-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy path04_add_LN_GN2Combine.py
501 lines (412 loc) · 23.7 KB
/
04_add_LN_GN2Combine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
import onnx_graphsurgeon as gs
import numpy as np
import onnx
# import tensorrt as trt
import warnings
warnings.filterwarnings("ignore")
from copy import deepcopy
from collections import OrderedDict
from onnx import shape_inference
def insert_layernorm_plugin(graph):
nLayerNormPlugin = 0
for node in graph.nodes:
if node.op == 'ReduceMean' and \
node.o().op == 'Sub' and node.o().inputs[0] == node.inputs[0] and \
node.o().o(0).op =='Pow' and node.o().o(1).op =='Div' and \
node.o().o(0).o().op == 'ReduceMean' and \
node.o().o(0).o().o().op == 'Add' and \
node.o().o(0).o().o().o().op == 'Sqrt' and \
node.o().o(0).o().o().o().o().op == 'Div' and node.o().o(0).o().o().o().o() == node.o().o(1) and \
node.o().o(0).o().o().o().o().o().op == 'Mul' and \
node.o().o(0).o().o().o().o().o().o().op == 'Add' and \
len(node.o().o(0).o().o().o().o().o().inputs[1].values.shape) == 1:
# if node.i().op == "Add":
# inputTensor = node.inputs[0] # CLIP
# else:
# inputTensor = node.i().inputs[0] # UNet and VAE
inputTensor = node.inputs[0]
# The first axis to normalize from can be inferred from the size of the `axes`
# parameter of (any of) the `ReduceMean` node(s)
reduceMeanNode = node.o().o(0).o()
assert reduceMeanNode.op == "ReduceMean"
firstNormAxis = -1 * np.size(np.array(reduceMeanNode.attrs["axes"]))
gammaNode = node.o().o().o().o().o().o().o()
index = [type(i) == gs.ir.tensor.Constant for i in gammaNode.inputs].index(True)
gamma = np.array(deepcopy(gammaNode.inputs[index].values.tolist()), dtype=np.float16)
constantGamma = gs.Constant("LayerNormGamma-" + str(nLayerNormPlugin), np.ascontiguousarray(gamma.reshape(-1))) # MUST use np.ascontiguousarray, or TRT will regard the shape of this Constant as (0) !!!
betaNode = gammaNode.o()
index = [type(i) == gs.ir.tensor.Constant for i in betaNode.inputs].index(True)
beta = np.array(deepcopy(betaNode.inputs[index].values.tolist()), dtype=np.float16)
constantBeta = gs.Constant("LayerNormBeta-" + str(nLayerNormPlugin), np.ascontiguousarray(beta.reshape(-1)))
inputList = [inputTensor, constantGamma, constantBeta]
layerNormV = gs.Variable("LayerNormV-" + str(nLayerNormPlugin), np.dtype(np.float16), inputTensor.shape)
layerNormN = gs.Node("LayerNorm", "LayerNormN-" + str(nLayerNormPlugin), inputs=inputList, attrs=OrderedDict([('epsilon', 1.e-5), ('axis',firstNormAxis),("plugin_version","1")]), outputs=[layerNormV])
graph.nodes.append(layerNormN)
nLayerNormPlugin += 1
if betaNode.outputs[0] in graph.outputs:
index = graph.outputs.index(betaNode.outputs[0])
graph.outputs[index] = layerNormV
else:
if betaNode.o().op == "Cast":
lastNode = betaNode.o()
else:
lastNode = betaNode
for subNode in graph.nodes:
if lastNode.outputs[0] in subNode.inputs:
index = subNode.inputs.index(lastNode.outputs[0])
subNode.inputs[index] = layerNormV
lastNode.outputs = []
graph.cleanup().toposort()
# # return nLayerNormPlugin
# onnx.save(gs.export_onnx(graph),"./combine_0.onnx",save_as_external_data=True)
print("layernorm")
print(nLayerNormPlugin)
return graph
def insert_layernorm_plugin_oneflow(graph):
nLayerNormPlugin = 0
for node in graph.nodes:
if node.op == 'ReduceMean' and \
node.o().op == 'Sub' and node.o().inputs[0] == node.inputs[0] and \
node.o().o(0).op =='Pow' and node.o().o(1).op =='Div' and \
node.o().o(0).o().op == 'ReduceMean' and \
node.o().o(0).o().o().op == 'Add' and \
node.o().o(0).o().o().o().op == 'Sqrt' and \
node.o().o(0).o().o().o().o().op == 'Div' and node.o().o(0).o().o().o().o() == node.o().o(1) and \
node.o().o(0).o().o().o().o().o().op == 'Mul' and \
node.o().o(0).o().o().o().o().o().o().op == 'Add' and \
len(node.o().o(0).o().o().o().o().o().inputs[1].values.shape) == 1:
# if node.i().op == "Add":
# inputTensor = node.inputs[0] # CLIP
# else:
# inputTensor = node.i().inputs[0] # UNet and VAE
inputTensor = node.inputs[0]
# The first axis to normalize from can be inferred from the size of the `axes`
# parameter of (any of) the `ReduceMean` node(s)
reduceMeanNode = node.o().o(0).o()
assert reduceMeanNode.op == "ReduceMean"
firstNormAxis = -1 * np.size(np.array(reduceMeanNode.attrs["axes"]))
gammaNode = node.o().o().o().o().o().o().o()
index = [type(i) == gs.ir.tensor.Constant for i in gammaNode.inputs].index(True)
gamma = np.array(deepcopy(gammaNode.inputs[index].values.tolist()), dtype=np.float16)
constantGamma = gs.Constant("LayerNormGamma-" + str(nLayerNormPlugin), np.ascontiguousarray(gamma.reshape(-1))) # MUST use np.ascontiguousarray, or TRT will regard the shape of this Constant as (0) !!!
betaNode = gammaNode.o()
index = [type(i) == gs.ir.tensor.Constant for i in betaNode.inputs].index(True)
beta = np.array(deepcopy(betaNode.inputs[index].values.tolist()), dtype=np.float16)
constantBeta = gs.Constant("LayerNormBeta-" + str(nLayerNormPlugin), np.ascontiguousarray(beta.reshape(-1)))
inputTensor.dtype = np.float16
inputList = [inputTensor]
# inputList = [inputTensor, constantGamma, constantBeta]
layerNormV = gs.Variable("LayerNormV-" + str(nLayerNormPlugin), np.dtype(np.float16), inputTensor.shape)
# layerNormN = gs.Node("LayerNorm", "LayerNormN-" + str(nLayerNormPlugin), inputs=inputList, attrs=OrderedDict([('epsilon', 1.e-5), ("plugin_version","5")]), outputs=[layerNormV])
layerNormN = gs.Node("LayerNorm", "LayerNormN-" + str(nLayerNormPlugin), inputs=inputList, attrs=OrderedDict(), outputs=[layerNormV])
graph.nodes.append(layerNormN)
nLayerNormPlugin += 1
if betaNode.outputs[0] in graph.outputs:
index = graph.outputs.index(betaNode.outputs[0])
graph.outputs[index] = layerNormV
else:
if betaNode.o().op == "Cast":
lastNode = betaNode.o()
else:
lastNode = betaNode
for subNode in graph.nodes:
if lastNode.outputs[0] in subNode.inputs:
index = subNode.inputs.index(lastNode.outputs[0])
subNode.inputs[index] = layerNormV
lastNode.outputs = []
graph.cleanup().toposort()
# # return nLayerNormPlugin
# onnx.save(gs.export_onnx(graph),"./combine_0.onnx",save_as_external_data=True)
print("layernorm")
print(nLayerNormPlugin)
return graph
# 明天试一下这个
def remove_casts(graph):
nRemoveCastNode = 0
for node in graph.nodes:
# # Remove Cast nodes before qkv gemm
# if node.op in ["Add", "Transpose"] and len(node.outputs[0].outputs) == 3 and node.o().op == "Cast" and node.o(1).op == "Cast" and node.o(2).op == "Cast":
# for i in range(len(node.outputs[0].outputs)):
# matMulNode = node.o(i, 0).o()
# matMulNode.inputs[0] = node.outputs[0]
# nRemoveCastNode += 1
# # Remove double cast nodes after Softmax Node
# if node.op == "Softmax" and node.o().op == "Cast" and node.o().o().op == "Cast":
# node.o().o().o().inputs[0] = node.outputs[0]
# nRemoveCastNode += 1
if node.op == "Cast" and node.name != "/control_model/Cast":
# print(graph.inputs)
# print(node.inputs)
for subNode in graph.nodes:
if node.outputs[0] in subNode.inputs:
# if node.name == "/control_model/Cast_1":
index = subNode.inputs.index(node.outputs[0])
subNode.inputs[index] = node.inputs[0]
node.outputs = []
nRemoveCastNode += 1
graph.cleanup().toposort()
print("remove Cast")
print(nRemoveCastNode)
return graph
# return nRemoveCastNode
# 明天试一下这个
def remove_parallel_swish(graph):
mRemoveSwishNode = 0
for node in graph.nodes:
if node.op == "Gemm" and len(node.outputs[0].outputs) > 6:
swishOutputTensor = None
for nextNode in node.outputs[0].outputs:
if nextNode.op == "Mul":
if swishOutputTensor is None:
swishOutputTensor = nextNode.outputs[0]
else:
nextGemmNode = nextNode.o(0)
assert nextGemmNode.op == "Gemm", "Unexpected node type for nextGemmNode {}".format(nextGemmNode.name)
nextGemmNode.inputs = [swishOutputTensor, nextGemmNode.inputs[1], nextGemmNode.inputs[2]]
nextNode.outputs.clear()
mRemoveSwishNode += 1
graph.cleanup().toposort()
print("remove Swish")
print(mRemoveSwishNode)
return graph
# 尝试完成有效
def decompose_instancenorms(graph):
nRemoveInstanceNorm = 0
for node in graph.nodes:
if node.op == "InstanceNormalization":
name = node.name + "/"
input_tensor = node.inputs[0]
output_tensor = node.outputs[0]
mean_out = gs.Variable(name=name + "mean_out")
mean_node = gs.Node(op="ReduceMean", name=name + "mean_node", attrs={"axes": [-1]}, inputs=[input_tensor], outputs=[mean_out])
sub_out = gs.Variable(name=name + "sub_out")
sub_node = gs.Node(op="Sub", name=name + "sub_node", attrs={}, inputs=[input_tensor, mean_out], outputs=[sub_out])
pow_out = gs.Variable(name=name + "pow_out")
pow_const = gs.Constant(name=name + "pow_const", values=np.array([2.0], dtype=np.float32))
pow_node = gs.Node(op="Pow", name=name + "pow_node", attrs={}, inputs=[sub_out, pow_const], outputs=[pow_out])
mean2_out = gs.Variable(name=name + "mean2_out")
mean2_node = gs.Node(op="ReduceMean", name=name + "mean2_node", attrs={"axes": [-1]}, inputs=[pow_out], outputs=[mean2_out])
epsilon_out = gs.Variable(name=name + "epsilon_out")
epsilon_const = gs.Constant(name=name + "epsilon_const", values=np.array([node.attrs["epsilon"]], dtype=np.float32))
epsilon_node = gs.Node(op="Add", name=name + "epsilon_node", attrs={}, inputs=[mean2_out, epsilon_const], outputs=[epsilon_out])
sqrt_out = gs.Variable(name=name + "sqrt_out")
sqrt_node = gs.Node(op="Sqrt", name=name + "sqrt_node", attrs={}, inputs=[epsilon_out], outputs=[sqrt_out])
div_out = gs.Variable(name=name + "div_out")
div_node = gs.Node(op="Div", name=name + "div_node", attrs={}, inputs=[sub_out, sqrt_out], outputs=[div_out])
constantScale = gs.Constant("InstanceNormScaleV-" + str(nRemoveInstanceNorm), np.ascontiguousarray(node.inputs[1].inputs[0].attrs["value"].values.reshape(1, 32, 1)))
constantBias = gs.Constant("InstanceBiasV-" + str(nRemoveInstanceNorm), np.ascontiguousarray(node.inputs[2].inputs[0].attrs["value"].values.reshape(1, 32, 1)))
mul_out = gs.Variable(name=name + "mul_out")
mul_node = gs.Node(op="Mul", name=name + "mul_node", attrs={}, inputs=[div_out, constantScale], outputs=[mul_out])
add_node = gs.Node(op="Add", name=name + "add_node", attrs={}, inputs=[mul_out, constantBias], outputs=[output_tensor])
graph.nodes.extend([mean_node, sub_node, pow_node, mean2_node, epsilon_node, sqrt_node, div_node, mul_node, add_node])
node.inputs = []
node.outputs = []
nRemoveInstanceNorm += 1
graph.cleanup().toposort()
print("remove IN")
print(nRemoveInstanceNorm)
return graph
def insert_groupnorm_plugin(graph):
nGroupNormPlugin = 0
for node in graph.nodes:
if node.op == "Reshape" and node.outputs != [] and \
node.o().op == "ReduceMean" and node.o(1).op == "Sub" and node.o().o() == node.o(1) and \
node.o().o().o().o().o().o().o().o().o().o().o().op == "Mul" and \
node.o().o().o().o().o().o().o().o().o().o().o().o().op == "Add" and \
len(node.o().o().o().o().o().o().o().o().inputs[1].values.shape) == 3 :
# "node.outputs != []" is added for VAE
# print(node)
# print("--------------")
assert len(node.outputs) == 1
# inputTensor = node.outputs[0]
inputTensor = node.inputs[0]
# inputTensor = node.i().inputs[0]
# print(inputTensor)
gammaNode = node.o().o().o().o().o().o().o().o().o().o().o()
# print(gammaNode)
index = [type(i) == gs.ir.tensor.Constant for i in gammaNode.inputs].index(True)
gamma = np.array(deepcopy(gammaNode.inputs[index].values.tolist()), dtype=np.float32)
constantGamma = gs.Constant("groupNormGamma-" + str(nGroupNormPlugin), np.ascontiguousarray(gamma.reshape(-1))) # MUST use np.ascontiguousarray, or TRT will regard the shape of this Constant as (0) !!!
betaNode = gammaNode.o()
index = [type(i) == gs.ir.tensor.Constant for i in betaNode.inputs].index(True)
beta = np.array(deepcopy(betaNode.inputs[index].values.tolist()), dtype=np.float32)
constantBeta = gs.Constant("groupNormBeta-" + str(nGroupNormPlugin), np.ascontiguousarray(beta.reshape(-1)))
epsilon = node.o().o().o().o().o().inputs[1].values.tolist()[0]
# print(epsilon)
if betaNode.o().op == "Sigmoid": # need Swish
bSwish = True
lastNode = betaNode.o().o() # Mul node of Swish
else:
bSwish = False
lastNode = betaNode # Cast node after Group Norm
if lastNode.o().op == "Cast":
lastNode = lastNode.o()
inputList = [inputTensor, constantGamma, constantBeta]
groupNormV = gs.Variable("GroupNormV-" + str(nGroupNormPlugin), np.dtype(np.float16), inputTensor.shape)
groupNormN = gs.Node("GroupNorm", "GroupNormN-" + str(nGroupNormPlugin), inputs=inputList, outputs=[groupNormV], attrs=OrderedDict([('epsilon', epsilon), ('bSwish', int(bSwish))]))
graph.nodes.append(groupNormN)
for subNode in graph.nodes:
if lastNode.outputs[0] in subNode.inputs:
index = subNode.inputs.index(lastNode.outputs[0])
subNode.inputs[index] = groupNormV
# node.i().inputs = []
# print(lastNode)
lastNode.outputs = []
nGroupNormPlugin += 1
graph.cleanup().toposort()
# return nLayerNormPlugin
# onnx.save(gs.export_onnx(graph),"./combine_0.onnx",save_as_external_data=True)
print("GroupNorm")
print(nGroupNormPlugin)
return graph
# fix resize
def resize_fix(graph):
'''
This function loops through the graph looking for Resize nodes that uses scales for resize (has 3 inputs).
It substitutes found Resize with Resize that takes the size of the output tensor instead of scales.
It adds Shape->Slice->Concat
Shape->Slice----^ subgraph to the graph to extract the shape of the output tensor.
This fix is required for the dynamic shape support.
'''
mResizeNodes = 0
for node in graph.nodes:
if node.op == "Resize" and len(node.inputs) == 3:
name = node.name + "/"
add_node = node.o().o().i(1)
div_node = node.i()
shape_hw_out = gs.Variable(name=name + "shape_hw_out", dtype=np.int64, shape=[4])
shape_hw = gs.Node(op="Shape", name=name+"shape_hw", inputs=[add_node.outputs[0]], outputs=[shape_hw_out])
const_zero = gs.Constant(name=name + "const_zero", values=np.array([0], dtype=np.int64))
const_two = gs.Constant(name=name + "const_two", values=np.array([2], dtype=np.int64))
const_four = gs.Constant(name=name + "const_four", values=np.array([4], dtype=np.int64))
slice_hw_out = gs.Variable(name=name + "slice_hw_out", dtype=np.int64, shape=[2])
slice_hw = gs.Node(op="Slice", name=name+"slice_hw", inputs=[shape_hw_out, const_two, const_four, const_zero], outputs=[slice_hw_out])
shape_bc_out = gs.Variable(name=name + "shape_bc_out", dtype=np.int64, shape=[2])
shape_bc = gs.Node(op="Shape", name=name+"shape_bc", inputs=[div_node.outputs[0]], outputs=[shape_bc_out])
slice_bc_out = gs.Variable(name=name + "slice_bc_out", dtype=np.int64, shape=[2])
slice_bc = gs.Node(op="Slice", name=name+"slice_bc", inputs=[shape_bc_out, const_zero, const_two, const_zero], outputs=[slice_bc_out])
concat_bchw_out = gs.Variable(name=name + "concat_bchw_out", dtype=np.int64, shape=[4])
concat_bchw = gs.Node(op="Concat", name=name+"concat_bchw", attrs={"axis": 0}, inputs=[slice_bc_out, slice_hw_out], outputs=[concat_bchw_out])
none_var = gs.Variable.empty()
resize_bchw = gs.Node(op="Resize", name=name+"resize_bchw", attrs=node.attrs, inputs=[node.inputs[0], none_var, none_var, concat_bchw_out], outputs=[node.outputs[0]])
graph.nodes.extend([shape_hw, slice_hw, shape_bc, slice_bc, concat_bchw, resize_bchw])
node.inputs = []
node.outputs = []
mResizeNodes += 1
graph.cleanup().toposort()
print("mResizeNodes")
print(mResizeNodes)
return graph
def adjustAddNode(graph):
nAdjustAddNode = 0
for node in graph.nodes:
# Change the bias const to the second input to allow Gemm+BiasAdd fusion in TRT.
if node.op in ["Add"] and isinstance(node.inputs[0], gs.ir.tensor.Constant):
tensor = node.inputs[1]
bias = node.inputs[0]
node.inputs = [tensor, bias]
nAdjustAddNode += 1
graph.cleanup().toposort()
print("nAdjustAddNode")
print(nAdjustAddNode)
return graph
def infer_shapes(graph,return_onnx=False):
onnx_graph = gs.export_onnx(graph)
# if onnx_graph.ByteSize() > 2147483648:
# raise TypeError("ERROR: model size exceeds supported 2GB limit")
# else:
onnx_graph = shape_inference.infer_shapes(onnx_graph)
graph = gs.import_onnx(onnx_graph)
return graph
def insert_splitgelu_plugin(graph):
nSplitGeLUPlugin = 0
for node in graph.nodes:
if node.op == "Erf":
inputTensor = node.i().i().i().outputs[0]
lastNode = node.o().o().o().o()
# outputShape = inputTensor.shape
# outputShape[2] = outputShape[2] // 2
# splitGeLUV = gs.Variable("splitGeLUV-" + str(nSplitGeLUPlugin), np.dtype(np.float32), outputShape)
splitGeLUV = gs.Variable("splitGeLUV-" + str(nSplitGeLUPlugin), np.dtype(np.float16))
splitGeLUN = gs.Node("SplitGeLU", "splitGeLUN-" + str(nSplitGeLUPlugin), inputs=[inputTensor], outputs=[splitGeLUV])
graph.nodes.append(splitGeLUN)
for subNode in graph.nodes:
if lastNode.outputs[0] in subNode.inputs:
index = subNode.inputs.index(lastNode.outputs[0])
subNode.inputs[index] = splitGeLUV
lastNode.outputs = []
nSplitGeLUPlugin += 1
graph.cleanup().toposort()
print("nSplitGeLUPlugin")
print(nSplitGeLUPlugin)
return graph
def insert_seq2spatial_plugin(graph):
nSeqLen2SpatialPlugin = 0
for node in graph.nodes:
# if node.o().op == "Conv" and node.i().op=="Reshape": #and node.i().i(0).op=="Add" and node.i().i(0).i(0).op=="Add":
if node.op == "Transpose" and node.o().o().op == "Conv" and node.o().op=="Reshape":
transposeNode = node
reshapeNode = node.i()
assert reshapeNode.op == "Reshape", "Unexpected node type for reshapeNode {}".format(reshapeNode.name)
residualNode = reshapeNode.i(0)
assert residualNode.op == "Add", "Unexpected node type for residualNode {}".format(residualNode.name)
biasNode = residualNode.i(0)
assert biasNode.op == "Add", "Unexpected node type for biasNode {}".format(biasNode.name)
biasIndex = [type(i) == gs.ir.tensor.Constant for i in biasNode.inputs].index(True)
bias = np.array(deepcopy(biasNode.inputs[biasIndex].values.tolist()), dtype=np.float16)
biasInput = gs.Constant("AddAddSeqLen2SpatialBias-" + str(nSeqLen2SpatialPlugin), np.ascontiguousarray(bias.reshape(-1)))
inputIndex = 1 - biasIndex
inputTensor = biasNode.inputs[inputIndex]
residualInput = residualNode.inputs[1]
outputTensor = transposeNode.outputs[0]
outputShapeTensor = transposeNode.i().i().i(1).i(1).i(1).i().inputs[0]
seqLen2SpatialNode = gs.Node("SeqLen2Spatial", "AddAddSeqLen2Spatial-" + str(nSeqLen2SpatialPlugin),
inputs=[inputTensor, biasInput, residualInput, outputShapeTensor], outputs=[outputTensor])
graph.nodes.append(seqLen2SpatialNode)
# biasNode.inputs.clear()
transposeNode.outputs.clear()
nSeqLen2SpatialPlugin += 1
# print(node)
graph.cleanup().toposort()
print("nSeqLen2SpatialPlugin")
print(nSeqLen2SpatialPlugin)
return graph
if __name__ == "__main__":
graph = gs.import_onnx(onnx.load("./models/combine.onnx",load_external_data=True))
# graph = insert_layernorm_plugin(graph) # 不work
# graph = insert_layernorm_plugin_oneflow(graph) # 不work
graph = remove_casts(graph)
graph = remove_parallel_swish(graph)
graph = decompose_instancenorms(graph)
graph = insert_groupnorm_plugin(graph)
# fix size
graph = resize_fix(graph)
graph = adjustAddNode(graph)
# # splitgelu
# # graph = infer_shapes(graph)
# graph = insert_splitgelu_plugin(graph) #不work
# # insert_seq2spatial_plugin
# graph = insert_seq2spatial_plugin(graph) #不work
#TODO: FMHA,FMCA
onnx.save(gs.export_onnx(graph),"./models/combine_0.onnx",save_as_external_data=True)
# vae
print("vae")
graph = gs.import_onnx(onnx.load("./models/vae_decoder.onnx"))
graph = infer_shapes(graph)
graph = remove_casts(graph)
# graph = resize_fix(graph)
graph = adjustAddNode(graph)
graph = remove_parallel_swish(graph)
graph = decompose_instancenorms(graph)
graph = insert_groupnorm_plugin(graph)
onnx.save(gs.export_onnx(graph),"./models/vae_decoder_0.onnx")
print("clip")
graph = gs.import_onnx(onnx.load("./models/clip_encoder.onnx"))
# graph = insert_layernorm_plugin(graph) # 不work
graph = remove_casts(graph)
graph = resize_fix(graph)
graph = adjustAddNode(graph)
graph = remove_parallel_swish(graph)
graph = decompose_instancenorms(graph)
graph = insert_groupnorm_plugin(graph)
onnx.save(gs.export_onnx(graph),"./models/clip_encoder_0.onnx")