Download nuScenes V1.0 full dataset data HERE, including the map extensions(V1.3). Data creation should be under the GPU environment. Prepare nuscenes data by running
#python tools/create_data.py nuscenes --root-path ./data/nuscenes --out-dir ./data/nuscenes --extra-tag nuscenes
python tools/data_converter/nuscenes_converter.py --data-root your/dataset/nuScenes/
You can either use our provided
files nuScences_map_trainval_infos_train.pkl
and nuScences_map_trainval_infos_val.pkl.
Copy the infos file into $neural_map_prior/data/nuscenes/
.
In addition, you will need to download train_city_infos.pkl and val_city_infos.pkl or you can generate them using the code provided here. These files contain information about each sample's city, which is crucial for determining which sample belongs to which map tile.
It is recommended to symlink the dataset root to $neural_map_prior/data/nuscenes
, $neural_map_prior
means this
repo's root directories. If your folder structure is different from the following, you may need to change the
corresponding paths in config files.
mkdir data && cd data
ln -s /path/to/your/dataset/nuScenes nuscenes
mkdir nuscenes_infos
neural_map_prior
├── mmdet3d
├── tools
├── projects
│ ├── nmp
│ ├── configs
├── ckpts
├── data
│ ├── nuscenes
│ │ ├── maps <-- used
│ │ ├── samples <-- key frames
│ │ ├── sweeps <-- frames without annotation
│ │ ├── v1.0-mini <-- metadata and annotations
│ │ ├── v1.0-test <-- metadata
| | ├── v1.0-trainval <-- metadata and annotations
│ │ ├── nuScences_map_trainval_infos_train.pkl <-- train annotations
│ │ ├── nuScences_map_trainval_infos_val.pkl <-- val annotations
│ ├── nuscenes_infos
│ │ ├── train_city_infos.pkl
│ │ ├── val_city_infos.pkl