-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainer.py
344 lines (313 loc) · 13.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import optuna
import lightgbm as lgb
from sklearn.model_selection import KFold
from sklearn.pipeline import Pipeline
# from sklearn.cluster import KMeans
import dataloader
import etl_config as e_config
import etl_tool as e_tool
import warnings
warnings.simplefilter(action='ignore', category=UserWarning)
LOADER = dataloader.DataLoader()
def lgb_mape(preds, train_data):
y_true = train_data.get_label()
grad = -100 * (y_true - preds) / (y_true * (np.abs(y_true - preds) + 1))
hess = 100 / (y_true * (np.abs(y_true - preds) + 1)**2)
return grad, hess
def lgb_mape_eval(preds, train_data):
y_true = train_data.get_label()
mape = np.mean(np.abs((y_true - preds) / y_true)) * 100
return 'MAPE', mape, False
def replace_transformer(transformer, mask_cols: list, X, y=None):
X_copy = X.copy()
X_copy = X_copy.drop(columns=mask_cols)
X_copy = transformer.fit_transform(X_copy, y)
return X_copy
class LGBTrainer():
def __init__(self, n_folds=10):
self.trainer = 'lgb'
self.fold_handler = KFold(n_splits=n_folds,
shuffle=True,
random_state=42)
self.set_config()
self.models = []
self.predictions = [] # 存放每一折的預測結果
self.residuals = [] # 存放每一折的殘差
self.valid_indices = [] # 存放每一折的valid_index
def get_transformer(self):
transformer = Pipeline([
('same_house_transformer', e_tool.SameHouseTransformer()),
('similar_house_transformer', e_tool.SimilarHouseTransformer()),
('same_building_transformer', e_tool.PossibeSameBuilding()),
('building_age_local_transformer_1',
e_tool.DistMeanTransformer(threshold=500,
groupby_name='area',
target_name='building_age')),
('building_age_local_transformer_2',
e_tool.DistMeanTransformer(threshold=1000,
groupby_name='area',
target_name='building_age')),
('dist_transformer_4',
e_tool.DistMeanTransformer(threshold=500, groupby_name='area')),
('dist_transformer_3',
e_tool.DistMeanTransformer(threshold=1000,
groupby_name='area')), # noqa
("post_preprocess_transformer",
e_tool.PostPreprocessTransformer(threshold=500)),
('raw_transformer',
e_tool.RawFeatExtracter(
numeric=e_config.RAW_CONFIG['numeric'],
cat=e_config.RAW_CONFIG['cat'],
target_mean=e_config.RAW_CONFIG['target_mean'],
target_count=e_config.RAW_CONFIG['target_count'],
target_var=e_config.RAW_CONFIG['target_var'],
remove_cols=e_config.RAW_CONFIG['remove_cols'])),
])
return transformer
def set_config(self):
self.lgb_params = {
'objective': 'regression',
'metric': 'custom',
'boosting_type': 'gbdt',
'seed': 16,
'learning_rate': 0.01,
'num_leaves': 162,
'max_depth': 37,
'verbosity': -1,
'n_jobs': -1,
'lambda_l1': 9.191748589273263e-05,
'lambda_l2': 3.3935617389132826e-08,
'feature_fraction': 0.31448447806937796,
'bagging_fraction': 0.9922651680171057,
'bagging_freq': 3,
'min_data_in_leaf': 14
}
def train(self,
X_train: pd.DataFrame,
y_train: pd.DataFrame,
selected_feats=None):
self.models = []
self.mape = []
for fold_n, (train_index, valid_index) in enumerate(
self.fold_handler.split(X_train, y_train)):
print('Fold {}'.format(fold_n + 1))
X_train_fold, X_valid_fold = X_train.iloc[train_index].copy(
), X_train.iloc[valid_index].copy()
y_train_fold, y_valid_fold = y_train.iloc[train_index].copy(
), y_train.iloc[valid_index].copy()
transformer = self.get_transformer()
X_train_fold = transformer.fit_transform(X_train_fold,
y_train_fold)
X_valid_fold = transformer.transform(X_valid_fold)
if selected_feats is not None:
X_train_fold = X_train_fold[selected_feats]
X_valid_fold = X_valid_fold[selected_feats]
train_data = lgb.Dataset(
X_train_fold,
label=y_train_fold,
categorical_feature=e_config.RAW_CONFIG['cat'],
)
valid_data = lgb.Dataset(
X_valid_fold,
label=y_valid_fold,
)
self.feature_names = X_train_fold.columns.tolist()
callbacks = [
lgb.early_stopping(stopping_rounds=500,
first_metric_only=True),
lgb.callback.log_evaluation(period=100)
]
model = lgb.train(self.lgb_params,
train_data,
valid_sets=[train_data, valid_data],
num_boost_round=10000,
categorical_feature=e_config.RAW_CONFIG['cat'],
callbacks=callbacks,
fobj=lgb_mape,
feval=lgb_mape_eval)
preds = model.predict(X_valid_fold)
mape = np.mean(
np.abs((y_valid_fold.values - preds.reshape(-1, 1)) /
y_valid_fold.values)) * 100
self.mape.append(mape)
self.models.append((transformer, model))
# 保存預測結果和殘差
self.predictions.append(preds)
self.residuals.append(y_valid_fold.values - preds)
self.valid_indices.append(valid_index)
# # 畫預測值與實際值的散點圖
# plt.scatter(y_valid_fold.values, preds)
# plt.plot(
# [y_valid_fold.min(), y_valid_fold.max()],
# [y_valid_fold.min(), y_valid_fold.max()],
# 'k--',
# lw=3)
# plt.xlabel('Actual')
# plt.ylabel('Predicted')
# plt.title('Actual vs Predicted for Fold {}'.format(fold_n + 1))
# plt.show()
# self.plot_importances()
def predict(self, X: pd.DataFrame, post_processing=True):
if post_processing:
pass
preds = []
for transformer, model in self.models:
use_X = X.copy()
use_X = transformer.transform(use_X)
pred = model.predict(use_X)
preds.append(pred)
preds = np.mean(preds, axis=0)
return preds
def study_params(self, X_train, y_train, n_trials=20):
def objective(trial):
params = {
'objective':
'regression',
'metric':
'custom',
'seed':
16,
'verbosity':
-1,
'boosting_type':
'gbdt',
'learning_rate':
0.01,
'n_jobs':
-1,
'lambda_l1':
trial.suggest_float('lambda_l1', 1e-8, 15.0, log=True),
'lambda_l2':
trial.suggest_float('lambda_l2', 1e-8, 15.0, log=True),
'max_depth':
trial.suggest_int('max_depth', 5, 50),
'num_leaves':
trial.suggest_int('num_leaves', 30, 1024),
'feature_fraction':
trial.suggest_float('feature_fraction', 0.1, 1.0),
'bagging_fraction':
trial.suggest_float('bagging_fraction', 0.1, 1.0),
'bagging_freq':
trial.suggest_int('bagging_freq', 1, 20),
'min_data_in_leaf':
trial.suggest_int('min_data_in_leaf', 5, 50),
}
mape_values = []
for fold_n, (train_index, valid_index) in enumerate(
self.fold_handler.split(X_train)):
print('Fold {}'.format(fold_n + 1))
# 使用 LOADER.load_train_data 方法加载数据
X_train_fold, X_valid_fold = X_train.iloc[train_index].copy(
), X_train.iloc[valid_index].copy()
y_train_fold, y_valid_fold = y_train.iloc[train_index].copy(
), y_train.iloc[valid_index].copy()
try:
X_valid_fold = LOADER.load_train_data(
f'fold_{fold_n + 1}_X_valid_fold.joblib')
train_data = LOADER.load_train_data(
f'fold_{fold_n + 1}_train_data.joblib')
valid_data = LOADER.load_train_data(
f'fold_{fold_n + 1}_valid_data.joblib')
except Exception:
transformer = self.get_transformer()
X_train_fold = transformer.fit_transform(
X_train_fold, y_train_fold)
X_valid_fold = transformer.transform(X_valid_fold)
train_data = lgb.Dataset(
X_train_fold,
label=y_train_fold,
categorical_feature=e_config.RAW_CONFIG['cat'],
)
valid_data = lgb.Dataset(
X_valid_fold,
label=y_valid_fold,
)
callbacks = [
lgb.early_stopping(stopping_rounds=500,
first_metric_only=True),
lgb.callback.log_evaluation(period=100)
]
model = lgb.train(
params,
train_data,
valid_sets=[train_data, valid_data],
num_boost_round=10000,
categorical_feature=e_config.RAW_CONFIG['cat'],
callbacks=callbacks,
fobj=lgb_mape,
feval=lgb_mape_eval)
preds = model.predict(X_valid_fold)
mape = np.mean(
np.abs((y_valid_fold.values - preds.reshape(-1, 1)) /
y_valid_fold.values)) * 100
mape_values.append(mape)
return np.mean(mape_values, axis=0)
study = optuna.create_study(direction='minimize')
study.enqueue_trial(self.lgb_params)
study.optimize(objective, n_trials=n_trials)
# 輸出最佳參數
print('Number of finished trials: ', len(study.trials))
print('Best trial:')
trial = study.best_trial
print('Value: ', trial.value)
print('Params: ')
for key, value in trial.params.items():
print(f' {key}: {value}')
self.lgb_params[key] = value
def feature_selection(self,
X_train,
y_train,
importance_type='gain',
threshold=None):
# 先使用所有特征进行训练,获取特征重要性
transformer = self.get_transformer()
X_train = transformer.fit_transform(X_train, y_train)
# 先使用所有特征进行训练,获取特征重要性
train_data = lgb.Dataset(
X_train,
label=y_train,
categorical_feature=e_config.RAW_CONFIG['cat'],
free_raw_data=False)
model = lgb.train(self.lgb_params,
train_data,
num_boost_round=100,
fobj=lgb_mape,
feval=lgb_mape_eval)
# 使用模型的 feature_importance() 方法获取重要性
feature_importances = model.feature_importance(
importance_type=importance_type)
# 如果未指定阈值,则使用特征重要性的中位数作为阈值
if threshold is None or threshold == 'median':
threshold = np.median(feature_importances)
# 根据特征重要性筛选特征
important_features_indices = np.where(
feature_importances >= threshold)[0]
important_features = [
X_train.columns[i] for i in important_features_indices
]
# 更新模型使用的特征
self.selected_feature_names = important_features
# 选择重要的特征并返回相应的 DataFrame
return X_train.loc[:, important_features]
def plot_importances(self):
importances = self.models[-1][-1].feature_importance(
importance_type='gain')
# 將特徵重要性與特徵名稱對應起來
feature_importances = pd.DataFrame({
'feature': self.feature_names,
'importance': importances
})
# 將特徵重要性排序
feature_importances = feature_importances.sort_values('importance',
ascending=False)
# 繪製特徵重要性
plt.figure(figsize=(10, 6))
plt.title("Feature importances")
plt.barh(feature_importances['feature'].iloc[:40],
feature_importances['importance'].iloc[:40],
align='center')
plt.gca().invert_yaxis()
plt.show()