-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrendering.py
63 lines (44 loc) · 1.36 KB
/
rendering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
"""
Script for visualizing the trained model playing.
"""
import time
import flappy_bird_gym
from flappy_bird_gym.envs.renderer import FlappyBirdRenderer
from argparse import ArgumentParser
from agent import Agent
from typing import List
import numpy as np
import random
import torch
parser = ArgumentParser()
parser.add_argument("--hidden_dim", help="Network hidden dim list", default=[256, 256], type=List[int])
parser.add_argument("--dueling", help="Flag for using dueling network", action="store_false")
parser.add_argument("--loading_path", help="Path from which to load the trained model", type=str, default='DuelingDQN\DuelingDQN.pt')
args = parser.parse_args()
env = flappy_bird_gym.make("FlappyBird-v0")
renderer = FlappyBirdRenderer(audio_on=False)
renderer.audio_on = False
seed = 0
env.seed(seed)
env.action_space.seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
env._renderer = renderer
env._renderer.make_display()
state_dim = env.observation_space.shape[0]
n_actions = env.action_space.n
# Define agent
agent = Agent(state_dim, n_actions, args.dueling)
agent.load_model(args.loading_path)
obs = env.reset()
tot_rew = 0
while True:
action = agent.act(obs,True)
obs, reward, done, info = env.step(action)
env.render()
time.sleep(1 / 60)
tot_rew += reward
if done:
break
print('reward', tot_rew)