-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1201.py
68 lines (54 loc) · 2.1 KB
/
1201.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
给你四个整数:n 、a 、b 、c ,请你设计一个算法来找出第 n 个丑数。
丑数是可以被 a 或 b 或 c 整除的 正整数 。
示例 1:
输入:n = 3, a = 2, b = 3, c = 5
输出:4
解释:丑数序列为 2, 3, 4, 5, 6, 8, 9, 10... 其中第 3 个是 4。
示例 2:
输入:n = 4, a = 2, b = 3, c = 4
输出:6
解释:丑数序列为 2, 3, 4, 6, 8, 9, 10, 12... 其中第 4 个是 6。
示例 3:
输入:n = 5, a = 2, b = 11, c = 13
输出:10
解释:丑数序列为 2, 4, 6, 8, 10, 11, 12, 13... 其中第 5 个是 10。
示例 4:
输入:n = 1000000000, a = 2, b = 217983653, c = 336916467
输出:1999999984
提示:
1 <= n, a, b, c <= 10^9
1 <= a * b * c <= 10^18
本题结果在 [1, 2 * 10^9] 的范围内
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/ugly-number-iii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
"""
class Solution:
# 容斥原理
def nthUglyNumber(self, n: int, a: int, b: int, c: int) -> int:
def lcm(x, y):
# Least Common Multiple
min_val, max_val = min(x, y), max(x, y)
while min_val:
max_val, min_val = min_val, max_val % min_val
return x * y // max_val
# <= k 的丑数个数: k // a + k //b + k // c - k // lcm(a, b) - k // lcm(a, c) - k // lcm(b, c) + k // lcm(a, b, c)
lcm_ab = lcm(a, b)
lcm_bc = lcm(b, c)
lcm_ac = lcm(a, c)
lcm_abc = lcm(lcm_ab, c)
left, right = 1, min(a, b, c) * n
while left < right:
mid = left + (right - left) // 2
mid_order = mid // a + mid // b + mid // c - mid // lcm_ab - mid // lcm_ac - mid // lcm_bc + mid // lcm_abc
if mid_order >= n:
right = mid
else:
left = mid + 1
return left
n, a, b, c = 3, 2, 3, 5
n, a, b, c = 4, 2, 3, 4
n, a, b, c = 5, 2, 11, 13
n, a, b, c = 1000000000, 2, 217983653, 336916467
print(Solution().nthUglyNumber(n, a, b, c))