeYGDeUAgJA4PVUxc91xwgG7akUc0oGcANO3ft1gRgV4ip5XSbonEHz/+EvObB780PYWjzvrXzeass87S02FrBsJMB0Fm779Kpm+HTpb1AcVz9jfgAH0t/UJSiXy6VqzkEjnzoKigTu4l7rQLxPn58qfNIAkCe+IJmTjHY8gC/S+W9JZL3r/bnPz/7V0HfBRFF3/Sew0QekLvSBNpUlSKWEFE7ChNUJQmCAryCQiKoqg0QUBRBMQPBaVX/UB6ld57CAm9I37//9zNZm5zd7m7JJKEe/lNdnZ2ZnZ2du+9eXXCQPF3I5Khsy93fh/OSy4Hg3DcKT8W8/mz4SRcF/iyt7gn5avuQx81klu7/aAuUscxbz+DbVQdyvdvvpvmFhlmzJpLUqe1PgupVia/Sx88KR8egk2ZYhTsWXI66oye8K082KCOqj/79y2yJxGdBDsP/R7cwnSXvTAqlAqXce89Lx91ri9vdH1dOg/+Xp7vNkwqFMsr91fKJX2eqSY/vP+kDB/YC1vIQq7hBFqXdRwyReq3Hy57Dp/SxepITo17eWTN6Fmk5dLAw4kmHCYnr81HTUs4NL9TfgteCQenkTrUcdC7Uo69ZMkSFsnhw4elbv3uMnmrSLf7MiN23ucSHm79jFQd/juPDbIoRs+LhXDxp4ZJ/jpd5QA2FXMiYB5qWZWTQSapEY6Des5IfjeDcpNF7Nq1q/LROLpwqHz8TGmh5Lb9mLVS8L5u0q1bN9m9G1TCCbly5ZJ+/ahfRxhvZxlfri/AEMtOKICjy7JLX0jBx176mbm6iktMRWLgaXVmnyPN0l++cl1tlqKvMwTJ9KEd1On5i5flyUeb6kvW8a5UqSW02N3W+XNNKgLx5rHOw0KzS+cnqlvnOfMXl0zZclvn8xavkMIF8qqxtnv/G6s8ITPPvfu1jP5xudUlicD8X3+W0f9pJznTXJY06TJK6dpPCJ8lR2gxSVO4HjZxwlwAbv19U0pli5bjx45JrzdedRF//L5pr1Rq8x8ZOG4O9EMObq1+tVJKmZ4pXfw+T+ozyLNooq4Gg3+pwXVoHaGzzPpR6Dop9OiQdcbxcNRrUCHR5YtVKsTRPS0Gyx6c/9i3iXzyySdurRCnT58u5Rr1klGIrfdYGRj9tKsidTCr9E0zIFmJx5Ma4WipJ3L84BaxKDfFV927d5dda8fIPFy/ryDs4n6/LGWe+VieeKKjUDFF+OUX6ptEais1Fkx6PUTQVZWMf4ZVFi2BQ4xLd0L2Gf2QVIprZK/L7EdFOGyFZ8+ds5U4TvVKNguUunZy3LxuRen9ooNg/PfXhVK/dnWJxFazJhDpAuuqoswZ0sqAl++TL7o3lZFvNpEPuzyALWk1bwnuo34bs6lCgus3boXSOZ38vnGvnDh91uV6fE+6fjRNvpu7WnVDZNy7+2sSGXVW7qlaUU7uhc044CbEbefORqs8/y2C1de7Xy23iMG1S2fl4JZl8uGno2Tp4gWIJxXDYVG899642VK6xbsQYy2WzBnTSe3KxeVIRJTVXyAZvl9FPAyRF8VWVJpTv2XAnUI41CPHtRgiUX31xQq0sJKnEOKI/PLvX3WSFi1aGFPmyHJB27hxR2n94WKlz1j68TNwRh6LCBedZPbssTK8TSnTCCE0VgdJuMDlC7nN4+RYenIMNJvmzn6egB89rzPg4b6ZfaUXghYuOAIbOSim6CX+E6ysKqDxmDEjlafOmDGOH7an/nS5QThYVESX3wHHLHhGi7/ODFvzuICEw0Qw/MFdMkSHZnsta486d8kstvJDX39Chr7eAkgxvfLboGUVkWfuHNmwo14+ua8hdnmcs0d+WX1cdpy4If+kzy4FsClU/pAsIHBWN1LuvtYSqsx1Y8qYW/PHYqwEHVurfvTtQteL8Tgjl/H5NIfIokDeEIge9svQjz9XPZ7cv8nqef+xaGnarLlMnjxZ+vbtKyNGjJAjp87LorUHrToRBzarfP2GDyDkxzE8tyseofNfk1rl1Jw/3biGnDx9DmIO8gyBg+YslGgKE0mdERcNmtA7e45h3wK/VXJoGaeoSj8EHf20YHTlrHelSpUq+pI6Uo/B8EWVsKBdifXC0FbFZNPKz4WBE03o0aOH9iRn8RCkZGOIYJkRmQ90m/KVcV8lXRoxwiG+8GUcRYsWVQ42b2C7zdatB8qL2L2LP6chLcPU6qkr9CO0tqJOpF27dl67LFSokJI5On+OFFet99og5VwkwVYoWImpnIHyPD2e0m2AUGjEw3re9rnW3IupHLf33fvFJuA8msi6HYdk4Z87ZNOuI3L67AUwGvCUxshu3rgi2/dGy6JV2+Vk1HkleipWMLdULx8mlcqES1jJCpImBHIAAzjOAb06y5BPv5Ky4aHSv91DUqkEPjGMXYFJdYx2vmQ3YnyvfThVVX2s2QPy05z5LvNx9WKMGOIoiMQa7OZHHwETjkddsE6vwjNeQ25sOXvgMBwYa1aVP9c5CMqsZZukROE88uqT9aXVA9WUt33WjKnl3BWfJCy6a5cjCQQXAHw/1AOScPBoIxzJBpm5PJz/J2oRrb9Vb81prVYLa6s/YPy2YcMGId7QMHv2bHlj4BxlW/tEEZFPP+0nRYog4wHmwlG5LAgMcE5WVHkZabiHqkmqOCkRjmKcGQ5IU/CVK1dKh66T5YlmeRXSJ5HwBAUQ9O2332DS2bCncuRp3bq1qtqlSxf54YfO0gM6EfqFaDNEd/3QvJdCj4uOi1Sz3CnwnH5Q2vTH9eOh8x9BK1iZp0+Ap3a6/JLN4Y/t7FC9bFFh8gbnL11VXufrQWTWbT8kk2etQHTcmaAH70mOrJmkdLHCUqRQftm6Y4/sPXRCXnuqgQzr2jK2j4TCufh3F9I/TtbFR2LS9PXPgHT/ka6dXpbPRivHY5chp89EWwMHFM6XTXFGml7p8qL5suuspMtIpi8GSJRXrd0kLaH3+Wn2fEWYh02eLx9+s0C6PXO/3H9PGflz6wHJnjPELv2L6QQ56iz+dr4vlws4UYQfz0tuMSuCItJhMBscbG2EI2aQ9g5S1rnirKgj9QVatSovf2BB+tlnv8L681G1H1C3bh8KhB1KyvHb+49Ls2bN4uyKjsrNsURlO0ALpCDhUFPh+79rrMrVPlk97gVOYpAXv7/BiFg7ZO4QeQCvtkGDMKlVq5ay5bfvF06zOHaSDqlYMUWH1I9g2rR3ZNGiRV6JBpoooIbKSThi3NCd11LogbTSMVnI+GJNpU04TSJMRzJNIOzzpMu9cRz2Nt7OGeyvAZTETBro+0BCsn7HYdm0+4icOXNaWjSoJC893ElKFqF7kBtQtIL/kEg8NAomhlcEBEd+kKqKqowTmCFf/1uqlikim3cflek//iS9+rwjhYqG41oMhBQpZ52E588hTe4pLvNW73Mpa1gtzDrPG17JypuZMbAM+28+KvcdpcULhcigzo/LTMT2mrfyL1hjwRT5n1RmE5c83xHn/6bh3aorUITId0kCQsJByx9yHNoR0Fkvg66fgo9cryqKkSdPjOGFt+ctXbo0Lv8ly8+J2srh0yXnlPhqAILicasHdz405OjmzJkj8+bNh7+ISIkSuVW4kiefrCOzR/6Ptyvv7Z5J6VpS4jjWYWKoqks1ceJEZboWFhYGs7exsmvXLhk3bpz8uPyiLJh5UAQptUyVRnjVzZqVUYSE7H2HDsOVl3Il2++IugsGK/MFuO6LcFQcgMMJpImOUxVjfyjyRZFeRNriLE/uB1drqjjEVHxY7T+hYyKxjKtV20qVxQr0vuMZnaa3ujwhj9mzZJRGNcqoFFi/mjCgtSIa7AVl+JYozlk6e6Xc/2gdVUZ9ydyRXZU47T6YzLZ4pKks/3OjmL4vIYXLSva8ReXcqUPsSF5++G6pUjpU9h09IyE5MkrdSkXgw+H4UNOmzyThlRupevZ/nbFtrCYaGdKllTfa3K84J4qruA9JmlT0YbF98EYnJAzkIs5ExVama46RRxIOxq4iwtPlzm44MVSQ87eQUoErCzWJeiuGuB5UL5roYvwRiAa3/Bkxwr1YiviLovJvlp5XIUiIY0KQftofJR8vGC5tuVOdA8impkdSi2hnWZI8JCXCcRIzNBOp1VuTtkrZsosVQeDGTNwbPDr6ogogRb65AUSK3FLj979Eun8HSyomJ/CFLFgwTJ/6fTRs4si4UAbRAakyEqSaFmxEriLSdqsk+WZe0UP3RUzFukQw1D1opTfLGLcqMyxy3ME/XA4AaBGU5EBxFP8YxCL2CPf8dVDOn3Hyocblu0sXllkfvyqP9Rglze+vLW/17iNFipWSkHwFJG269DDBbCtrfxomN69fUbSoaqlQYXKFu6TqQx0lfWZ+2a4wa8b38uPPc1UhHQXXTH5bKpaEKSEgPYhX+yfqyuCv50rJ8MIIfqiKY/2jmIrhR9wRDs2NcDvZLCAcfE80eCAHQi7FsDCqhY5/itV5yikI14/iTRyu6/BIHwwCiQANq2fMGO2i46LUhAFYx4//n8DwU1GlB4Gc2rV7UIm2KBbnHkPt2w+Ssevw/TngDA5JnmhwqEmJcHA8XZFqQ+dU8JHe0+WnQTeEbvrbtx+D2CqzjBvQEPuLP6DYaVYmcLvYkSPny+/4XZfE+WovGzWpBnH8y07BDV60E7gUuFefGEeuTtYgFUdyMijG1eSTrYChWiI5huMmQdCI3t1jUOFMZGSKCelEppCO0/PY3k5zHFlhNZXkACt252LT49DWLd8ioVDEuwNyOSu/7q0c9po90cZdFckCglkkP/YRyZdT8ubOLgztwbhdoSHZpPK990v2QlyDuEK/t96UD4aPVIX0d1k6prtFNHTNN595QD6bukROn46WbDnAfnsAEohUeDe38J5MIPIikaCnOLkMckyMBsDxsdxw8OTCKSUTjmKcF8rkDF8uFnmElSvXqPq0oNmNRK6ibNmycuLECWWsMxmacxp+88fVvzliXb38stiJEiUhs2d/IaVqvSYHUQ9ACsLVFWlRkoakRjjIdTRCWkLi0eKd/8qkt+6X9957z+Mk0oNzHYhGu2oiH37oeXc/jx3YLjz1UgNZP+F/ctkIj5E6dRopV7W6XIIMeP8ui8kgc7IVqQjSVVs3yeX0Ez1QhpugmILiJ28h06nLIJhiGZrh8ovXIStUBeOfJkS5shv8nHH99ma5BvAM17GU37Fpj5SqbC1KY1WuWKKgIh77j52WA0i0MKPOhcpzHv/B39kLOELmxD1CTiFi7jGEDVkIHcWIbxbKS537qLnLlSMrHC/TSURkNCIJ31D3CQWh+WN8TyleCLJ3S/fiGEJuzGeD6qWwa+IWEIZ0LhGFzUHy/eSCD9Rp277arMN3rnVQFGkxcKVZ5uynrNlfCswrwsE3TIIZF0RHR8sPMHZrWUbkpZdayYN9ZsisWbNkxYoV0v2rDQoZPAas0K7dY8ptwJMIl/chUZ84vI007DmVp6T+XH1M5klShqRGODhXJOANkEg8CtN5Zv78xQhTPCxWiHXUAbcxUkZgFaxljiwLFN7+/CcZ9s1yi0Xnyqt56+fl0efb4oNyTNUH3V+V3VstG31q0nYgkfPg0jU5AR+ooR4wZdzkNjiPXgkHEAtFG1SiamDoF+oBPL0DzXHQ4im5wZ5tB+Q6FhGhhfPGOfRiBUOEyR+ghdjyDbtk1rLNKthh1NmLwujBObJmlCfvrybvtmvutbuRPZ+WX3/fKmegbSUXqImA2Sga+g1a72jCwU24Mjp1WdrZk8Sde09QDMl3a4tXFWb2lwLzSv4Xns+3J+vW7W1FHLp16yDVqlWDRnuGfAW96wHwDYyI+/nnb0i5cuV86wy1GjRoIA2yTpVlF1STF/E/SDh8nj3XintxWhfpe6Q6X4O6z8CmTS/cm1bFo6pUqZJVW7HaPqwSrAZuMtwnon77j2QNZNkKwLpXubeudOr7H0nn/IHpZj2Gfir9Oz4vEUeP6KIwZJYh3YeUnKAfBquoIZENxVREPNRVeAPKbhWRcVaimIr7OrAPmzWO1Q2JCkF5jlulSSBDNuku7+OIQHyr1Nh1L38BH7GK9+5iXaWF2CP1KqsU66IPBWEFcku9KiVBfHZLFFbCITASscN1cInkdqjHuHjhgsOSCu+L3CW5RIqkSHi4103EyZMqbIaNADkUK/aOU865WhW4mbpYT0gJB/cN7wUKQaJBeLRxbvlgQZTwbO7cz92GHVEVjX/06WEI92effVaVPvtsDVkGlwGAo1OjblLMxs2X3b5RH8at6yP1R7p+Af++RKyXyi9/KTVrdpQJEybIRS/7DaC6T3AaK7zCD/W2iEa69Bmkz0dfSNf/fBiLaFzFyvrI2uXS7fXX5LXXXzc/kHq42XSfbph0Kr2qh0ITXBJg2rDTOsoT6O1iswEBUWYOaqG8xalQtVniWF0QYWlZeYGQ5OcacxZipfQIlZImXdL9qUwd0k7NtxIZUpzlBk6D69DhvclRkFBoIPEnp6FFikrHgXdrQG4jn1yz1B00QrIr2lheng+VMye1HN6BZrjvP15YBg0aZFVkiH8CJOYmTlBl+h/neMuWLWqDpwoI0lqz8wTpMmKFFZ3Y8B/JjDYuk6/7SEpHteJMSgOyjYXL3/eRJiAR0b2MVIDbbKwZvUa6IT0DUzZ6hFevXh2X/IMTCNtQ9skB1v4H+QsXlXdGjpdMsEJxC/hR5siSSRo3aQyFZKQKUDdq1GhdtRUyQ5H66IIkfKyJsVlLaFrdEDIAodgVqOqC8x9FUjR71hzKecSmUsQbSMZTUERNNNhFuJ9iHPPeiZI3fTc83ODi+UuQ+RO3JF3IHwKFO6yubmJnxUhsFpQXvggUJ94yuMcolNPDOZ3T8o1c4GVwj7SkI1KjaIrEhdwkTXhtHAeRLeWMMWYjSXc63I0sHIU7kDTROIV8X6QFSD8jlUAC4cjJg1coWLCgvPPOOy51KlSooDA9ZexUkpO4cAFGB2b6j307/7Qyw9VLMloafPp8OcVtaPGusV0EF8zuqb/LXW/vSVInHHp2jiPzLtJApIeQ2iM1AxeSmqZsY9d9JVXlK3kGQcO4uU+JEuo7QBXPwGB3RZr3tUQz5arWkF7DHFYsnlpRTMOV2qVLl2HtlUcKwSqCK23+8JzQG8cDSGN1QRI9fqjHRZNaiiwyg3h44zbIOfAjp2yc3Aafm/NBC6t/gHRMnYfum0ftZc58OMQqSQt8W9jd5QywmLTGHjMabkdLokFQnAPeVfYcORQyo36DQAdA7kCXH061h2hKind25swZRTg0gaEOpADEwOcYrBLXbdAA57/ZypLDKYnGNiRNNDhmiqbGIxFBWw/qC+FA/VhAEV/fpnlk8LxIKffsJ8KvnPzcDSTyqdR4E0OUQmoDB0FG2OXWvnpRtXHjRvkSviBOoEtCkgc+V3ICzv8vSI8ghSENQCKFlg1IPbEJR8mnP5JyYAU7d+4s3333nRw8eJCXXYAvrOQT/S2iUaVWvTiJBjvInDWLhFauLfPmL4D35zy5BWurNwd/bF+djUJVB+/qctckc8Llcx09Gq4wCXR84qrUG1BERSiA8POMhMutSUk0SFQ8cRyaqNL5Lzkqx9PB6U7/wL3Nze28xo2dNBATXoAeg34bRGgkIBpOIJ4bzdvTwgw3B67x3WhxL7mMS07RL0VVNo6DXdTT/SSjI41WSDTILSlQHFcMUbSIBi9qUZ6jpn//KbrqAh0stXn8gT0JKjENFqER8wZL5LqxcnTOQHkeIq6f55yQkq0/lNDm/aV///4qftkD7cdoVo5Wpdaizr8R/Lu1kwvH4W5WjqLwP0iDkJogvYBEbiQbedIdkGeNXrMC7pwrBIYOUh7rDXCUihv5ZMFx7IfgYBxLlKuo9BmoEidQ/8GUpXZjqy61hm27vy1ffzxEl5EYk7g9gzRNFyahIzm31BwPkQP1G4xnRI6BilNPoBFJRijQKQah5RVFHVSIezNQ0ISjUN4YBObpHv9aOX/dfEs+QFoQjlvYOCkpg7lBFd/TRYgUaSF16NAhKVe+vPLNuIJwPFSSn4ECnVwHY4vxvZ3BAoBGEYrbRFsq2LXokliVhMgJlLAkJyiKwW5GsohGmcpVpffwLyXy5An5evgg2bVlo2VBmQl7vRcuXSVez/fFF19I2PDh8s4Pe9RGcj0h+SChJpAoUcRFKRfnmmJf7j/+AHQdzl8dmZTHkSJZP6mDjz+fJP0Y/FXPRWqDRPNYEhH6J6xGIrcoZAJXgk6MW4+4MtP2yskzDlFt9py55e0RZBACh8iTx+XYwQP2FRrndSpSu8B7TrSWFPMp0Epxym1P2fbAYAUSCBcAYimKSJ8n4eTEvZn5kPRZINvtCbiSJZQvVsBTlX+/3GWd6f32+RAbijvuJWXYtu+YNTxyf5xz+ttQBHXo4EG1WNLv8ji4DkZiIFdBgsE65Bzpm8BzEhYuJPRCwerY4V9rnCbpLIkGbJ+EimYFmmjwJE9ofkVA3h83RbLncohP6bdVr8Mn8u2vfzoaBPi/Z8+ecvi392XuoCfk7rvvdtsL/ToYQqkJfDecRIMsI/EWcVaygJRAOMyJvo6TBUg9kOjxzWUuWexOSF8gLUVSwNXWgFETseoKjOmKijgpK+bNkROHDsiDLZ+SkT/+JvWaUoJmAdHTOKQHrZLbn+GXnE8PgytLsu4UV0XanMNouqnNaHV9EhgGkqQohNyGFlPRF8ATaMJRBeE5kgSQBvhBOMrdXTLJi6q27Y0hHFhCK6TPd0S4AKdVBi9kwFACOcVzIPr0kKa4CpWVToPcJn8TJCA2Hw7VDv9CdSaJH8MxPotokEh2695NWj7+iJw8vN9l6AXDismn0+ZI3SYPq3I6bL44YKIMGEOBQeDAezZt2lTNp9kLfzuTJk2Sqvd2kT4z9mv38AOoUxdpjVk3qecDw5pJ/alixkfW4g9nYun3/Eeoh48lJxTc/sLfN2BWt26VUjbWuK8hPKitRY283KOvFAwLlx+wgZQTiKLmIJVB4gdyu4GcmAIquqkUJzFQeiAgHBOoLDdFV1kh+giBtc5WmBRSqcoVB1elqdGPJ/8Ntfp1Gg6USyoch59LpVwQsZWqSFyUdIGh5TXwg+O8k+Pgke/oKGIiVa5cWYXDoDHDMWxTy/AYPNLI4W9wKBSd0KqO12nWSxNr1Zfu2Fi9xxQluRxf1FYk9aOksrtLl1el2UMPKaOB+YuXIc5DsViDfqVnPyldsbISN3PO/jP+V+EWAMPffDJWXX8L2B89yidN+l5mYmQOcm71Mh657ki2Yut6ks2kdMJhn/hWLCCr+MKbNIDyD86diZZNq/6QkhUqSYEiYW4bN2nZRujvMesbfhMK0uH/OiQuuR0yMlX8r//juyb3pYDcBsOG0KtbK0X1NZabu/tRmVq8eHHZu3evElFRVk6gmCqnU2Gu25pH06KKGyndfiC74SflQIsnXmzmjNvsf9vEfuZT0Rdk56EIl9vchXeqzG3xHVL8RGJAU1uuhKkgv4yV70UkhhCnSfVpcBkUV3FxQA7kCtqR+7AB6UglpC228qRySqKxDclifx959DGpU6euCqGyf99+uYWwLJ6AXEee/AVleO83YDRwQz6eslBCc2eTns839tTEa/n+/fvlm2++kW+gDLetGPkRUiryEdISr50k4Yuxvo4kPNb4Dq0lOlCEklYyR/bv9au/owf2yZY1K6U6uAxPREN3+Njzr0jVOvX1KY+5kNaaBbch/zbuqZ6fq1B6ilNhxwiddiAXoh3EaHpbukwZpQM5C06Dug0FXJGiH2/7d2gxVSps4ReKGEy3E+ifsm3t7oCGkBnhP4BJA2qb2I2Wrd9lKXjt9yLnoIEEw3AyU++ThIOEhUSCiwHGqaKoi9wHw8+4gfvdlCWFopoYxHYki2hUqH6vVKzbSNZvWA9fisWybdceSZvDktK6HXPpSlWk32fjLN3eWyNnyiffLXJb113hSXjdM3x6/fodpcRTw2SgK9HYhTb9kIoiYSWSfIkGxh7A8outkiccNIc95M0OcjbqtFnkMb9vxzY5cfig1H6gKfwdHCapHis7L7z+3lApUDTMrFYOJ/81C/7lPPU8CojsaaZJObjd4Y+rToosaIVD5FGqJGT8QLpUqnLVSsRCoJcx+yHx8ASacITmyiaXDkfIDSNwpKc2iVX+0yQs8twjw8S65b/S79J1xEexgVwHfTo00IqKkW+1AyCV4GrHSxAOHYSPMngCj5rjtL3de3R/Sej4MsayEimDHlPFGrWkxwcjJCSspGQvXV0yhVeU4rUfw7h85gAAQABJREFUlPDSZXUVj8ewUmWk2yCHiT0/9V7Y8+TgcXz3buDw4cMqdDoV4lXhAlDg4QHSHmFDVmAaHb8S5c4xFk1rI1FcPQTpKFKyB7fLimT/VO4fYD2Kx+lLXGG92+E5uW78uPQ1faR8ctPq/2EldgWcRiP8wNSCXV+O8zjgi4nw/QD7HwOPI/tezOm/lqOIoYC+G62gciK8CB3CXABEoGhYmIpXRJEFHSmJaHbv3u0iolJKcTRUylWXDlxPiKgIlaEYTw1zx9O7DluEx7Vm4p79uWi97Ni8R8rcXSLgG+3964AcPxIZcPvEaMjvcw4CHGqIRcNRoN8B65BYWBZwaMuFQA4sIGjcwHeqORSKrbQVlu7beSTyS0rwAQYzAckFj/0NUdMxGK0QfaeHDjJ95ix+jblC9ZrS5tU3VRuKcis8NQA6ikkqzEjbth2ldu2OEgJCUbTFYHlq2CL5eNkF2ajupppcx//fkJ5Gyo/EBdsqpBQFLhOeop7M/cN0RLElV7x4/pz0f/UFtzX5o9y6dhXkoxmlXJUaXlfWbjtAIQMkDhg1SZk+GnX6Ix9/rZvRoQ9ZylMVUClOZEHZtuYe9LVQWNpQ0U2Cwq13iWR27tihZOLKm9hZkXNDhz9P8al0f3qnwFoVi0nOsPxy7dwlOYOggf82rFmxGe+wFJ4t8M89EyL7Lpn1+789dK/3W43IvUdPnTHq2PgDXKF3vwZymBbhQCEJCb8FZZYNwkHOku+MXKjmQnRb57GI7fx2nr6Fm/cxB1ALEoGJC1dJlwFD5Vz0aVg9zpYz9sWR2cBL/sEnnhL6eBEuXb0hbb9YJe/OOiLYY05WgTQYPMjfqELqPQaJC8PcSM2RpiHFsHw4SUkQ+C8p+c4C5bRUoilglNvBb3TQp9Zxz7Ytyp6d9t/xAdqM90QoE0Okw1/3D0jV4tOvn23r6/pUitOaivoKE6gQZywj6jyKFC2q4vbs3LlTmW9yZapR0i1no5xAOJ6AfgBUzmrnv7tLFZZMCBWeGRsZnTt8Sq6ed4hEPLVP6PII7JFRukK41e1B7Em+DFvBXsZeGb5CSGgu2bFxr5w+auPSfO0gEer9d+kml15J0F0A78AMI0Mdhqm7ICHRe7Do0Pc6kCWj5vJd6/fu7De7S/+37+R13HqYvj2fqUOf96RD7wGqKBPEb1zs1YCUYMemtbIL2yDEmhvd2MuRIYjo72LAfuTnIn2G1AWpARJ/COToX0X6GekiUoqHO5Fw8KUSaZ/Ub3fv9q3ySV9axTng1PFjEhV5UsojfpUnuHThvKdLscpLV7xbnnuth1meGicrkELMwkTKt0a/6XXfXF1SFOECWG2Sw6C1DcUWVJoyWButa6JBYLgSNUHHtzLLdJ46Eh1AT5dxi1VCCDY8Soe9wSN3HMZ2qg4xlq6TmMcM2Hkw4qRjjbhq4ToZPWiKLIWj1xTsv+IObsLhbx24lB2b91mXGXokVeq7ZDOU0UkFflpKAUkM2JC8uqAJgq6l41KpcxAaEg8qyMk9kuxovQgXOm7MrPnd5tN93aYjv2cibgUcJ4lGrfub6CLrmDFTFqWXJGe9dsUS+OO4fsdWRQ8ZSgwaPEQmwoKFyD2E9CbSKKTlSLYfE0ruALhTCQflkHcjWS+dYqmxHwzAKvSirP9jmVSv2wCX3f0Uwf5fuiiX8IPzBxo92lIaPOzyEdICZBNSBn/6CaAuP3IFXF1SBGFXiDNOFVdpFFNQXLUX+wTQh4NKUhITDXo9y93k3AHl4lS4UnFuikgKg9MgcGWYt1wYfD/SSOTOw7FEZe76TIiyitjedeHMFTKy/0SZ9e1CqVavotRpUkP2wf9h7Zw/5TKiJNP56xZ8dC5GRMs3H0+TX1Bv8ifT8S1sU0O49fc/yvro75ua50qIkQXex59b98tep9jP4GZjdcjghiaYOg+WK8JBLhTvje9H7/DIax5EkeTYbxe0wI2nIjl+mCAar/R8R+5t+KCX8dwltJais9/KRfMclmNeatsvtenc1dT3PGe/fqee+6ftTVmzFIHHIfEgZlDI+88lC+TAzu1S6d46CARnLdJjPfX5s2fwo3JhYWPVsRdQwd6ybSdlBrxvuwMZoU5BpB1IpZFIzBIDLJEYuQ07UKxEERVFGrkQMn0ffTXAZVDMRG7DBBIO6khIgNwBORV6HhO4uROBSI3bp2YHp0FIky6NhFYqJqeAtKMPnJRcxag/TFx4/MUmkh1bsEYcOyVloG/JFeogZIWKF5CVq7ZJJnA/eomw/fhp2bfriNRvfi826zotc75fJAWL5hUqx6/BKaxUhbDEHayPvU+avcqqSd3NDWd0XKvQmeH8812QMBC03sl5Wc5jgcCFA2OVKWKP1Tn9byiqYtI+O7o+jrWRvjfO/61sY9xoBpJ+VfJs525SpzEZgLihYNFw5ay7eukCuaf+A5LBzW/BXS/nos+YYq7MqFMGaae7undS2Z3Kceh3TFlETSRrWRZx/Cgc+GJW2bqiPlJscwXXPVid6Gqxjlz50fyXH3uO3CHm9TCckHgkBhF/Gf0qCkcE4o5wFEbsKRIPEgMGxWOEXBII6jX0xj44VWU8euI22Ad1JzT7JOiIspQtHzphqBJxLRX2jgiFNzaGJBciXImTapwI/xo+fK883fFRadyqvlSqWU6KlS4iFXE8Cf3H3lNnlSPkbnAba1fvkKr3VZJceXJIaewzTh+OT/qOl9nfL5GaDatI2G0OnUL9EPcjn75onTVLnogGK9BJU1tL8Vz5ajDjBIojySVS/KjFWvodavm+hakdbSrqtv/isS7uRUslC19xEfbA4638GkKuPHnx7mvL6mUL5arBSXvq5MzpSOn78tMuvwPUzeup/p1UnhjIKrnN3xYMuBHSMiTKcGXlwrnywhu93bLq1685DCXceNayqUegWW4m+IBcgiXX6wM/lE/7dZcL587q+sWQIfEoi+SfIFb34P5IBZ4CEgb7mInsdfROBjmMQPBCAi2u7CtNEhOKLvRe1aqi8Y/hSBiKhED/DVMZue9opFQqWciojSyoRs5wWFqdv6z8O9LCXPffgnTgehhKpEGze+QsxFSrgIT/B1EVy2s9WE0aPVJbETfGbKpco4Ls2b5fsodkk8KwDLudEH3ghGTInllmY3/yM5g3QqZ0d8nl6w4hog3BO4YKwqH9aVhgiqJUBRB2LhCUjgN59kFxFnlTcpduoLibssQsIse8BEn9Nnmj5k+/IA8/8yKzfkOOXCFSuWYdWfP7YuhFmuIZHZyYvSMu8vq9gigQVxzz7Ly+AccV9rp34rn1Mu7Ehzee+TDytJigDFUhPYqs6PBnB+o3yHGQEKT3ILKxt9HnXPVT4ZYDIiHuAbJ62SITQedCvSeRRun68TxyUfAFUir2Q58LrixNyAsRBeP5UI/B/Y+pRCRiMa2oWN+BlmBnCN8PrkztQO6LQfNOOAkP5eYmgiLR4L7Y7iANCEZqcCBxwfb9J2TMjBVyBU6EJQon3KKvTOXiUumespK/SF55qGUDqVqvkqSHMj0dxsWQ6mnSppa8BULgMJk1riEm3nW8l9MIZHjj8jWYNYdKr89+hH4jUt0vBySAl8Hk8dtySzico9J7qZhcpB4wDRoY+JBiK34DfJ/kTtkn36UNKKccZCtLrNNy6HgtkvXhkst4umPXeN2PYqoMGTPJX+vXSqHw4uo5zQ7PI7TQ221bq9+5Ub4a+XuM8zs6q5DKHT0DMQ8/BVlyHwq2rV8ts7+b5DhJ4P/cUS5/kTAVnTcLfrQG8Ifyu3Een2wHNFYYmQiAW4TagbGLyBns27dPrTqZJ9GwfxQkHFSquxN1sU+GslBKdLQnaJNOdYJ/Ow46OBl97u+RYR8qPf0f6T/uF3mix2iZ8cM6uXzhmr/deKyfF1vaUgwVghDqSQ0Y0v3kXweVAj8EBPh45FlZ+CeZUwdEXnQcTQ5PX9NHLYLS5/YjLalILMiR8g1qPQi5ECrMbQSJSNz+idi7TIhz6hIoj7OIBuNJPdulu199M26cO8hXsLDkzhcqe/6yfvKqGvfq6P1iKzvRIPG6110/d2rZv/EBJKe5bYzBWhjpv5PHQSm61WX8DPhH8PZDdWng5SQkX375z9gpsGhy8WylPHeml2a+XnpJV1TbvQIBmEC/DSpEjx09ih+J48fFXf3sFle6jTe/DTqRmQ6CNxELzIQdUILHB35cvF7J6tnHVYhRWn88Xu595gPp9tZUWTB9q+xce1xOHDwr165Yqqr43C7JtKXJcgRMgq9Br5GnXJikwS6KU+autubCHKgNuZuXVN7b98r3z4WBcvrDIoPKcV3fg7iqUqwbJGxBfXRHjG6tdmrUbwQLqn5+3eWff25J1CnP317J8pUkEqb3F2DsQqC3+TvtYomn1uNSkNNQMxTzL67vLabmnZN7EI86H0nNDWWggyd8ryJncgr4gzp6YK9kzZ7TruTm5YCA8lSyxjZ56gR01i6gDh2NSAAVlQuBaIxBDU2gmIp7NHAXMooviCyUqAnPx/ATjHVE4H+uOgvD8srdx8K4VvQB2QEPc/ZDH45jiGtFpayGTEB4F1aMxIrWXQ+6lucj5flHoLh+Hua0W/YcdamYHqKzyhCTVcf+79WQsmM8qZwe4spTHM9iArmvNOlSS5bsGSS8Qj4pWCyHeTnJ5Kn7idx5SO0+SKKREboNAjmvrc79N3JmTiNnLjlUYnxK1ydV1dW/u0AUCiCgpSIMMcVWjoshzstRLiLoJIh3T9EjiQZ3BGT05Ji3qZp1wP+vrA4SNvMMuvsWyVrplKpQWdp0flONn5wCd+H0BUg4Du3dLfkLFYX40aJBLk0Z8fqXbydI3cbNZUi3TioyrlHhT+RrGefBrHMG4hYu33lTRV1HGqT7+Oi3bv2tQhfc1/QR9fHxB3YT9v4sp7I7IYAyV/qNLP/tZ4V4nX1WdR6XB3CPhmjzsm5H3YRdMc7tQyMiIiw/DZrR0vKLIgvqMSyrKHRCbsPTnuK5sTUm61JGTqBZL0N2m0Crn5ceqYUQ7FS5+g8ZoW/IhxDXdMybu3KbPPDAA2q/Zu6Xvf8Awm7g3mvh8T7nr79kA/aYOHGWfhm3JCtNqqH0/hv31+km8tehJ7l47ooc3XNa9m+NlMhjF2Tv5pOyA5zLjrVHZc+mk3J452k5ffyiXL9yUzJkSQd9x7/3U6GlGf1c0mbKIKHweE/vNGXmvhuDJvymJjBd2lRSKc/fcvS8Yz69EQ6+ey4c7N+AfhNcDJFIUJ+hvP1xTo6U5rg8pyjLsYzQLVSgvl+ts4TL9EZXo5AsosG4Uc/AEpG7debOG4r34OD4fb3luWiIXvH8GV25eqs5Fz7jhg6UJbN/sjsILkSlBlbFYMZlBv69X4PLbZP8yVKMsLwzKc/p37HbX6NHWqoQBIxfxThXWbJlT7AHyZI9h1REKOjf58+xxATovAFSJNJaJH/gU1QuwwY0kdWKUbODAgidTvNbAq1o6LNB5EB9BZWkREQaWeQBcSDBdAcMzU5rKm3mSaKhvY/N+rUqFpcK8JuID5SEAvuz7xfLgYMHZcSIEdKpUyeVuCkRkcNhEI+TICI7YSG2Yt8+mb19u2wC93ME47tCSyEgx0w2xENCQiJy5dI1mBLfBPJgqJS/wf1dR7yjS9jh8Yzs3nBU9m6KkKO7oyXq5EVYgd0CInIozj09z+mzF2XynFVSNDS3ZIay3RegE2I0jAAuIBprLlic5cJ80VlSwwcT58mavw6q08b3ZkKsqRuC4SiwMK3j1PW/k3B44jjwwVG7rsKpKwdBnPO7oe8HvwEdNdfolBrzb4zzhMh+hE76I1kfGrmAF954SyjS5eLKE+HzdHN+s2cRsypVKnCYHn6rZ6Ii4asz2fzNsbsZSI966jdYbryk4GS4nQGyqjX1lZwheWXoxGnKMoqWVVytUNGdkLAZ0Xg/e7eX+SHzt9sCaZYf94lGXeXlRm4hu6sCXvlt0OnrOFbnhCgoxIkcuF0sf2zcbpRwC4mcRijqugPu1VEWe3UwppUOS3IcexJo5apJfF5+tI5M6P+Cu278Knv09dEye9Umee7ZZ+XLUaOUnkZ3QG5n9erVsmzZMlm6dKmsWbPGxRSV9XLCS7ooRHeFcCyCuSkCq7JQzE9mG0HRfXo6qlU6rK7SpU8jmbJmAPeZDs5AN+UMzLVP49uYvmK9zF2zTbJlziD/Hd5ZGtUo7akrVX79yjU5D0updPAbyZKPHKKFPx3XweUWaPqWRCFQJGF0j9TyxZS/5a8IdRqzRHecuvynqCofDCHcWcTpiuQ0uQA4x3cPbi07rPCYyLlRhMWPkMkJe3AspU8S4Ejrvy66H36DjzzzkjzyXFuYCce24tP1fDke3LNTmdzSc9wd9H6plZw65iL+HI967d3VDZbFzIDr1xlTHsw5ZoBUgSYs1o8kW46c8sHE6UAULgrtBJ2v/y34TcZ/9L7ZJ7XN9yGtNAs95Aui3PolULZtN8NleBGKIOirQTETdRJcjWqTWhIBjSjyg2hw9ekOSGgo8tqDuFYaDgPJENkQTMKRA2Kq4/M+FIqd4gOz5m+SJ/qNlhAg/YHvvy/1GzZU4d/drUa5IdGGDRsUMfnzzz8VIdEmw/YxsH12zEtWLAaycLWN+SBxSIfytEhqPpxKf76Ma5gjahcuYw4vwenxPKLQXnU6P9r7LpQ3pxz5bai9OOYc97kJ8RmV357gpyUbpeVbY9RlWAjL1D53yVtj/5H9px3z7O2HTB1VfnwHHkKIWLckp0kDCRIO7kNPU23CUSww+J0YhAOVVHA/dT2e/75G+7a6D4617Zt9pG7Thz1yubpuXEd+h4f37cb3nx5744THqj5mSH9ZvZQSKQsoB2xunQUzHmcghg/2WOWOvkAMWBlpN1JhzgTDjbz9cmsZNmmGz2EL2M4fYBiFM9GRMnOCA1GgLUWKS5AqInG15w166IsMUmcnGrzGH5R28FP6CCAuWkbRY1hzDkQSRKaeiAb74TUzlhXLNNFg3iQcZy9clgk//yGvPdWQlwKGZvdVkIK5csix6LOydORIuQFOaQ04iHtq1ZLw8HAlq9edM2Bj3bp1VdJl3NLzjz/+EBKS7RBlUanPlTbHfQaIkylQoHkzDQ7I+bDf9BAzvQjdTrGCebx3iRW2N6LBxhR7aYDOV+bN/0dO+jpU9O9J1Kj7tI74Fgjme+Q3dBWE0SAcCbVqmopbPa1uiH/83jr3HyzV6jTQRfE66oCOad0sfH6cMNpONKikeyxeN7yDGvO3HYS4Z4BLQS6rw3TVbDlzyUffzFRiK12W0MfvvvxEFs2iuNUCogry3FhneoS9uFKcVxlCnYpxO1AsoX9Ux+G0R6TCFSn1HAxuSCDFzG6sOlWh7V9BWFoxvlE0RF0EKlej0IcGsmtENhrhMNjh3lmDIDKJ33rl1d5TZcziZVIc466FZ8l3771SqEkTSY8VMi28imPXQiJwD6akenjWkUp2es5b2+LiClfY550iO3JnrENCSRNmDdkg4iLB1Udep5d2zZo1Zdu2bfJeh0dkQIeHdfWAj0egLA9/pK9lqcZ5zYEvMhqOfwSeewOKqgphPuIiHuQ4uGUwrar4nIw9RuC8cC74TRgQX9xB0auFqMnx9vzwcymDgIQJBRQnRxw7IrTEyogNnTQs/O90+X7UCH3K4w0kmhjv5EkQ4p6B+P2C4+4/pdTgT5RC6r+QSvChlHfpK0/LsMk/xikCYP1AgM5O0ZGnZMP/luvmNOPahhSGdBXJDnyf4brQndMfr2miQYRISyqNIHREW43os0HG7Q1o4WL6b1x042xF7KL7IwLkyrn9E/W8dRvntdYNasi4pcvlEJTJ1cApRKxcqVJmxN06VqOG7K5WTVJB7JQTiL1o8eIqiB9DqzB8uDvg5kbmBkfu6vhSRgTbr18/RTTKFA2FiXVTX5rFWWcsIvua5s1scMZJNNw2xsodLIN1iSK3uIiGrsz3RTCdBnXMKscV639+5E5YZ/5lFqD6g7oJQ9/0HTFGipUpr4sS5HgDnB/N6U2i8dsP38qMCTTcsoAT1QQpSDSsKYk7EyQccc+RrsGfalmk7UglWRh9KkJtPzt4/PeKzWZZQgP3Ln//9XayfydplgJqqjcjcSwx2EFdklY4qAUoEYWnKLaOqpDPg1sgUuDqkn4cdjGV3nda17cfeZ1iGQ1mTCRdxqNJPIZOmidtoSiPz258JYvlkTolSsjvu/fIXiDFcnhWwiXsAc10aOZMyYDVclZwH3tKl5acpUpJair+UUdxURBt5USiHJ/EhPNEboEiGR7jAhJc6k+4CqcZM2N80ZFy/8GD8vXXXysk/fWAF+PNWXEcNGWeiE2nNGjEromxLjePXDDYRYjmda95zqVTXKXreVCq8zcQCOFYgXbWyoHf37ufj5cixUvp2yXYkRGpaZGlYdY34+Vn+GwYwGl8GWmpURbM+jADQcLhwyQZVagPrYC0D6kQy08eOaR2EOTHn1jQ77Nx8vZLT8mpE8f0Lfgr4w+wri5wHi15MRFgXKtMIn290tbmtLo/T34b+jqPlElrYsEVsSkXN+sR2WlEtx/RaLmC7vJUA7OKX/msudNLq+o1FOHYBSRXFshOI1Td0dXISGGKhJWVAohCMsOpLSOU/SQqPGahkxu4klQkFlj1YsKUQpyUN50+d67cOX6uwrl6J7Wms+M/ILyXoDg+u2+fnEOsr2lIf+P6a080lFoIHZ8QMHPJBhVmRPdlf077OZ8hUMLh6f0pkV9sghKOMfEb9AdWofK9ugG3Lhg4ZrLkL1xUFyXYke+Jvhva8Y+iKYqoDOArfQVpslEWzPo4A0HC4eNEGdU053EAZSEsJzfATaA6vj3QqJZwWSLo98dNkZ7PPWFG1K2DO0xDam3cqabOe4piq6/zyJWzDpNujy/F1XhcQD2AXp3afTfsCI3n/KUSBoz9Rdo0rSG5srkXHTlqef6fOWd6qR4eJqXy55PdJyLkMJBEUSI2b4CxXgJXwOQJUoHjSAMOJDVW7GmQqBsg/E1vamcjivlugNO4YVOib8QYziCF5w2RYT1oPZ0wMPrH5VZHegx6HnlBl+lKRPIU/ZjA78cXMAmH2YYLEPar91hx9hXmS59GnbXIV9fnDBDKbzpP/oK6KEGPHLP23eDuntyozQDS/meQ+PsJQgAz4NsXFUDHKbzJRTwfRUWWXQs3gfplyteJ9tiMqjsIIrH0cD404CnkhzjP0+GYV1+Li2Mg8iFy0E5h2vdCIyVfCI9uw3tqKy19f/vRRHD0Reg/5hd7FZ/PU6fGqhra4ZZVHXhoJxB2QsAtWJVdh3L/CsyTL4CLOL97t0oUf110psvgMOxEIxI3344xUHQ3uvuzwhArCQErt+yTFRv2WF3pOfT2tBS76XeqG7rZAlZfcjl6IhysRMKh7+9sVMClsecT4piNSBbRYGTaIV//kGhEQw/lJt4nQ6PbiAZWO/I4UpBo6IkK4BgkHAFMmrMJLZvuQaJFhoL/Qoa6ZtlifZrgR/qQDBg10a6Mfxs3eh6J5jvqt83VljszXHNAXDlrHQg5B7t+w6zrKa/FVLxuhlHnuQ3JsMiljOIqHXNJXfTzX9ac6aRJhQoSkjWLcq3ny7gdQNnlKoqtcGzXoJ482JDrifgDvch7fTrT6sjdfFoXjQwJPgmYqfzyoNw2WjmyFMXp+5gcB6+6+Z5CY3UQu4D4hfq4u/UlKqpJNHLloaou8eDShfPS49nH5fjhg+ZNruKE4t3ZZmEw7/8MBAmH/3NmttiJkyZIjt8pfnhjP+hvKrLNugmSpzyYZot0lDJgEvKU1ypQ+0fHIbrh6lIrgk0CwA48KEMdnRv/teiC8mR7H0Y1K6uREgsYd6rD4CnqaFXwI5M1JIOkhSjpkcoOnJRQXIcfQ1BVN+DZ4WstZaAv6ftKM8T6Mp/S395i6n8+bYmQ49CgezW5DZcvABX5TWjdltZvsX5c3Ke+h+I4nN+NnWtxQzjy6HYejpSX0aKDOkEFjAI9dNJ0yRkSV1PdIrAjd+7r9XxL5XNl9MBoCtQNMhpEEOI5A/ZvL57d3ZHNl+Kpu+on549vaI/OMKON0EUJfixd8W55pUc/s1++x2a6wM2PXF+yjlRmawJhR/q+tGdHWqFOXYnWdVg38JAxP7g/t+6XDyfP91DTe3GOPBlUhSdgepsOG0FRz3HZe5MEv8p77kbKADHOf1o+JgWLezdf9nUAy9bvxmZN7rkNk3DY+6PDoyYY3L1QAY56gWCvbz/nt8tFAIEBDk3gt2K7dzbzui3PxtuRyuhybnw27Jsfhf5PiQknjx6WPjAk4YZrBuxFvjDSEaMsmI3HDJi/43h0c8c3/RIzwKSAHtjvvfqSXIdSNbGA3uVNn2xjdq8XpT4hCooitDiCprgm+LpC1aa4dsJj9hVXfuBXc2Tz7qNxVYt1PW16BK7LlU5yQ5l9f7lyiuXb4UR6sSonQgHR0p/O+3Vr3Fhq1SoGpXT8f04Hjp+WVr3HKjNcPWz9Ym2IW1+2jnT4tAMJgJ0I2OvocxVWxPlM9vAkSh/myuV6UuRooqFM1tk3ldTDJs+wlNX6fgl9PHZwvzKP19s7O/vfgGNppH97XZHQj5ek+ov/l56kHue2DuY13N1ScHA/8f4dn/doopoQI22NLTQr31snVle+cAymj4ayjjJ6YfBGX0A7Etrbx9VWI0LWu47gfS++NxEWO67EK64+eD13AUeY9ufuraVW2vuwKs790EOSEWKjxATKJf/A6pzmdY3Ll5fHq1eR/MXjtkKLa0wXsTXsY91HCSPrajB/oCbhMMtZNx1Mis33rjkPs0z36emoRFUgHHw+O+FgG1tZejf9cFibkCyikRVRn+kkS44jMYGcxsAubZVDq3EfiqWqIZkqH+NyMBvoDNi/v0D7CbZzzMADOFhmMBHHj8oH2BwmMeHN94dLCPYp0ECE4csKU3MbbGdH/JaYQ3cax9G+418c1dVlk3iQ43hj+DRfmrnUyRuWFVyTSBi8wsl10MprKayfKvfpI/cMHSrhTz0lOYDY07hZibt05OfJJiBXKuMLIcRJr2bNJH+JrPHmNujo1/rtcS4GA+YcxTVEhj0xwRI5gZj6AiRKVhtwKZrwmG1tZr72jolLaD1luX/TmOPDb2cmakBQji8S/k0DOr2gYq3x3Ak026ulT4LHhJ0Bh6F6wvZ5p/f2FSagI5JyUmDIkOOHDkiN+vcn2rww/IneO5myaF98MEzEwBhFSr6NEbI8RxyhRuwPQi9qiufMFbEvSM+ss37HISkSmkuqlC5i797jOc1yr16Gf8bZ61IF4UbmIj7UIezJERYeLs+3bSvZwsIkE7zG8zRoIAXr15fs8CLPgECEJCT02eD9b8IJ0hyHx5s5LxwC0ViPRMX8J08/LUUQAr1UjZB4KcWpb3r2na9l1jIu1h3AMZnjMpfM9mvkNuxb+zL8CesxlpYv5rjkHvkdEPtTJ+IuPAtNrrVBBKqR4foQSQMHX0mfUDw1FIFAM0KUmJhAXeI77Z6FObiLWHgB7tk8Me97p/dNeWQQEnYG+AXTkmQ/kvrVrF2xRH4YM1Ke7tQ1Ye/k7O3wfur+HKC8fPWJj0czDpJJUHxsbq1Ufa3PeiZS1ASny9CpUqlEIalerqjPXRUslU0iD1+UHFAMv//449J92jQZhX06SMxGInpug4YNVViUSHiRc9+RKBxPYc8Qhlu5AYTNcdwCQlQJOqkbCGb4N4igJYZDPQ274Ty4atkysmhCvUZpBIYsWj4HNlsiug0MuMrvMGiKTF+4zurAThisC86MOXcsInEwgX2qPsCO+SqqMrlGWuW5A5tZr+Y4aKVAJVVu3YbEYvCEqYnOaTBS9Tvtn4WRRsw7whgoLqalYxAScQaChCNxJvcUumWYz21I6lc4f+ZUWJTklIdaP5/gd4yKOGH1GQjh0CIKduKvmIptzPY8jwtIKDTy41ETjqvXb6g9J9Z921fy5PRNZ5AxS1opUDK7HNt1TnEdQ598Uvr+NFMmTZqk9uHgToGNGjWSQojky2QCRXQM7MhNrKjop6iLHvB2ZT/rTZkyRaZicyhyZs/WqyePVaki2WHZladw4CtqzlvXj6bJ17/8zxqWQvjWmSNjchu2S2qLV7sxg9JVoCLL9Tzb29nPTXGlp2/IZqJL3NEFaSSSRTkZ5oMmtxRTJSaQaPTBJkxX8O4MWI78A8Z5MJtIMxAUVSXSxKLbaKQlSC8hqR/W9o3rpEDhMPG0GxnqBQT0WNemsRQxeFoxeuqcm/doBMOQ6+62mvXUluXcq4HIVhMAlun+mLeDSTh4jXV123MXr6jtUZ9tVlM5stnbujvPCuuq6GOX5eb1W0rvcB/EU+vAHew7eFAh/Pnz56uVd1hYmIvFGfU8XJEzXhd3u+O2udxTgxtaMXGXxPXr18ubb74pc+fOVWK8V7Hf+SvY+yNt+lRSrg7EXgHuRU6dRtuBk2X8rD+sR+I8uJs3PTesaNah30ZexN0y9VWsQ/NohoHnRlu+muIy5AydONl/dnAwpvEE+ySQKzG2kSXhoDjIGjK3d/0Azn3Zc1nMB5slOKg9cdq2tpvcUhFeL8FvFuzQ7QxYL93t1WBhQsxAa3QyFUnNNX/kb38yRkqUr5gQfas+OjRvAB3DNZXPxwB+PlpF6QEcgkKZgyOC4mqzgJ9WSYwQS0RlroytJai+iXFkPft13ttEkJ1bNZAve7uYGxs9xM5evXhDtiw7qYgHr94EZzBj0yb5Bps2ncfYCFwxV6xYUe2XUblyZalAz3Mo1kkwKKKjeOsYQorsQbDCRYsWqRQREaHaFsS89oZ4qlrRoqiLeDN18kmOvJTS+A+Xr16Xp/qMk1//2Go15vyrD8QqcWTMOWWJOW85MW53JrgkApHYX4TEzxP3YLuN2ovlAuaJYyhSuLD9sjonV3bCOR/2CtSzfIBtlRPbI/xs1Gk4Wj5t5zTWYzzV7WMKnifeDLj7VhPvbnduz2/i0Ufox6d1yoAvvpbCxUvqongdX25c2xIXudsqNq7OD0OhjA4U4uYKnJs6+QN6AygTyXlChOzXHeFguZ14fPXO89Lu8bq85BOcj7om2/8XIbduxpCg61h9L0XMqTlbt8rWQ4dU+HifOnNWKgquo1XVqvJwpUpKIU7MWuqePBJS0GEK7E9frMs4XY92+zKWV7inH6KnOSWi9rQXPIk4Fd3+LABOMZowCA7fv6d+qRg/Af2QCdRntO/dX6rUus8sTpQ8PcJJNK6CwBtApXzQ5NaYkH8jS3YzCIk/A5/iFmFIb/BWjAv1ftd2wn084hsdVFlDAelrsMmhdbHvRy6n/QR9T7aMGYmfnaC6vrPuo8uwqVI2PL/UqVzcp86yIdx6eYiPdqyMhD0/9s2GpRXZg0ewMm8K7oJ7gm+FCGs3kN9BKMqPIKDhOYjZLgBh0oSZ988FsRXNbMuCYNQIC5NwcBoaGE6kRLXcARONjbuOSIteo+Xg8Sjdpbqnfm6r0JkxiQaLrHrgWskpeQI6dNKL3B+gjoM6F6+iLeM7Y9/1H3pcXnijVyxRmT/39bUuraf6vfIMxKIuRCPIafg6gQlcz/oWE7jfYHfuZ+AHFFN0pYB7BXDv8vjIhMm6d3v6Ed2lFIWYwV/LqCNApmp/CfTClWx+IE1/gPuWc/tYInyN9NneFKuY/REherrGeibCDM2dTVZN7CNhBXyXm1+B2Gr/xii5eO4fyVmmjKTGM5GjosXUTRAJJoZKv47w6KmxwuaYee4NMmVNI6Vq5pFM2dxbHHlry2tTfluN2FzfypVrN6yq/PF5+wGa82DWJdHwRhgiT59WJtW+iqk4oCMQ0dGSjDoTT6JOU1RFXdiEeTH6GeuhEiETFXFS+rV/Rq4ZFm64zVqkexLhdsEufZgBb79fH5oHq/g5A0+j/q+6DX8IDPt82SmD1+X+HM/Bh8MEf4kG2+o23pCYeQ973hc/AXsbb+fmR3ky6rw0fu1TORV9wVsTl2u0tCpfL1SKV84mlw/tlotAijSxTQtlcUYgxqwgrjmwLzk5klxwEAwBN5IKHIc7IJdRuEx2qdioQEBEg0pwOjc+3//rgIkGx6XfTWZwRN6IButSj+YP0WAb7cfjleNgxX8ZFNFoF4torMYwgkTjX34X5u3M36hZHswn3gw8jK5pAaLg0sUL0vflpwOOa0XnPw126xpdHtdRi5pYz1/TWrbxF0mxTVygESXr7Tl8Spp1HSnnL3nnCux9hsBUtnKjvFK02N+S6tx+Obtjq5zbv1+uUJ6PVTmP5DqYtN+G7iNj1rSKYFRpXEAKl4OVEQiIv3D01Blp0OFjGfnDEpem/NH505uuS25Qb7zl0qFxQgJgN881LrvNWmIqcF/eviGTm9RjctthAhVGnjwh/dq1sftp8LdzbwLdIthNgDPgfpkVYGfBZj7PAEMhUD5blS3OnYlSSj9GD02d2r9XovfRYD+BAuX79Pwm+BKuxH4fRXiwysWy1X4p4HONmDSy2rDzsDzeY5TM+fQ1vzZKIjdF6ydtAXX5wg25fP6SXL1wXTKFpoLn+HHl9R0ankXSZkgtFEllzpFeMmT27z3YH3Txmp3Spt94iTwTwynxmfRz2eub5/ZZZBsaVOQBt6S5Q7O+mQ9Ev0HzXfbrH7fhy5OYI/Mvf3jfbhnUtb31XTpbL8WxkX89BWsnxgzE79eRGCO6c/qsgUfdgVSKjxx1yqH84yY33lZ9rGvCXani/wM2PYLd2e+b9/OUp+8IfUk0ovdUz59y/WS6z6XrdslDXT9XxCNLJugtAoBM4CSYRPxTHvt6K3JsQybOlQFjZouLRz460M/ja1+sxzb01yDR8OXdKCW/nwYOJDYkHHpjL4/jM5XjgTyMx45dL+z9a6sM7dnZ2lzMeTVINFyn6baeBUVVt2/6ubCsjORwFGDm2BGsstr5NaJUqeLvw2k6DJqhJ/wZiK+hLfzpk3UV4jQaLd+wW5q89pnQUTCpAfUwj3T7Ut4Z9XPARCMWtwGEngfKcL13SlzP7M+iQ/dFj3nOs78iLt0+IY+bV/9PPujeyU40qBcMchoJOdHx7CtIOOI5gfFsTqE9OQ6HnAiZA7t2yBcD3/a5WxNhB6Kf4I3UStO5SjVDT/g8CPZByyUbaE7BVuz3qZ14cGe8Bzt/qnwi/O4skRr8uHiDVGg90MWpj7fiDyzQxTnb0YIqTk6AN4oH0OufojB/iE5cIrNAhvPnkgXy2bu9lKLeaP8T8tQLBiEJzUCQcNz+l3EeQyiCZOHZ9X8sU0pBXzaCypU3xnSWhCMQ4mHKt9VufgHMiZKPg/gEiiTjuqWdeKzdflBqtR0qe48wLNjtAzr0tek7Xm2+ZNdn+PvjsnMb9GjP5GcUgEBmglymL8TJ+kBxk4QmHIt//lHGDX3P/v2Ox61aBvJMwTaJOwP+ftuJO5o7t3eKq+5Gsoz8jx86KN3bPKr2GvA2LbltPhc6wJ23Nu6uadt9+nME0gdXq3blqolo3N3T3zI78aC1Va22w1y8sP3tM9D6t279I+N++l1Kt3hXflhAl4IYsI8z5orvOZrcugsn4nsPvtckl5kNZr5xgqHjSAgRqb4fY61N+eJjO9EYhuvtdZ3gMWnNQJBwJJ33sQVDYfhWy76Wprpvw1R3y5pVHkeZKpXrpjuBIH12njFDBuse9uiw1oU4MnH5F8TR3KfLdqTM3fLu7zRCpi1Y51P7hKjEvdLvefED6Thkiou4jGML9AdlchuMUJwnt+8Oj/F5plsgBiT6tt393HZpcrP+iLXcduYs/HHCaPnvZG5hYwHXG72R+lglwUySm4FAv/Mk9yApZECUuxRE2qyfh+a2I97pIbNcf1z6sjqaVlGBiproi5EWllGE65B5BwIUqyQ0l+FuHHbiwXDsNH3t+tEPLk527trGp4xisWffmSC1X/5QuPGUCXpMCfH83F8joUVB5ljN/E28a1NPZl6z50lkNFAnEl8Y+0F/+fWHb8xueIMXkT40C4P5pDcDQcKR9N4JFeYUW/1oDQ0/2J/Bzo96v59VZGYywyNaA00rAwWGFyfQyiYQoD+HXUkeg2oC6dFzG/vqnqvhz6ctlXKtBsiYmSv8dhb0fCeRY6fOSqch36Hv9+T7eWtcRCp6HDwS+Lw6rwp8+GfOEVfy+j340DTeVSimMq3qvHZoEA6GHAkU6Gz57RfD5c8lC+1dUJ/xrb0weJ70ZiDwt5/0niWljWgGHogYvBGSwkXcgnYddhOs27i5soLRD7x66UJhzCoCOQetr9DXfT3S5JOhtQmBIi/6Lui9QfR97YhUI0p7ua7vz9Hex9kLV5RlE4nIpt1HlANepozpJFe2zBDJ2Gt7vxM5jP+M/1Veem+i/LntAHQ/euSOF8JVl7se3ZV5u1NMr9jND/uCmGJDb+0S4hq/Fzux99Qv9+tgyHZC1uw5pHGL1p6qeizfs22z2h9891aLqdZ1n0Jmpj4JHpP2DMSf30zaz5fcR/cBHoC/sFlI9FqTYyAeVJoPGDXRiqwbWqiIHNy9k5dj7V6nCn38R/FIFoTJJvHgCj4QcQkJDjeGQgc+3jX+1TSiNu946co1mbFovUq8Q7q0aRBpN1TKIdpuqaL5JGfWTJITxITHjBnU1GIDpFty6GSUCnHyv837ZDWIhSnX1yPl/fQ9dRmPvL+7crOOPW+OmdzGv6UQt4/Dl3NTf8YAnf7CV8MGyspF8+zN6JDTGOkP+4XgedKdgSDhSLrvRo/sN2TKIq1BysVCrTR//b2hUrlmHSlRriLY/gW8FLB+QjXGPyL+c9jLgeIqu5WUruPtSO/mzEAqF133THBp4i9ydWns4UQjcyJiExnr6tdv3JTNu4+qpMsCOer7uGsbX8LBnRcTSunsbnzxLTMJRyZsEesrHNm/V4b3eUPMuGrOtltxrI3kYHN97TBY77bPQFDHcdtfgU8D2Ida3JZtu65NpTmdpeb8MFkqgXhooMza/IHrcl+PFF1khikoN+0JFLgNqwnuELl5PTHzeeCXmDNbpoBuQY6rYfXS0rq6oteqD0+EKb5EgwTD3y17A3qoeDQyQ6hkyeb6jj11O/2rL5VoykY0aEQ2CKkSUpBoeJq8JFwe5DiS8MuxDe0yzssjUXn4HK9RjDJzwhjZvWWzWqlqgkFz2kC4BfZJIOI/R3GToXR3XPHtP4mPil3lJD6BIFXf7uTgLrwRpg4N88igQYPkeORZ+Wv/Cdm275gcOXlGzly4LGeRzpy/LBch1iJkRfyrkBxZpHRRiLSK5Zf6VUtJwbw5ZMGCBTJtXYz43R3xCISLMsftC7eh7gsd0u3iSswIwllh+eUNuPHSsB5d5NSJY/ZqR1FAvd0e+4XgefKZgSDhSD7vSo/0eWTIeQxGUvhq69pVLsjETjjIPfhsOYNOqSSnyClQPQe6kNzwej5u22aU5QkFpt+Dtz6rVKmiLhfIk0OYHqxJqZ9/ULNmTUkDva03ezVNBHj0hY3X9TkScja+cBuXsGEWdVD+AM2zae0WiL7Kfh8zjllowSL2y9b5/JlThZyGSWhwkY88BqmzVTGYSbYz4Ms3nmwfLgUPnErzJkiWPElzG3xmu0nuBegs/IWs4DYCNcvlvegbYAbmI6I3kaW/49H12Y8nosGwGZUrM25kDNSuTRF6/IAcWFXD/jAfvPULYzMoT+BtjLqNORckBt64CNaNjo4OyNqK+8EHGn/M/KY4brOfQsVK6EexjtyQjEE6fxgz0k406NTKrQSCRMOareSdCRKO5Pv+aARfDumM/RHsnt9XsNOgiajs9d2dU9wUH1t99pktWzaXrjkGIlWySf6Oxxsy5lhnzZolp7E5U9OmTa17Fkcuf/781nl8Mg0b5rSaUwy4b98+iYiIkPnz50tJ7CboDryN2azvjdvgPEXhuXhPc8Mts723PJ05A2nHPs0FB4mISUiKlmBszhigccYbTz0k+3b8FVPoyNEfKQ/SavuF4HnynYEg4Ui+744jp9KcYUospTkLTe9xIo5A40/5uqnTVdj224kVx0Elu7uVNBGqr+AJ+WpkyFAZ3333HdQxWWXt2rUybtw4q+u6FaxsvDMNGza0+jhy5Ijs2rVLuAd3gQIFZPbs2ZY4yN1GXPoZNLE0n58+GyR87oD1SQwJmf0UUbENRY1E9oGKqS5jwUHfDYLJbSjRWk6HwcBNiEE/eut1GfvBAKEXugGXkG+O1ArJfGSjSjCbXGcgSDiS65uLGbdWmq/TRaYsmsiNYK4Wdb2EPFIkYgciGG9+CRqR6nY8Z9KI1h22YXiV+s0elX6ffaWakWA0adJEWrRoIUTuZ4xx1KlTXXft7JkHfRdnkY/+JvXq1RNHQBYHQq5UqZISi82YMUOJrSiaI6Ie88tiNT53sZ/0sxmDisWVmddINEiUc+aM4XbM63HlifgDJRrsmwsQcqsqD2s9DTrEza6tm6QruIztG61PT1fh9q6hSL/pguAxZc1AkHCknPfZTz8KiYReIeotYROTcFC3QM7GnQkvxVWekJdGpJpQGChdP4p15H7bTZ9sI2PnLJGXur+tNr3iRd6bnvLuRFL176vvaG8SBxAzy01PZfnPHWA0msggmylTRrnH8HnThgMM7Kg5Bj5nGhAQjm/07KXS4OHHvQYPJEfnyUs8CjqNK/CFoX5Fc1fuRumt7DLapwkwNAi/F3KqeuFhblGcIWMmmTRimAzt/qpcgcLeALIcryJRnxE0szUmJqVlg4Qj5bzRk+ajnDt/Xp1qZK4JiVknIfMMcEhkZwdaZ3mT4dvruzu//7GWMvqXJdK6Y1eIvhyGgNeuOlbC2mckLCxMESia077Q/F6ZN6KLlCrllMObxMLdDdyWgaDodqQt/9wlY8Z0lQ5P1JPQ3A7dDU2WPXED5DhefKO3vD/+e8mYOYsamz0woF0HpIfBd3cJimbWd8e56HpxHYn0fdlnw10/WtxJAwkSdJOLvXThvCz/jcEMXGALzgog0XIqCCl8BoKEI+W84KvmozBsCFeNWvegj2adhMxnB2dBJHMR97WDLz4KbKOc4CA7L13xbilduapCtk2ffEYebvNSLF2J5qA0YqxQoYISFc38sKNMHthWmtSrZDEW9vEEdA7iUb58eRnb7zk5+tswaQ8CQmJcsGBB1R05EHeQOUtWafXKq2psGcCdaOCzujOtvYgV/JmzZ1U1OtwFSjg4NrYP1J9HEw5yXdRdmAsPPffOZ6EMqw8SzdkcChnnheAh5c5A0I8jhb7bu/CDV1yHE6ElNuEggqOcPwo6BoqOTPEK8wzeZ+pBiDizZs8p+YuGSekKlaVq3fpSpHiMpc7bbVsrZHtPg/slk5tNhrLlcMj9NRLr2bOnjBz5mUydv1bug+NeYkLq1Knk7JVb6jnvu+8+dSuOw93mRhkzZZYKNe5VIesvOblANiDBs4vwGECQZrdczd2F+eG8mSbN6kY+/qNFFImZP/47ZtemSTfzFiExK4kcwmlDpAOuxcGzlD4DQcKRct5wrCWvQh54PkpaPPzwE/Tpc8Gb+OSpUxIRGSn54etgIkYqyckFaQJGBevQSdPFXIWbgzl3JkpCCxeRHLnzWPuEmNfzFqAxGeJ2OWXs3Ga1adNmMn3REvm4WyvJlEGrss1WCZO/ePma/Lp8vTz1VGtFAIigOb8kEnbgc6ZJnUYKhhWzAlGyjl18x3lRFlToSxkFgBDlisdmTpeg3yBxNgm4fWzezs3vhWMzCQna8Vv7BKmntz6C11LuDARFVSnn3cYEVNLPBCSkqYlG2PqSv0fK27kK9gZcRXP3OoqsIqOiXKqSiNCbXMN1yN+H9XpNn7ocz589I9evXpPiZSsoBfVdd8W+b35EBCao0CjO1h07dpTocxfVlq7OokQ5fDljuVy+clWee05FfpEDBxhy/ZZk94LorzmtkzggchFmKHO2jYQFFZXRBM4VkT6DRQYCRPpM8dmR0fxeKKYyCQnG9CRSkGgE8nJSSJvYv8gU8mB34GPQ380jECkFurMfO6VVTXbGJ1IKY4+3scxvacapZfW6NpEldSEaDu7eIXNnfKdPrePxwwchU78pBYqEW2X2DK2XuJo2dSoPPvig1KhRQz6aslC4K2BiwPlLV+WjbxdK/fr1VeI9Jk2apG5Vshz0Kh6AsZs02BH6aRBZ7QNBQk8Oxs6R6La+HCmiZD9ZDJ2KL+3MOtqogmU2osGuY2nGzbbBfMqfgSDhSDnvuKinR+EvnaBNKx1n/v8/DyuivHnzem2ouA7UIPI7Dzk7kaIJ3BbVlLv/OH6UZVqr60UeP6qyufJ4v1cmKJ7NlTEb9e3bV46fOiMjvluku0vQ47tjfpGos+dl4MCBVr8LFy5U+Wr1KO6PDVERJ102tzIJB8V3Vw1uhO+KBDFQwkHuheI7ci2BKsY5p9SRabARDvoNOVgjXSF4vONmIEg4Us4rpymkAuo0CDE/fce5Jhy03LEjXEcN7/8ZtI6cREgeRpBwD8rKCUiLYyDx4L1OIjSHDsnN8pCQEEv/QUQ3pFsniHpuWh1evuiIreVJ/6ErFigarqx9du7cqYukefPmKuzIoK/nysHjrkTLqhRgZsnanfL5D0ukbdu2YsbAYvgRipbKV7vHbc9L5vxklSsjAoiqCNQbmAYD+n2RsLK/QEBZ02He6R9i6pj86cseo0y/O2cfkf70FaybMmcgsK8zZc5Fcn8qOl25BY2Q6IVM4AqSXsWBwAWIQTIh/EVGD2IQvdIlgdAEjGErjp84YSmy6fiWy/CG5l4N77/e3hpO6jQOxfatv70vbCtUq6naTJkyxWrLzPDhw+F3cEt6fPqjS3l8TqLPX5JXBn0vhQoVko8++sjqau/evXIW5rOFwot7RPZ7t3O/IgfQ30UDLajMlT3fEwmG9k3R9Xw9EsFr/51A++C97IsKrXtxjmOvr+MJ1ku5MxAkHCnn3ZaJ61HIMVB2zVVvoISD94hAuHQiUE/6Dr3nOQmH/sCoYKWp7jEQEN6bVlZm/CVufTtmSH/1CPQSJ9y6FRPmQhXY/jV85AlVwgCHhK1bt0qtWrUU8u3evYf8tGSDzFq2SV2Lzz8SoaffmSxHI6Jk/Pjxsnz5csuvYfDgwarrBg87xuLuPtGRp6xirRSnV7e5N7sm7jQuMEV5VkMfMjQUIJKnqCvQPngbU7/B81uG2AqnK1kWhDt7BvTv+s6eheT/9FQGWLagRNhERBoZmY+nw1DYxRH2SLgUM3kCIjz2Q5GTO7CH0dAfGcVSXM3SgujIsWOqqemnsHrpQhkzuL9kywklPODGdUecLXXi5l/mrNkke67csmfPHhk7dqzUrVtXNm7cqERV1HWULl1aOn3wPXQSCIvh5XncdO0oQpt//rklb3w6Sxau3Kw4DRKNli1bqrhYhw4dkjlz5ihCVf+hR9x2Q/2GGa6DegfOrd1wQM+2JrpuO/NSSC6ShgLsxzRA8NLE4yU74bBVnGs7D57egTOgf9N34KOnqEd2LHudj0TkoRGRfkp9TuRCIkHkZRIPO8KKA3lIFJTeeaDrSAXuxQ6M3WQPr8EPTYuueG9yICQ+Nvm5rF62UDau+kN1eQYEJi5o9EgL9Syvv/66FCtWTHr16iWn4UdCH5YJEybI6bMXpfPgyfKPFntZk6NnRN8B5xiXg+KCYIDIXYZu5tX3v5dRU+cLTX27dOkif/zxhzIr3rJli3CTKK7yy9xdDcQj9jyw561rGe/PAeQElCUY9D4mMdECOYqpGLQxEKCuhPNKUaE7j3Rf+1TfBJ7dA3DSYh7IQ6VgccqfgSDhSBnv+FnzMewo0eUaV/0QVxHoqazBboGjFen6uv1ISyDqTEzfDLOOnevgNU04dD1NQPS5Pq747RdFeM6cPiV3wfibHN4AAAcTSURBVEvbtpOcrqaODz/zknIQJMIcMmSINGjQQInCVq5cKffcc490795dpi/dLN9MmCFXSYg4CDUQ+2hwjj547QaI6/GVq6TziNky9pffpV27dvLZZ5+p+20FwWjarJl89dVXjsixaPNKz34uYzJP9u38yzrVwRDPGx7kJormfJgcmNUwjgwJMN8H3ztFgG4V63w2H8D8Jljd9i2d86GLYJU7YAaChCP5v+QMeIQYjavr80TrUxMB0PKGiNb06yCySQtrHg30K6BoyRtQuZubTm9ukJLWU7B9elj4+AtckW9ZvRJhTBB51xka3l0fHHeLth3Vavvdd99VQQcZ+mT37t2qOstKlSopfX5cK4fWb5JbTqLpri9ddnzzVuk4fbNMXrxOOnfuLF9++aVCxscgXqOJcZ06dWTVqlWKaypZvpLkypNPN411jDx53CqjUQARs+Y2zHfCSgwI6S/wHSluw9nQk1KcnI4voA0oPNTd46E8WHyHzYD/X+odNkHJ4HGnexgjTY2I0Sz8pDNExFx/aqcztmf0U2VKyxMAFeh6LwZHSez/FNOQALkTr2glMFsp0YkTKZrrXral2IxHE3jORKTLKLjX49B1MBBiDhAwio+oIGfU2VMIfUIzWa7Gx4wZK6fOXZahy7nvlXc4FX1BWk1YJb+t2qJ8NT799FM1lv3798trr70m9EMpUaKEjB49WomdXus/xGuHF2AxpoHIm1FvCXwX+n2oAvwLRDdxFu+AHBn7on+IJ+KjuR19L3dHcjx64yZ93TbGZbo8eLyzZyBIOJL/+2/q5hG6oOx5JDpHHHBzXSEaU79AYmLqOXyyvAKioS6ByNQObH+Xc5VLqxy9oZNJIoioRvwwW75esFImLlxlJZ43hO6CcZ4YzPDmDYdozX4P87xTv0HqtFu3blK2bFmlfylSpIisWLFCGDm3Q4cOMnnhRlm6ab/ZzCV/+GS01G7/qWzedVAmTpwo7du3F+pOcuL5ypUrp/Q6kydPljfffFNxGy1e6ghFfkwYFZfOnCfXr8WIA1mkrdlsCFnVzuImmKOzG7cHihPJAem+TBNnewOT4+C8uwP2Z5oHu6kz1U1ZsOgOnIEg4UjeL702hp/WeATantKWdZRRNknnTXRB5GEiEHIXJudAcQ/LzHDauh/zSMKhEJ6Na2CdjNqsFiti1nEn+Ppj3hyzOysfVrKM0sUcP3zAKvOWYSj22g80VZZFJ2Dy+8knnwiPDz30kOI+aDZbuFBB6TB4ily6Ettai0SjYecvJCLqrMycOVNtQxsWFia//PKL3P/AA7J06VKZPn26Ot++fbsKWvjQ06TN3sGcY6V4xry7mwdyCnbOy1vP7Jf7n/AHzPdKrs7bpk0k5Brsfhq6PA79BhchG3Xd4PHOnoEg4Uje759yj3FIjyNxMV8Fyb48/xhlFq6yEw9to69iWUH+r/URFG1Qf0B9iDcg4WA9k1vR9fUWoyQ+lO9r3wKT69ixeYOu7nIMK1VanR/cvQsioTSWXsClkvPkyuVLcjb6tLTu8LriUOiUFxoaqsxyqYfhhk4kil98OUr2H4uUDybOc+nmxs2/pUXvCXIq+px8/PHH0qlTJ9mwYYN8++038vPPP8v333+v/EOocOee5ukzZJTXBgyRM/DPOBt1GjoYV67C7Nzcg5wI25x/s54pJjTLPeVpzktRo+6PXJE30BwHCY6p2zLbUKznBY56uRa8dIfNQJBwJO8Xzl3XOiL97OUxiA226+sa0ahzG9dBnQVNbDXQy1n5BqCeJ6B8nSG83REObSGkW7uztDp6wL0jcsGixYQK9oN7dmIHvczYRhW+GAbwvueioyTqFIIHYnzZcuQS+nV0GfCBImQMQ0JiwX3IyXkQmjZtKo899iiCFC6QPYdjnPIGfT1P1v+1V9q0aaN0FzTjXbx4McRT5aVixYpqnxESEkbDJVfQBUQjX8EikhOxtLIj4u91KLw5jgvnzmIoFo1WBOWqc6dC3p++FnoueG6CLya0NH0mMaYegiIqAvtjXCtNGFSh7R+jGmtuhmFObJ7gqjb71Ep73dw21sW6PHgMzkCQcNwZ30Bvd4+pEINBFGgmSgKguQ7miaDJVXiDi7jubsVs9+UwLa10f+fhf+AOqDQvFF5C7WGRLj0tqxyreupiGGn2HJTOmaEEz503nxzet0dmfPWljBrUT3Zv3STPd+2lLMJ27Nih9iIn8Th+3GHd9NFHw0FYUstbI2eq2x6PPCvDJs2Vhx9+WEqWLCnkKho1aqQIJgkPETLDpjMaLhF/q3ZdZM2yRfJ226eQWsPbfYBchl8Gx8F5OwuTX3IiHOdVEFQSMw02RKyL1TGDEYrE5YLzhPNBroKm1PSh4Q+XJIoEIS5ug0pzbS2lxFRuxIp6XxN393aWjfVyLXjpDpuB/wMhHj9qag0RPwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from IPython.display import Image\n", + "\n", + "Image(\"eva-congrats.png\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [conda env:cpsc330]", + "language": "python", + "name": "conda-env-cpsc330-py" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +}