Skip to content

Commit 7243cc3

Browse files
falaktheoptimistagramfort
authored andcommitted
Fixing parameter description (for assume_centered) (scikit-learn#13456)
* Fixing parameter description (for assume_centered) Fixing parameter description (for assume_centered) * Update shrunk_covariance_.py * Update empirical_covariance_.py
1 parent 2e6b6ea commit 7243cc3

File tree

2 files changed

+14
-14
lines changed

2 files changed

+14
-14
lines changed

sklearn/covariance/empirical_covariance_.py

+2-2
Original file line numberDiff line numberDiff line change
@@ -56,10 +56,10 @@ def empirical_covariance(X, assume_centered=False):
5656
Data from which to compute the covariance estimate
5757
5858
assume_centered : boolean
59-
If True, data are not centered before computation.
59+
If True, data will not be centered before computation.
6060
Useful when working with data whose mean is almost, but not exactly
6161
zero.
62-
If False, data are centered before computation.
62+
If False, data will be centered before computation.
6363
6464
Returns
6565
-------

sklearn/covariance/shrunk_covariance_.py

+12-12
Original file line numberDiff line numberDiff line change
@@ -71,10 +71,10 @@ class ShrunkCovariance(EmpiricalCovariance):
7171
Specify if the estimated precision is stored
7272
7373
assume_centered : boolean, default False
74-
If True, data are not centered before computation.
74+
If True, data will not be centered before computation.
7575
Useful when working with data whose mean is almost, but not exactly
7676
zero.
77-
If False, data are centered before computation.
77+
If False, data will be centered before computation.
7878
7979
shrinkage : float, 0 <= shrinkage <= 1, default 0.1
8080
Coefficient in the convex combination used for the computation
@@ -175,10 +175,10 @@ def ledoit_wolf_shrinkage(X, assume_centered=False, block_size=1000):
175175
Data from which to compute the Ledoit-Wolf shrunk covariance shrinkage.
176176
177177
assume_centered : bool
178-
If True, data are not centered before computation.
178+
If True, data will not be centered before computation.
179179
Useful to work with data whose mean is significantly equal to
180180
zero but is not exactly zero.
181-
If False, data are centered before computation.
181+
If False, data will be centered before computation.
182182
183183
block_size : int
184184
Size of the blocks into which the covariance matrix will be split.
@@ -270,10 +270,10 @@ def ledoit_wolf(X, assume_centered=False, block_size=1000):
270270
Data from which to compute the covariance estimate
271271
272272
assume_centered : boolean, default=False
273-
If True, data are not centered before computation.
273+
If True, data will not be centered before computation.
274274
Useful to work with data whose mean is significantly equal to
275275
zero but is not exactly zero.
276-
If False, data are centered before computation.
276+
If False, data will be centered before computation.
277277
278278
block_size : int, default=1000
279279
Size of the blocks into which the covariance matrix will be split.
@@ -339,10 +339,10 @@ class LedoitWolf(EmpiricalCovariance):
339339
Specify if the estimated precision is stored.
340340
341341
assume_centered : bool, default=False
342-
If True, data are not centered before computation.
342+
If True, data will not be centered before computation.
343343
Useful when working with data whose mean is almost, but not exactly
344344
zero.
345-
If False (default), data are centered before computation.
345+
If False (default), data will be centered before computation.
346346
347347
block_size : int, default=1000
348348
Size of the blocks into which the covariance matrix will be split
@@ -448,10 +448,10 @@ def oas(X, assume_centered=False):
448448
Data from which to compute the covariance estimate.
449449
450450
assume_centered : boolean
451-
If True, data are not centered before computation.
451+
If True, data will not be centered before computation.
452452
Useful to work with data whose mean is significantly equal to
453453
zero but is not exactly zero.
454-
If False, data are centered before computation.
454+
If False, data will be centered before computation.
455455
456456
Returns
457457
-------
@@ -525,10 +525,10 @@ class OAS(EmpiricalCovariance):
525525
Specify if the estimated precision is stored.
526526
527527
assume_centered : bool, default=False
528-
If True, data are not centered before computation.
528+
If True, data will not be centered before computation.
529529
Useful when working with data whose mean is almost, but not exactly
530530
zero.
531-
If False (default), data are centered before computation.
531+
If False (default), data will be centered before computation.
532532
533533
Attributes
534534
----------

0 commit comments

Comments
 (0)