forked from derrian-distro/LoRA_Easy_Training_Scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlora_train_command_line.py
397 lines (333 loc) · 20 KB
/
lora_train_command_line.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
import time
from typing import Union
import os
import json
from json import JSONEncoder
import train_network
import library.train_util as util
import argparse
class ArgStore:
def __init__(self):
# Important, these are the most likely things you will modify
self.base_model: str = r"" # example path, r"E:\sd\stable-diffusion-webui\models\Stable-diffusion\nai.ckpt"
self.img_folder: str = r""
self.output_folder: str = r""
self.change_output_name: Union[str, None] = None # OPTIONAL, changes how the output files are named
self.save_json_folder: Union[str, None] = None # OPTIONAL, saves a json folder of your config to whatever location you set here.
self.load_json_path: Union[str, None] = None # OPTIONAL, loads a json file partially changes the config to match. things like folder paths do not get modified.
self.net_dim: int = 128 # network dimension, 128 seems to work best, change if you want
self.alpha: float = 128 # setting it equal to net_dim makes it work equally to how it used to work.
# list of schedulers: linear, cosine, cosine_with_restarts, polynomial, constant, constant_with_warmup
self.scheduler: str = "cosine_with_restarts"
self.warmup_lr_ratio: Union[float, None] = None # OPTIONAL, make sure to set this if you are using constant_with_warmup, None to ignore
self.learning_rate: Union[float, None] = 1e-4 # OPTIONAL, None to ignore, seems like people have started not setting this value, so I updated the script to allow for that.
self.text_encoder_lr: Union[float, None] = None # OPTIONAL, None to ignore
self.unet_lr: Union[float, None] = None # OPTIONAL, None to ignore
self.batch_size: int = 1
self.num_epochs: int = 1
self.save_at_n_epochs: Union[int, None] = 1 # OPTIONAL, how often to save epochs, None to ignore
self.shuffle_captions: bool = False # OPTIONAL, False to ignore
self.keep_tokens: Union[int, None] = None # OPTIONAL, None to ignore
self.max_steps: Union[int, None] = None # OPTIONAL, None to ignore, if you want, you can define an exact step count, the script will do the rest.
# These are the second most likely things you will modify
self.train_resolution: int = 512
self.min_bucket_resolution: int = 320
self.max_bucket_resolution: int = 960
self.lora_model_for_resume: Union[str, None] = None # OPTIONAL, takes an input lora to continue training from, not exactly the way it *should* be, but it works, None to ignore
self.save_state: bool = False # OPTIONAL, is the intended way to save a training state to use for continuing training, False to ignore
self.load_previous_save_state: Union[str, None] = None # OPTIONAL, is the intended way to load a training state to use for continuing training, None to ignore
self.training_comment: Union[str, None] = None # OPTIONAL, great way to put in things like activation tokens right into the metadata.
# These are the least likely things you will modify
self.reg_img_folder: Union[str, None] = None # OPTIONAL, None to ignore
self.clip_skip: int = 2
self.test_seed: int = 23
self.prior_loss_weight: float = 1 # is the loss weight much like Dreambooth, is required for LoRA training
self.gradient_checkpointing: bool = False # OPTIONAL, enables gradient checkpointing
self.gradient_acc_steps: Union[int, None] = None # OPTIONAL, not sure exactly what this means
self.mixed_precision: str = "fp16"
self.save_precision: str = "fp16"
self.save_as: str = "safetensors" # list is pt, ckpt, safetensors
self.caption_extension: str = ".txt"
self.max_clip_token_length = 150
self.buckets: bool = True # enables/disables buckets
self.xformers: bool = True
self.use_8bit_adam: bool = True
self.cache_latents: bool = True
self.color_aug: bool = False # IMPORTANT: Clashes with cache_latents, only have one of the two on!
self.flip_aug: bool = False
self.vae: Union[str, None] = None
self.no_meta: bool = False # This removes the metadata that now gets saved into safetensors, (you should keep this on)
def create_arg_list(self):
ensure_path(self.base_model, "base_model", {"ckpt", "safetensors"})
ensure_path(self.img_folder, "img_folder")
ensure_path(self.output_folder, "output_folder")
# This is the list of args that are to be used regardless of setup
args = ["--network_module=networks.lora", f"--pretrained_model_name_or_path={self.base_model}",
f"--train_data_dir={self.img_folder}", f"--output_dir={self.output_folder}",
f"--prior_loss_weight={self.prior_loss_weight}", f"--caption_extension=" + self.caption_extension,
f"--resolution={self.train_resolution}", f"--train_batch_size={self.batch_size}",
f"--mixed_precision={self.mixed_precision}", f"--save_precision={self.save_precision}",
f"--network_dim={self.net_dim}", f"--save_model_as={self.save_as}",
f"--clip_skip={self.clip_skip}", f"--seed={self.test_seed}",
f"--max_token_length={self.max_clip_token_length}", f"--lr_scheduler={self.scheduler}",
f"--network_alpha={self.alpha}"]
if not self.max_steps:
steps = self.find_max_steps()
else:
steps = self.max_steps
args.append(f"--max_train_steps={steps}")
args = self.create_optional_args(args, steps)
return args
def create_optional_args(self, args, steps):
if self.reg_img_folder:
ensure_path(self.reg_img_folder, "reg_img_folder")
args.append(f"--reg_data_dir={self.reg_img_folder}")
if self.lora_model_for_resume:
ensure_path(self.lora_model_for_resume, "lora_model_for_resume", {"pt", "ckpt", "safetensors"})
args.append(f"--network_weights={self.lora_model_for_resume}")
if self.save_at_n_epochs:
args.append(f"--save_every_n_epochs={self.save_at_n_epochs}")
else:
args.append("--save_every_n_epochs=999999")
if self.shuffle_captions:
args.append("--shuffle_caption")
if self.keep_tokens and self.keep_tokens > 0:
args.append(f"--keep_tokens={self.keep_tokens}")
if self.buckets:
args.append("--enable_bucket")
args.append(f"--min_bucket_reso={self.min_bucket_resolution}")
args.append(f"--max_bucket_reso={self.max_bucket_resolution}")
if self.use_8bit_adam:
args.append("--use_8bit_adam")
if self.xformers:
args.append("--xformers")
if self.color_aug:
if self.cache_latents:
print("color_aug and cache_latents conflict with one another. Please select only one")
quit(1)
args.append("--color_aug")
if self.flip_aug:
args.append("--flip_aug")
if self.cache_latents:
args.append("--cache_latents")
if self.warmup_lr_ratio and self.warmup_lr_ratio > 0:
warmup_steps = int(steps * self.warmup_lr_ratio)
args.append(f"--lr_warmup_steps={warmup_steps}")
if self.gradient_checkpointing:
args.append("--gradient_checkpointing")
if self.gradient_acc_steps and self.gradient_acc_steps > 0 and self.gradient_checkpointing:
args.append(f"--gradient_accumulation_steps={self.gradient_acc_steps}")
if self.learning_rate and self.learning_rate > 0:
args.append(f"--learning_rate={self.learning_rate}")
if self.text_encoder_lr and self.text_encoder_lr > 0:
args.append(f"--text_encoder_lr={self.text_encoder_lr}")
if self.unet_lr and self.unet_lr > 0:
args.append(f"--unet_lr={self.unet_lr}")
if self.vae:
args.append(f"--vae={self.vae}")
if self.no_meta:
args.append("--no_metadata")
if self.save_state:
args.append("--save_state")
if self.load_previous_save_state:
args.append(f"--resume={self.load_previous_save_state}")
if self.change_output_name:
args.append(f"--output_name={self.change_output_name}")
if self.training_comment:
args.append(f"--training_comment={self.training_comment}")
return args
def find_max_steps(self):
total_steps = 0
folders = os.listdir(self.img_folder)
for folder in folders:
if not os.path.isdir(os.path.join(self.img_folder, folder)):
continue
num_repeats = folder.split("_")
if len(num_repeats) < 2:
print(f"folder {folder} is not in the correct format. Format is x_name. skipping")
continue
try:
num_repeats = int(num_repeats[0])
except ValueError:
print(f"folder {folder} is not in the correct format. Format is x_name. skipping")
continue
imgs = 0
for file in os.listdir(os.path.join(self.img_folder, folder)):
if os.path.isdir(file):
continue
ext = file.split(".")
if ext[-1] in {"png", "bmp", "gif", "jpeg", "jpg", "webp"}:
imgs += 1
total_steps += (num_repeats * imgs)
total_steps = (total_steps // self.batch_size) * self.num_epochs
return total_steps
class ArgsEncoder(JSONEncoder):
def default(self, o):
return o.__dict__
def main():
parser = argparse.ArgumentParser()
setup_args(parser)
arg_class = ArgStore()
pre_args = parser.parse_args()
if pre_args.load_json_path or arg_class.load_json_path:
load_json(pre_args.load_json_path if pre_args.load_json_path else arg_class.load_json_path, arg_class)
if pre_args.save_json_path or arg_class.save_json_folder:
save_json(pre_args.save_json_path if pre_args.save_json_path else arg_class.save_json_folder, arg_class)
args = arg_class.create_arg_list()
args = parser.parse_args(args)
train_network.train(args)
def add_misc_args(parser):
parser.add_argument("--save_json_path", type=str, default=None,
help="Path to save a configuration json file to")
parser.add_argument("--load_json_path", type=str, default=None,
help="Path to a json file to configure things from")
parser.add_argument("--no_metadata", action='store_true',
help="do not save metadata in output model / メタデータを出力先モデルに保存しない")
parser.add_argument("--save_model_as", type=str, default="pt", choices=[None, "ckpt", "pt", "safetensors"],
help="format to save the model (default is .pt) / モデル保存時の形式(デフォルトはpt)")
parser.add_argument("--unet_lr", type=float, default=None, help="learning rate for U-Net / U-Netの学習率")
parser.add_argument("--text_encoder_lr", type=float, default=None,
help="learning rate for Text Encoder / Text Encoderの学習率")
parser.add_argument("--network_weights", type=str, default=None,
help="pretrained weights for network / 学習するネットワークの初期重み")
parser.add_argument("--network_module", type=str, default=None,
help='network module to train / 学習対象のネットワークのモジュール')
parser.add_argument("--network_dim", type=int, default=None,
help='network dimensions (depends on each network) / モジュールの次元数(ネットワークにより定義は異なります)')
parser.add_argument("--network_alpha", type=float, default=1,
help='alpha for LoRA weight scaling, default 1 (same as network_dim for same behavior as old version) / LoRaの重み調整のalpha値、デフォルト1(旧バージョンと同じ動作をするにはnetwork_dimと同じ値を指定)')
parser.add_argument("--network_args", type=str, default=None, nargs='*',
help='additional argmuments for network (key=value) / ネットワークへの追加の引数')
parser.add_argument("--network_train_unet_only", action="store_true",
help="only training U-Net part / U-Net関連部分のみ学習する")
parser.add_argument("--network_train_text_encoder_only", action="store_true",
help="only training Text Encoder part / Text Encoder関連部分のみ学習する")
parser.add_argument("--training_comment", type=str, default=None,
help="arbitrary comment string stored in metadata / メタデータに記録する任意のコメント文字列")
def setup_args(parser):
util.add_sd_models_arguments(parser)
util.add_dataset_arguments(parser, True, True)
util.add_training_arguments(parser, True)
add_misc_args(parser)
def ensure_path(path, name, ext_list=None):
if ext_list is None:
ext_list = {}
folder = len(ext_list) == 0
if path is None or not os.path.exists(path):
print(f"Failed to find {name}, Please make sure path is correct.")
quit(1)
elif folder and os.path.isfile(path):
print(f"Path given for {name} is that of a file, please select a folder.")
quit(1)
elif not folder and os.path.isdir(path):
print(f"Path given for {name} is that of a folder, please select a file.")
quit(1)
elif not folder and path.split(".")[-1] not in ext_list:
print(f"Found a file for {name}, however it wasn't of the accepted types: {ext_list}")
quit(1)
def save_json(path, obj):
ensure_path(path, "save_json_path")
fp = open(os.path.join(path, f"config-{time.time()}.json"), "w")
json.dump(obj, fp=fp, indent=4, cls=ArgsEncoder)
fp.close()
def load_json(path, obj):
ensure_path(path, "load_json_path", {"json"})
json_obj = None
with open(path) as f:
json_obj = json.loads(f.read())
print("json loaded, setting variables...")
if "net_dim" in json_obj:
old = obj.net_dim
obj.net_dim = json_obj["net_dim"]
print_change("net_dim", old, obj.net_dim)
elif "network_dim" in json_obj:
old = obj.net_dim
obj.net_dim = json_obj["network_dim"]
print_change("net_dim", old, obj.net_dim)
if "scheduler" in json_obj:
old = obj.scheduler
obj.scheduler = json_obj["scheduler"]
print_change("scheduler", old, obj.scheduler)
elif "lr_scheduler" in json_obj:
old = obj.scheduler
obj.scheduler = json_obj["lr_scheduler"]
print_change("scheduler", old, obj.scheduler)
if "warmup_lr_ratio" in json_obj:
old = obj.warmup_lr_ratio
obj.warmup_lr_ratio = json_obj["warmup_lr_ratio"] # UI version doesn't have an equivalent, only handles steps
print_change("warmup_lr_ratio", old, obj.warmup_lr_ratio)
if "learning_rate" in json_obj:
old = obj.learning_rate
obj.learning_rate = json_obj["learning_rate"]
print_change("learning_rate", old, obj.learning_rate)
if "text_encoder_lr" in json_obj:
old = obj.text_encoder_lr
obj.text_encoder_lr = json_obj["text_encoder_lr"] # UI version is the same
print_change("text_encoder_lr", old, obj.text_encoder_lr)
if "unet_lr" in json_obj:
old = obj.unet_lr
obj.unet_lr = json_obj["unet_lr"] # UI version is the same
print_change("unet_lr", old, obj.unet_lr)
if "clip_skip" in json_obj:
old = obj.clip_skip
obj.clip_skip = json_obj["clip_skip"] # UI version is the same
print_change("clip_skip", old, obj.clip_skip)
if "train_resolution" in json_obj and obj.train_resolution != json_obj["train_resolution"]:
ans = check_input("train_resolution", obj.train_resolution, json_obj["train_resolution"])
obj.train_resolution = process_input(ans, obj.train_resolution, json_obj["train_resolution"])
elif "max_resolution" in json_obj and obj.train_resolution != int(json_obj["max_resolution"].split(",")[0]):
ans = check_input("train_resolution", obj.train_resolution, int(json_obj["max_resolution"].split(",")[0]))
obj.train_resolution = process_input(ans, obj.train_resolution, int(json_obj["max_resolution"].split(",")[0]))
if "min_bucket_resolution" in json_obj and obj.min_bucket_resolution != json_obj["min_bucket_resolution"]:
ans = check_input("min_bucket_resolution", obj.min_bucket_resolution, json_obj["min_bucket_resolution"])
obj.min_bucket_resolution = process_input(ans, obj.min_bucket_resolution, json_obj["min_bucket_resolution"])
if "max_bucket_resolution" in json_obj and obj.max_bucket_resolution != json_obj["max_bucket_resolution"]:
ans = check_input("max_bucket_resolution", obj.max_bucket_resolution, json_obj["max_bucket_resolution"])
obj.max_bucket_resolution = process_input(ans, obj.max_bucket_resolution, json_obj["max_bucket_resolution"])
if "batch_size" in json_obj and obj.batch_size != json_obj["batch_size"]:
ans = check_input("batch_size", obj.batch_size, json_obj["batch_size"])
obj.batch_size = process_input(ans, obj.batch_size, json_obj["batch_size"])
elif "train_batch_size" in json_obj and obj.batch_size != json_obj["train_batch_size"]:
ans = check_input("batch_size", obj.batch_size, json_obj["train_batch_size"])
obj.batch_size = process_input(ans, obj.batch_size, json_obj["train_batch_size"])
if "num_epochs" in json_obj and obj.num_epochs != json_obj["num_epochs"]:
ans = check_input("num_epochs", obj.num_epochs, json_obj["num_epochs"])
obj.num_epochs = process_input(ans, obj.num_epochs, json_obj["num_epochs"])
elif "epoch" in json_obj and obj.num_epochs != json_obj["epoch"]:
ans = check_input("num_epochs", obj.num_epochs, json_obj["epoch"])
obj.num_epochs = process_input(ans, obj.num_epochs, json_obj["epoch"])
if "shuffle_captions" in json_obj and obj.shuffle_captions != json_obj["shuffle_captions"]:
ans = check_input("shuffle_captions", obj.shuffle_captions, json_obj["shuffle_captions"], True)
obj.shuffle_captions = process_input(ans, obj.shuffle_captions, json_obj["shuffle_captions"])
elif "shuffle_caption" in json_obj and obj.shuffle_captions != json_obj["shuffle_caption"]:
ans = check_input("shuffle_captions", obj.shuffle_captions, json_obj["shuffle_caption"], True)
obj.shuffle_captions = process_input(ans, obj.shuffle_captions, json_obj["shuffle_caption"])
if "keep_tokens" in json_obj and obj.keep_tokens != json_obj["keep_tokens"]:
ans = check_input("keep_tokens", obj.keep_tokens, json_obj["keep_tokens"])
obj.keep_tokens = process_input(ans, obj.keep_tokens, json_obj["keep_tokens"])
print("completed changing variables.")
def check_input(name, oldval, newval, no_int: bool = False):
ans = None
while not ans:
ans = input(f"{name} is different old:{oldval} -> new:{newval}\n"
f"Would you like to use the new value?\n" + ("Answer y/n or an int to overwrite both: " if not no_int else "Answer y/n: "))
if not no_int:
try:
ans = int(ans)
return ans
except ValueError:
pass
if ans and ans not in {'y', 'Y', 'n', 'N'}:
ans = None
return ans
def process_input(value, oldval, newval):
if type(value) is int:
return value
elif value in {'y', 'Y'}:
return newval
else:
return oldval
def print_change(value, old, new):
print(f"{value} changed from {old} to {new}")
if __name__ == "__main__":
main()