-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday_17.rs
315 lines (280 loc) · 9.38 KB
/
day_17.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
///
/// # day_17.rs
/// Code for the day 17 of the Advent of Code challenge year 2024
///
/// ## Implementation Details
/// This implementation simulates a 3-bit computer with the following features:
///
/// - Three registers (A, B, C) that can hold integers
/// - Eight 3-bit instructions (0-7)
/// - Two types of operands (literal and combo)
/// - Program execution with instruction pointer management
///
/// ## Instruction Set
/// - 0 (adv): Division of register A by 2^operand
/// - 1 (bxl): XOR of register B with literal operand
/// - 2 (bst): Store operand mod 8 in register B
/// - 3 (jnz): Jump if register A is non-zero
/// - 4 (bxc): XOR of registers B and C
/// - 5 (out): Output operand mod 8
/// - 6 (bdv): Division result to register B
/// - 7 (cdv): Division result to register C
// Imports ============================================================================== Imports
use regex::Regex;
use std::str::FromStr;
// Variables =========================================================================== Variables
const INPUT: &str = include_str!("../../data/inputs/day_17.txt");
/// Represents the 3-bit computer with registers and program execution state
#[derive(Debug)]
struct Computer {
register_a: i64,
register_b: i64,
register_c: i64,
program: Vec<i64>,
instruction_pointer: usize,
output: Vec<i64>,
}
impl Computer {
///
/// # `new`
/// Creates a new Computer instance with initial register values and program
///
/// ## Arguments
/// * `register_a` - Initial value for register A
/// * `register_b` - Initial value for register B
/// * `register_c` - Initial value for register C
/// * `program` - Vector of instructions to execute
fn new(register_a: i64, register_b: i64, register_c: i64, program: Vec<i64>) -> Self {
Computer {
register_a,
register_b,
register_c,
program,
instruction_pointer: 0,
output: Vec::new(),
}
}
///
/// # `get_combo_value`
/// Resolves the value of a combo operand based on its type
///
/// ## Arguments
/// * `operand` - The combo operand value (0-7)
///
/// ## Returns
/// The resolved value based on the combo operand rules
///
/// ## Panics
/// Panics if the operand is 7 or invalid
fn get_combo_value(&self, operand: i64) -> i64 {
match operand {
0..=3 => operand,
4 => self.register_a,
5 => self.register_b,
6 => self.register_c,
7 => panic!("Invalid combo operand 7"),
_ => panic!("Invalid combo operand"),
}
}
///
/// # `run`
/// Executes the program until completion
///
/// Processes instructions sequentially, updating registers and output
/// as specified by the instruction set. The instruction pointer is
/// advanced by 2 after each instruction unless modified by a jump.
fn run(&mut self) {
while self.instruction_pointer < self.program.len() {
let opcode = self.program[self.instruction_pointer];
let operand = self.program[self.instruction_pointer + 1];
match opcode {
0 => {
// adv
let divisor = 1 << self.get_combo_value(operand); // `1 << n` is equivalent to 2^n
self.register_a /= divisor;
}
1 => {
// bxl (xor literal)
self.register_b ^= operand;
}
2 => {
// bst (combo mod 8)
self.register_b = self.get_combo_value(operand) % 8;
}
3 => {
// jnz
if self.register_a != 0 {
self.instruction_pointer = operand as usize;
continue;
}
}
4 => {
// bxc (bitwise XOR)
self.register_b ^= self.register_c;
}
5 => {
// out (calculate and output)
self.output.push(self.get_combo_value(operand) % 8);
}
6 => {
// bdv
let divisor = 1 << self.get_combo_value(operand);
self.register_b = self.register_a / divisor;
}
7 => {
// cdv
let divisor = 1 << self.get_combo_value(operand);
self.register_c = self.register_a / divisor;
}
_ => panic!("Invalid opcode"),
}
self.instruction_pointer += 2;
}
}
}
/// Represents the input format for the program including initial register values
#[derive(Debug)]
struct ProgramInput {
register_a: i64,
register_b: i64,
register_c: i64,
program: Vec<i64>,
}
impl FromStr for ProgramInput {
type Err = String;
///
/// # `from_str`
/// Parses the program input from a string
///
/// ## Format
/// ```text
/// Register A: <value>
/// Register B: <value>
/// Register C: <value>
///
/// Program: <comma-separated values>
/// ```
fn from_str(s: &str) -> Result<Self, Self::Err> {
let register_pattern = Regex::new(r"Register ([ABC]): (-?\d+)").unwrap();
let program_pattern = Regex::new(r"Program: ([-\d,\s]+)").unwrap();
let mut register_a = None;
let mut register_b = None;
let mut register_c = None;
// Parse registers
for cap in register_pattern.captures_iter(s) {
let value = cap[2]
.parse::<i64>()
.map_err(|_| "Failed to parse register value")?;
match &cap[1] {
"A" => register_a = Some(value),
"B" => register_b = Some(value),
"C" => register_c = Some(value),
_ => unreachable!(),
}
}
// Parse program
let program = program_pattern
.captures(s)
.ok_or("Failed to find program")?[1]
.split(',')
.map(|num| num.trim().parse())
.collect::<Result<Vec<i64>, _>>()
.map_err(|_| "Failed to parse program numbers")?;
Ok(ProgramInput {
register_a: register_a.ok_or("Missing Register A")?,
register_b: register_b.ok_or("Missing Register B")?,
register_c: register_c.ok_or("Missing Register C")?,
program,
})
}
}
// Functions =========================================================================== Functions
pub fn response_part_1() {
println!("Day 17 - Part 1");
let start = std::time::Instant::now();
let input: ProgramInput = INPUT.parse().unwrap();
let mut computer = Computer::new(
input.register_a,
input.register_b,
input.register_c,
input.program,
);
computer.run();
let output = computer
.output
.iter()
.map(|&n| n.to_string())
.collect::<Vec<String>>()
.join(",");
let duration = start.elapsed();
println!("Output: {output}");
println!("Duration: {duration:?}");
}
pub fn response_part_2() {
println!("Day 17 - Part 2");
let start = std::time::Instant::now();
let input: ProgramInput = INPUT.parse().unwrap();
let program = input.program;
let mut a = 0;
// Iterate through positions from end to start
for pos in (0..program.len()).rev() {
// Shift left by 3 bits for each position
a <<= 3;
// Try values until we find one that outputs the correct sequence
loop {
let mut computer =
Computer::new(a, input.register_b, input.register_c, program.clone());
computer.run();
// Check if the output matches the expected sequence
let expected: Vec<i64> = program[pos..].to_vec();
if computer.output == expected {
break;
}
a += 1;
}
}
let duration = start.elapsed();
println!("Result: {a}");
println!("Duration: {duration:?}");
}
fn main() {
response_part_1();
response_part_2();
}
// Tests ==================================================================================== Tests
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_example_program() {
let input = "\
Register A: 729
Register B: 0
Register C: 0
Program: 0,1,5,4,3,0";
let program_input: ProgramInput = input.parse().unwrap();
let mut computer = Computer::new(
program_input.register_a,
program_input.register_b,
program_input.register_c,
program_input.program,
);
computer.run();
let expected = vec![4, 6, 3, 5, 6, 3, 5, 2, 1, 0];
assert_eq!(computer.output, expected);
}
#[test]
fn test_bst_instruction() {
let program = vec![2, 6]; // bst instruction with operand 6 (register C)
let mut computer = Computer::new(0, 0, 9, program);
computer.run();
assert_eq!(computer.register_b, 1); // 9 % 8 = 1
}
#[test]
fn test_out_instruction() {
let program = vec![5, 0, 5, 1, 5, 4]; // multiple out instructions
let mut computer = Computer::new(10, 0, 0, program);
computer.run();
assert_eq!(computer.output, vec![0, 1, 2]);
}
}