-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataloader.py
59 lines (46 loc) · 2.11 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import pandas as pd
import os
import joblib
from pathlib import Path
class DataLoader():
def __init__(self):
file_path = Path(os.path.dirname(os.path.abspath(__file__)))
self.file_path = file_path
self.input_path = file_path / 'input'
self.train_path = file_path / 'train_data'
self.model_path = file_path / 'model'
def __repr__(self):
return "DataLoader(file_path = {})".format(self.file_path)
def __str__(self):
return "DataLoader(file_path = {})".format(self.file_path)
def _load(self, file_path, data_type='joblib', **kwargs):
if data_type == 'joblib':
data = joblib.load(file_path, **kwargs)
elif data_type == 'csv':
data = pd.read_csv(file_path, **kwargs)
elif data_type == 'excel':
data = pd.read_excel(file_path, **kwargs)
return data
def _save(self, cls, file_path, cls_type='joblib', **kwargs):
if cls_type == 'csv':
cls.to_csv(file_path, index=None, **kwargs)
else:
joblib.dump(cls, file_path, **kwargs)
def load_input(self, data_name, data_type='joblib', **kwargs):
file_path = self.input_path / data_name
return self._load(file_path, data_type, **kwargs)
def load_train_data(self, data_name, data_type='joblib', **kwargs):
file_path = self.train_path / data_name
return self._load(file_path, data_type, **kwargs)
def load_model(self, data_name, data_type='joblib', **kwargs):
file_path = self.model_path / data_name
return self._load(file_path, data_type, **kwargs)
def save_input(self, cls, data_name, cls_type='joblib', **kwargs):
file_path = self.input_path / data_name
self._save(cls, file_path, cls_type, **kwargs)
def save_train_data(self, cls, data_name, cls_type='joblib', **kwargs):
file_path = self.train_path / data_name
self._save(cls, file_path, cls_type, **kwargs)
def save_model(self, cls, data_name, cls_type='joblib', **kwargs):
file_path = self.model_path / data_name
self._save(cls, file_path, cls_type, **kwargs)