-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
61 lines (54 loc) · 2.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import utils_land
import dataloader
import etl_tool as e_tool
import pandas as pd
import numpy as np
import trainer
# 產生other_prices.joblib
print("Processing other_prices.joblib...")
other_prices = utils_land.processing_land()
print("Processing Done!")
print(other_prices.head())
# preprocessing the data
loader = dataloader.DataLoader()
print("Processing training_data.csv")
train = loader.load_train_data('training_data.csv', data_type='csv')
train = e_tool.preprocess_raw_data(train)
print("train data processing Done!")
X_train = train.drop(['y'], axis=1).copy()
y_train = train[['y']].copy()
# training processing
print("Initital the trainer")
lgb_trainer = trainer.LGBTrainer()
print("start training")
lgb_trainer.train(X_train, y_train)
# merge the public and test
print("Merge the public and test")
public = loader.load_train_data('public_dataset.csv', data_type='csv')
private = loader.load_train_data('private_dataset.csv', data_type='csv')
test = pd.concat([public, private]).reset_index(drop=True)
print("Start preprocessing the test data")
test = e_tool.preprocess_raw_data(test)
# prediction
print("test data processing Done!")
print("Start internal data preprocessing and prediction")
all_preds = lgb_trainer.predict(test)
print("internal data prediction Done!")
# get the final prediction
post_same_transformer = e_tool.PostSameHouseTransformer().fit(X_train, y_train)
step_transformer = e_tool.PostStepTransformer()
a_sample = loader.load_train_data('public_dataset.csv', data_type='csv')
a_private = loader.load_train_data('private_dataset.csv', data_type='csv')
a_sample = pd.concat([a_sample, a_private]).reset_index(drop=True)
a_sample = a_sample[['ID']]
a_sample["predicted_price"] = all_preds
samples_trans = a_sample.copy()
samples_trans.columns = ['id', 'y']
sample_2 = post_same_transformer.transform(samples_trans)
sample_2.columns = ['ID', 'predicted_price']
all_preds = a_sample['predicted_price'].values
sample_2['predicted_price'] = np.array(
all_preds) * 0.7 + sample_2['predicted_price'] * 0.3
sample_2['predicted_price'] = step_transformer.transform(
sample_2['predicted_price'])
sample_2.to_csv(loader.file_path/'submission.csv', index=None)