forked from TrustAI/DeepConcolic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
527 lines (428 loc) · 18.3 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
from abc import abstractmethod
from utils_io import *
from utils_funcs import *
import sys, copy
# NB: importing cv2 and sklearn before tensorflow seems to solve an
# issue with static TLS I've been having on an "oldish" version of
# Linux (cf
# https://github.com/scikit-learn/scikit-learn/issues/14485#issuecomment-633452991):
import sklearn
import tensorflow as tf
from tensorflow import keras
print ("Using TensorFlow version:", tf.__version__, file = sys.stderr)
# ---
#the_dec_pos=0
MIN=-100000
BUFFER_SIZE=20
#ssc_ratio=0.005 #0.1 #0.05 #0.01
# Some type for any DNN layer
Layer = keras.layers.Layer
## some DNN model has an explicit input layer
def is_input_layer(layer):
return isinstance (layer, keras.layers.InputLayer)
def is_reshape_layer(layer):
return isinstance (layer, keras.layers.Reshape)
def is_conv_layer(layer):
return isinstance (layer, (keras.layers.Conv1D,
keras.layers.Conv2D))
def is_dense_layer(layer):
return isinstance (layer, keras.layers.Dense)
def is_activation_layer(layer):
return isinstance (layer, keras.layers.Activation)
def is_relu_layer(layer):
return isinstance (layer, keras.layers.ReLU)
# def act_in_the_layer(layer):
# try:
# act = str(layer.activation)
# if act.find('relu')>=0: return 'relu'
# elif act.find('softmax')>=0: return 'softmax'
# else: return ''
# except:
# return ''
# def activation_is_relu(layer):
# return act_in_the_layer(layer)=='relu'
# # try:
# # print (layer.activation)
# # return isinstance (layer.activation, layers.ReLU)
# # except:
# # return False
def is_maxpooling_layer(layer):
return isinstance (layer, (keras.layers.MaxPooling1D,
keras.layers.MaxPooling2D,
keras.layers.MaxPooling3D))
def is_flatten_layer(layer):
return isinstance (layer, keras.layers.Flatten)
def is_dropout_layer(layer):
return isinstance (layer, keras.layers.Dropout)
# def act_in_the_layer(layer):
# try:
# act=str(layer.activation)
# if act.find('relu')>=0: return 'relu'
# elif act.find('softmax')>=0: return 'softmax'
# else: return ''
# except:
# return ''
def activation_is_relu(layer):
try: return (layer.activation == keras.activations.relu)
except: return False
# def is_relu_layer (layer):
# return activation_is_relu(layer)
# def get_activation(layer):
# if str(layer.activation).find('relu')>=0: return 'relu'
# elif str(layer.activation).find('linear')>=0: return 'linear'
# elif str(layer.activation).find('softmax')>=0: return 'softmax'
# else: return ''
# ---
class cover_layert:
pass
# Basic helper to build more polymorphic functions
def actual_layer(l):
return l.layer if isinstance (l, cover_layert) else l
# ---
def post_activation_layer (dnn, idx):
return min((i for i, layer in enumerate(dnn.layers)
if (i >= idx and (is_activation_layer (layer) or
activation_is_relu (layer)))))
def deepest_tested_layer (dnn, clayers):
return post_activation_layer (dnn, max((l.layer_index for l in clayers)))
def post_conv_or_dense (dnn, idx):
prev = dnn.layers[idx - 1] if idx > 0 else None
return prev is not None and (is_conv_layer (prev) or is_dense_layer (prev))
def activation_of_conv_or_dense (dnn, idx):
layer = dnn.layers[idx]
return \
(is_activation_layer (layer) and post_conv_or_dense (dnn, idx)) or \
((is_conv_layer (layer) or is_dense_layer (layer)) and activation_is_relu (layer))
def testable_layer_function (dnn, idx,
exclude_output_layer = True,
exclude_direct_input_succ = False):
layer = dnn.layers[idx]
input_succ = idx == 0 or idx == 1 and is_input_layer (dnn.layers[0])
non_output = idx != len (dnn.layers) - 1
return \
(not input_succ if exclude_direct_input_succ else True) and \
(non_output if exclude_output_layer else True)# and \
def get_cover_layers (dnn, constr, layer_indices = None,
activation_of_conv_or_dense_only = True,
**kwds):
def a_(l):
in_layer_act = \
(is_conv_layer (dnn.layers[l]) or is_dense_layer (dnn.layers[l])) and \
activation_is_relu (dnn.layers[l])
return l if in_layer_act else l - 1
def flt (l):
return(activation_of_conv_or_dense (dnn, l) and
testable_layer_function (dnn, a_(l), **kwds)) if activation_of_conv_or_dense_only \
else testable_layer_function (dnn, l, **kwds)
def fun (l):
return (a_(l), dnn.layers[a_(l)]) if activation_of_conv_or_dense_only \
else (l, dnn.layers[l])
cls = [ fun (l) for l, layer in enumerate (dnn.layers) if
(layer_indices is None or l in layer_indices) and flt (l) ]
return [ constr (layer[1], layer[0],
prev = (cls[l-1][0] if l > 0 else layer[0]-1 if layer[0] > 0 else None),
succ = (cls[l+1][1] if l < len(cls) - 1 else None))
for l, layer in enumerate (cls) ]
# ---
# Do we really manipulate many DNNs at once?
from functools import lru_cache
@lru_cache(4)
def get_layer_functions(dnn):
return ([ keras.backend.function([layer.input], [layer.output])
for layer in dnn.layers ],
is_input_layer (dnn.layers[0]))
# ---
_default_batch_size = 256
def batched_eval (f, X, axis = 0, batch_size = _default_batch_size):
batch_size = batch_size or _default_batch_size
X, Y = np.asarray (X), []
for b in np.array_split (X, X.shape[axis] // batch_size + 1, axis = axis):
Y += f (b)
return np.concatenate (Y, axis = axis)
# ---
### given input images, evaluate activations
def eval_batch(o, ims, allow_input_layer = False, layer_indexes = None,
batch_size = None):
layer_functions, has_input_layer = (
get_layer_functions (o) if isinstance (o, (keras.Sequential, keras.Model))
# TODO: Check it's sequential? --------------------------------------^
else o)
activations = []
deepest_layer_index = max (layer_indexes) if layer_indexes is not None else None
prev, prevv = None, None
for l, func in enumerate (layer_functions):
prev = ([] if has_input_layer and l == 0 else \
batched_eval (func,
ims if l == (1 if has_input_layer else 0) else prev,
batch_size = batch_size))
if prevv is not None and activations[-1] is not prevv:
del prevv
activations.append (prev if layer_indexes is None or l in layer_indexes else [])
if deepest_layer_index is not None and l == deepest_layer_index:
break
prevv = prev
return activations
def eval(o, im, **kwds):
return eval_batch (o, np.array([im]), **kwds)
def eval_batch_func (dnn):
return lambda imgs, **kwds: eval_batch (dnn, imgs, **kwds)
def _prediction (f, x, top_classes = None):
return \
np.argmax (f (np.array ([x]))) if top_classes is None else \
np.flip (np.argsort (dnn.predict (np.array ([x])))[0])[:top_classes]
def _predictions (f, xl, top_classes = None):
return \
np.argmax (f (np.array (xl)), axis = 1) if top_classes is None else \
np.fliplr (np.argsort (f (np.array (xl))))[:top_classes]
def prediction (dnn, x, **_):
return _prediction (dnn.predict, x, **_)
def predictions (dnn, x, **_):
return _predictions (dnn.predict, x, **_)
# ---
class raw_datat:
def __init__(self, data, labels, name = 'unknown'):
self.data = as_numpy (data)
self.labels = appopt (np.squeeze, as_numpy (labels))
self.name = name
class fix_image_channels_:
def __init__(self, up = 255., bounds = (0.0, 255.0), ctype = 'uint8', down = 255.):
assert bounds is not None
assert ctype is not None
self.up, self.down = up, down
self.bounds = bounds
self.ctype = ctype
def __call__ (self, x):
with np.errstate (over = 'ignore', under = 'ignore'):
if self.up is not None:
np.multiply (x, self.up, out = x)
x = np.clip (x, *self.bounds, out = x).astype (self.ctype).astype (float)
if self.down is not None:
np.divide (x, self.down, out = x)
return x
def dataset_dict (name, save_input_args = ('new_inputs',)):
import datasets
np1 (f'Loading {name} dataset... ')
(x_train, y_train), (x_test, y_test), dims, kind, labels = datasets.load_by_name (name)
test_data = raw_datat (x_test, y_test, name)
train_data = raw_datat (x_train, y_train, name)
save_input = (save_an_image if kind in datasets.image_kinds else \
save_in_csv (*save_input_args) if len (dims) == 1 else None)
input_bounds = ((0., 1.) if kind in datasets.image_kinds else \
'normalized' if kind in datasets.normalized_kinds else None)
postproc_inputs = fix_image_channels_ () if kind in datasets.image_kinds else id
c1 ('done.')
return dict (test_data = test_data, train_data = train_data,
kind = kind, dims = dims, labels = labels,
input_bounds = input_bounds,
postproc_inputs = postproc_inputs,
save_input = save_input)
# ---
def load_model (model_spec):
# NB: Eager execution needs to be disabled before any model loading.
tf.compat.v1.disable_eager_execution ()
if model_spec == 'vgg16':
return tf.keras.applications.VGG16 ()
elif os.path.exists (model_spec):
return tf.keras.models.load_model (model_spec)
else:
raise ValueError (f'Invalid specification for neural network model: `{model_spec}')
# ---
class test_objectt:
def __init__(self, dnn, train_data, test_data):
self.dnn = dnn
self.train_data = train_data
self.raw_data = test_data
self.postproc_inputs = id
# Most of what's below should not be needed anymore: one should
# avoid populating that object with criteria/analyzer-specific
# parameters.
## test config
self.cond_ratio=None
self.top_classes=None
self.labels=None # only used in run_scc.run_svc
self.trace_flag=None
self.layer_indices=None
self.feature_indices=None
def layer_index (self, l):
layer = self.dnn.get_layer (name = l) if isinstance (l, str) else \
self.dnn.get_layer (index = int (l))
return self.dnn.layers.index (layer)
def set_layer_indices (self, ll):
self.layer_indices = [ self.layer_index (l) for l in ll ]
def tests_layer (self, cl):
return self.layer_indices == None or cl.layer_index in self.layer_indices
def check_layer_indices (self, criterion):
mcdc = criterion in ('ssc', 'ssclp')
dbnc = criterion in ('bfc', 'bfdc')
testable_layers = get_cover_layers (self.dnn, lambda x, y, **_: (x, y),
activation_of_conv_or_dense_only = not dbnc,
exclude_direct_input_succ = mcdc,
exclude_output_layer = not dbnc)
print ('Testable function layers: {}'
.format (', '.join (l.name for l, _ in testable_layers)))
if self.layer_indices == None: return
testable_idxs = tuple (l[1] for l in testable_layers)
testable_idxs = tuple (i + 1 if (not dbnc and \
not is_activation_layer (self.dnn.get_layer(index=i)) and\
not activation_is_relu (self.dnn.get_layer(index=i))) \
else i
for i in testable_idxs)
wrong_layer_indices = tuple (i for i in self.layer_indices if i not in testable_idxs)
if wrong_layer_indices != ():
sys.exit ('Untestable function {}layers: {}{}'
.format('or non-activation ' if not dbnc else '',
', '.join (self.dnn.layers[l].name for l in wrong_layer_indices),
'\nOnly activation layers may be specified for '
f'criterion {criterion}' if not dbnc else ''))
tested_layers = get_cover_layers (self.dnn, lambda x, y, **_: (x, y),
layer_indices = self.layer_indices,
activation_of_conv_or_dense_only = not dbnc,
exclude_direct_input_succ = mcdc,
exclude_output_layer = not dbnc)
if tested_layers == []:
sys.exit ('No layer function is to be tested: aborting.')
else:
print ('Function layers to be tested: {}'
.format (', '.join (l.name for l, _ in tested_layers)))
if mcdc:
self.find_mcdc_injecting_layer ([i for _, i in tested_layers],
criterion in ('ssclp',))
def find_mcdc_injecting_layer (self, tested_layer_indexes, concolic):
injecting_layer_index = tested_layer_indexes[0] - 1
if concolic:
while injecting_layer_index >= 0 and \
(activation_is_relu (self.dnn.layers[injecting_layer_index]) or \
is_activation_layer (self.dnn.layers[injecting_layer_index]) or \
is_maxpooling_layer (self.dnn.layers[injecting_layer_index])):
injecting_layer_index -= 1
if injecting_layer_index < 0:
sys.exit ('DNN architecture not supported by concolic MC/DC-style '
'citerion: no suitable activation-less condition layer found')
return injecting_layer_index
# ---
# TODO: generalize to n-dimensional convolutional layers:
# Good starting point: `from tensorflow.python.keras.utils import conv_utils'
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/utils/conv_utils.py
def is_padding(dec_pos, dec_layer, cond_layer, post = True, unravel_pos = True):
## to check if dec_pos is a padding
dec_layer = actual_layer (dec_layer)
if is_conv_layer (dec_layer):
cond_layer = actual_layer (cond_layer)
kernel_size = dec_layer.kernel_size
weights = dec_layer.get_weights()[0]
(I, J, K) = (np.unravel_index(dec_pos, dec_layer.output.shape[1:])
if unravel_pos else dec_pos)
# z = (zip ((I, J) pos_idx[:-1], cond_layer.output.shape[1:-1]) if post else
# zip ((J, K) pos_idx[1: ], cond_layer.output.shape[2: ]))
return ((I - kernel_size[0] < 0 or
I + kernel_size[0] > cond_layer.output.shape[1] or
J - kernel_size[1] < 0 or
J + kernel_size[1] > cond_layer.output.shape[2] or
weights.shape[1] > cond_layer.output.shape[3]) if post else
(J - kernel_size[0] < 0 or
J + kernel_size[0] > cond_layer.output.shape[2] or
K - kernel_size[1] < 0 or
K + kernel_size[1] > cond_layer.output.shape[3] or
weights.shape[0] > cond_layer.output.shape[1]))
return False
# TODO: stride & padding
def maxpool_idxs (oidx, pool_size) -> range:
for pool_idx in np.ndindex (pool_size):
yield (tuple (oidx[i] * pool_size[i] + pool_idx[i]
for i in range (len (pool_size))))
def get_ssc_next(clayers, layer_indices=None, feature_indices=None):
#global the_dec_pos
# clayers2=[]
# if layer_indices==None:
clayers2=clayers
# else:
# for i in range(1, len(clayers)):
# if clayers[i].layer_index in layer_indices:
# clayers2.append(clayers[i])
# if clayers2==[]:
# sys.exit('incorrect layer index specified (the layer tested shall be either conv or dense layer) {}'
# .format(layer_indices))
#print (clayers2[0].layer_index)
dec_layer_index_ret=None
dec_pos_ret=None
while True:
dec_layer_index=np.random.randint(0, len(clayers2))
## todo: this is a shortcut
#print ('#######',len(clayers2), dec_layer_index, clayers[1].layer)
if not np.any(clayers2[dec_layer_index].ssc_map):
print ('all decision features at layer {0} have been covered'.format(dec_layer_index))
continue
#sys.exit(0)
tot_s = np.prod (clayers2[dec_layer_index].ssc_map.shape)
the_dec_pos = np.random.randint(0, tot_s)
if not feature_indices==None:
the_dec_pos=np.argmax(clayers2[dec_layer_index].ssc_map.shape)
# print (the_dec_pos, tot_s, np.count_nonzero (clayers2[dec_layer_index].ssc_map))
found=False
while the_dec_pos < tot_s:
if not clayers2[dec_layer_index].ssc_map.item(the_dec_pos):
the_dec_pos+=1
continue
else:
found=True
break
#if the_dec_pos>=tot_s:
# print ('all decision features at layer {0} have been covered'.format(dec_layer_index))
# sys.exit(0)
if found:
dec_pos_ret=the_dec_pos
for i in range(0, len(clayers)):
if clayers[i].layer_index==clayers2[dec_layer_index].layer_index:
dec_layer_index_ret=i
break
break
if dec_layer_index_ret==None:
print ('End of the testing')
sys.exit(0)
return dec_layer_index_ret, dec_pos_ret
def print_adversarial_distribution(advs, fname, int_flag=False):
advs = np.sort(advs)
## average and std
ave = np.mean(advs)
std = np.std(advs)
d_max = advs[len(advs)-1]
xs = np.arange(1, d_max+1, 1) if int_flag else np.arange(0.001, d_max+0.001, 0.001)
ys = np.zeros(len(xs))
for i in range(0, len(xs)):
for d in advs:
if d <= xs[i]: ys[i] += 1
ys[i] = ys[i] * 1.0 / len(advs)
write_in_file (fname,
'adversarial examples: (average distance, {0}), (standard variance, {1})\n'
.format(ave, std),
'#distance #accumulated adversarial examples fall into this distance\n',
*['{0} {1}\n'.format(xs[i], ys[i]) for i in range(0, len(xs))])
# ---
def lazy_activations_on_indexed_data (fnc, dnn, data: raw_datat,
indexes, layer_indexes,
pass_kwds = True):
input_data = data.data[indexes]
f = lambda j: LazyLambda \
( lambda i: (eval_batch (dnn, input_data[i], allow_input_layer = True,
layer_indexes = (j,))[j] if i is not None
else len (input_data)))
if pass_kwds:
return fnc (LazyLambdaDict (f, layer_indexes),
input_data = input_data,
true_labels = data.labels[indexes],
pred_labels = predictions (dnn, input_data))
else:
return fnc (LazyLambdaDict (f, layer_indexes))
# TODO: customize default batch_size?
def lazy_activations_transform (acts, transform, batch_size = 100):
yacc = None
for i in range (0, len (acts), batch_size):
imax = min (i + batch_size, len (acts))
facts = acts[i:imax].copy ()
x = facts.reshape (len (facts), -1)
y = transform (x)
yacc = np.vstack ((yacc, y)) if yacc is not None else y
del facts, x
if y is not yacc: del y
return yacc
# ---