Open
Description
I first use onnx2pytorch to convert onnx to pytorch, and then use it to use the test set to get the accuracy.
This is my part of code :
model = torch.load(" .pkl")
model.eval()
for epoch in range(1) :
testing_loss = 0.0
testing_correct = 0.0
zpred, ztrue = [], []
for test_inputs, test_labels in test_data :
test_inputs, test_labels = test_inputs.to(device), test_labels.to(device)
output = model(test_inputs) #error poit
loss = criterion(output, test_labels)
_, pred = torch.max(output.data, 1)
testing_loss += loss.item()
testing_correct += torch.sum(pred == test_labels.data)
output = (torch.max(torch.exp(output), 1)[1]).data.cpu().numpy()
zpred.extend(output)
testlabel = test_labels.data.cpu().numpy()
ztrue.extend(testlabel)
test_loss = testing_loss / len(test_loader)
test_acc = 100 * testing_correct.cpu().numpy() / len(test_loader)
print('Epoch is : {}, Test Loss is : {:.4f} Test Accuracy is :{:.4f}%'.format(epoch + 1, test_loss, test_acc))
But I got this error :
sum() received an invalid combination of arguments - got (Tensor, Tensor), but expected one of :
* (Tensor input, *, torch.dtype dtype)
* (Tensor input, tuple of ints dim, bool keepdim, *, torch.dtype dtype, Tensor out)
* (Tensor input, tuple of names dim, bool keepdim, *, torch.dtype dtype, Tensor out)
How can I change the second tensor to the expected attribute?
Metadata
Metadata
Assignees
Labels
No labels