forked from TrustAI/DeepConcolic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_ssc.py
308 lines (250 loc) · 11.7 KB
/
run_ssc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import argparse
import sys
import os
from datetime import datetime
from tensorflow.keras.models import *
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.datasets import mnist
from tensorflow.keras.applications.vgg16 import VGG16
from tensorflow.keras.preprocessing.image import load_img
from tensorflow.keras.layers import *
from tensorflow.keras import *
from utils import *
from ssc import *
from art.attacks.evasion import FastGradientMethod
from art.estimators.classification import KerasClassifier
# def run_ssc(test_object, outs):
# f_results, cover_layers, _ = ssc_setup (test_object, outs)
# d_advs=[]
# append_in_file (f_results,
# '#ssc runs; #test cases; #adversarial examples; is feasible; is top-1 adversarial example; is top-x adversarial example; condition feature size; L infinity distance; L0 distance; decision layer index; dec feature; #condition layer neurons; new labels; original labels; coverage; local coverage\n')
# tot_decs=0
# if test_object.layer_indices==None:
# # for i in range(1, len(cover_layers)):
# for cl in cover_layers:
# assert not (is_input_layer(test_object.dnn.layers[cl.layer_index - 1]))
# csp=cl.layer.input.shape
# dsp=cl.ssc_map.shape
# if is_dense_layer(cl.layer) or not (csp[1]==dsp[1] and csp[2]==dsp[2]):
# tot_decs+=cl.ssc_map.size
# else:
# ks=cl.layer.kernel_size
# sp=cl.ssc_map.shape
# tot_decs+=((sp[1]-ks[0]+1)*(sp[2]-ks[1]+1)*sp[3])
# else:
# print (test_object.layer_indices, test_object.feature_indices)
# for cl in cover_layers:
# assert not (is_input_layer(test_object.dnn.layers[cl.layer_index - 1]))
# if cl.layer_index in test_object.layer_indices:
# csp=cl.layer.input.shape
# dsp=cl.ssc_map.shape
# if is_dense_layer(cl.layer) or not (csp[1]==dsp[1] and csp[2]==dsp[2]):
# tmp_decs=cl.ssc_map.size
# else:
# ks=cl.layer.kernel_size
# dsp=cl.ssc_map.shape
# tmp_decs=((dsp[1]-ks[0]+1)*(dsp[2]-ks[1]+1)*dsp[3])
# if is_conv_layer(cl.layer):
# if not test_object.feature_indices==None:
# # print ('**', tmp_decs)
# tmp_decs=tmp_decs*(len(test_object.feature_indices)*1.0/dsp[3])
# # print ('**', tmp_decs)
# tot_decs+=tmp_decs
# print ('== Total decisions: {0} ==\n'.format(tot_decs))
# tot_coverage=0.0
# ## define a global attacker
# classifier=KerasClassifier(clip_values=(MIN, -MIN), model=test_object.dnn)
# # print (classifier.__bases__)
# # classifier.run_eagerly = True
# adv_crafter = FastGradientMethod(classifier)
# # print (adv_crafter.__bases__)
# test_cases=[]
# adversarials=[]
# count=0
# print ('== Enter the coverage loop ==\n')
# ite=0
# while True:
# ite+=1
# dec_layer_index, dec_pos=get_ssc_next(cover_layers, test_object.layer_indices, test_object.feature_indices)
# dec_layer=cover_layers[dec_layer_index]
# dec_layer.ssc_map.itemset(dec_pos, False)
# assert dec_layer.prev_layer_index is not None
# cond_layer = test_object.dnn.layers[dec_layer.prev_layer_index]
# if is_padding(dec_pos, dec_layer, cond_layer, post = True):
# print ('padding')
# continue
# cond_cover = np.zeros(cond_layer.output.shape[1:], dtype=bool)
# tot_conds = cond_cover.size
# if is_conv_layer(cond_layer):
# csp = dec_layer.layer.input.shape
# dsp = cond_layer.output.shape
# if (csp[1]==dsp[1] and csp[2]==dsp[2]):
# ks = cond_layer.kernel_size
# tot_conds = ((dsp[1]-ks[0]+1)*(dsp[2]-ks[1]+1)*dsp[3])
# print ('==== Decision layer: {0}, decision pos: {1} ===='.format(dec_layer, dec_pos))
# print ('==== Conditions layer: {0} ====\n'.format(cond_layer.name))
# non_increasing=0
# step_coverage=0
# while not (step_coverage>=1.0 or non_increasing>=10):
# count+=1
# d_min, d_norm, new_image, old_image, old_labels, cond_diff_map = ssc_search(test_object, cond_layer, None, dec_layer, dec_pos, adv_crafter)
# print ('====== #Condition changes: {0}, norm distance: {1} ======\n'.format( d_min, d_norm))
# feasible=(d_min<=test_object.cond_ratio*np.prod(cond_layer.output.shape[1:]) or d_min==1)
# top1_adv_flag=False
# top5_adv_flag=False
# y1s=[]
# y2s=[]
# y1_flag=False
# y2_flag=False
# labels=test_object.labels
# l0_d=None
# top_classes=test_object.top_classes
# inp_ub=test_object.inp_ub
# found_new=True
# if feasible:
# cond_cover=np.logical_or(cond_cover, cond_diff_map)
# covered=np.count_nonzero(cond_cover)
# new_step_coverage=covered*1.0/tot_conds
# if new_step_coverage==step_coverage:
# non_increasing+=1
# found_new=False
# else:
# non_increasing=0
# step_coverage=new_step_coverage
# if feasible and found_new:
# test_cases.append((new_image, old_image))
# if inp_ub==255:
# new_image=new_image.astype('uint8')
# old_image=old_image.astype('uint8')
# diff_image=np.abs(new_image-old_image)
# else:
# new_image_=new_image*255.0/inp_ub
# old_image_=old_image*255.0/inp_ub
# new_image_=new_image_.astype('uint8')
# old_image_=old_image_.astype('uint8')
# diff_image=np.abs(new_image_-old_image_)
# l0_d=np.count_nonzero(diff_image)/(new_image.size*1.0)
# y1s=(np.argsort(test_object.dnn.predict(np.array([new_image]))))[0][-top_classes:]
# y2s=(np.argsort(test_object.dnn.predict(np.array([old_image]))))[0][-top_classes:]
# if y1s[top_classes-1]!=y2s[top_classes-1]: top1_adv_flag=True
# if labels==None: labels=old_labels
# #print (labels, y1s, y2s)
# for label in labels:
# if label in y1s: y1_flag=True
# if label in y2s: y2_flag=True
# if y1_flag!=y2_flag: top5_adv_flag=True
# if top5_adv_flag:
# print ('******** This is an adversarial example ********\n')
# adversarials.append((new_image, old_image))
# test_object.save_adversarial_example (
# (new_image, '{0}-adv-{1}'.format(len(adversarials), y1s[top_classes-1])),
# (old_image, '{0}-original-{1}'.format(len(adversarials), y2s[top_classes-1])),
# diff = (diff_image, '{0}-diff'.format(len(adversarials))),
# directory = outs)
# adv_flag=True
# d_advs.append(d_norm)
# if len(d_advs)%100==0:
# print_adversarial_distribution(d_advs, f_results.replace('.txt', '')+'-adversarial-distribution.txt')
# #elif y1s[0]==y2s[0]:
# # adversarials.append((new_image, old_image))
# # save_adversarial_examples([new_image/(inp_ub*1.0), 't{0}-{1}'.format(len(test_cases), y1s[top_classes-1])], [old_image/(inp_ub*1.0), 't{0}-original-{1}'.format(len(test_cases), y2s[top_classes-1])], None, f_results.split('/')[0])
# elif feasible:
# print ("******** Already found ********\n")
# else:
# print ("******** Not feasible ********\n")
# #print ('f_results: ', f_results)
# f = open(f_results, "a")
# f.write('{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15}\n'.format(count, len(test_cases), len(adversarials), feasible, top1_adv_flag, top5_adv_flag, d_min, d_norm, l0_d, dec_layer.layer_index, dec_pos, np.prod (cond_layer.output.shape[1:]), y1s, y2s, tot_coverage+step_coverage/tot_decs, step_coverage))
# f.close()
# #######
# if not feasible: break
# #######
# tot_coverage+=step_coverage/tot_decs
# ## todo: this is a shortcut
# if not np.any(dec_layer.ssc_map):
# print ('all decision features at layer {0} have been covered'.format(dec_layer.layer_index))
# sys.exit(0)
from engine import CoverableLayer
def run_svc(test_object, outs):
print ('To run svc\n')
setup_layer = \
lambda l, i, **kwds: CoverableLayer (layer = l, layer_index = i, **kwds)
cover_layers = get_cover_layers (test_object.dnn, setup_layer,
layer_indices = test_object.layer_indices,
activation_of_conv_or_dense_only = True,
exclude_direct_input_succ = True)
f_results = outs.stamped_filename ('SVC_report', suff = '.txt')
## define a global attacker
classifier = KerasClassifier(clip_values=(MIN, -MIN), model=test_object.dnn)
adv_crafter = FastGradientMethod(classifier)
test_cases=[]
adversarials=[]
count=0
while True:
dec_layer_index, dec_pos=get_ssc_next(cover_layers)
if dec_layer_index==1 and is_input_layer(test_object.dnn.layers[0]): continue
print ('dec_layer_index', cover_layers[dec_layer_index].layer_index)
###
cond_layer=cover_layers[dec_layer_index-1]
dec_layer=cover_layers[dec_layer_index]
cond_cover=np.ones(cond_layer.ssc_map.shape, dtype=bool)
###
## skip if dec_pos is a padding
if is_padding (dec_pos, dec_layer, cond_layer):
continue
cond_pos=np.random.randint(0, cond_cover.size)
print ('cond, dec layer index: ', cond_layer.layer_index, dec_layer.layer_index)
print ('dec_layer_index: ', cover_layers[dec_layer_index].layer_index)
count+=1
dec_ub=dec_layer.ubs.item(dec_pos)+0.001
#for act in activations[dec_layer.layer_index]:
# v=act.item(dec_pos)
# if v>dec_ub: dec_ub=v
print ('dec_ub: ', dec_ub)
d_min, d_norm, new_image, old_image = svc_search(test_object, cond_layer, cond_pos, dec_layer, dec_pos, adv_crafter, dec_ub)
print ('d_min is', d_min, 'd_norm is', d_norm)
feasible=(d_min<=test_object.cond_ratio*cond_layer.ssc_map.size or d_min==1)
top1_adv_flag=False
top5_adv_flag=False
top5b_adv_flag=False
y1s=[]
y2s=[]
y1_flag=False
y2_flag=False
labels=test_object.labels #[555, 920]
l0_d=None
top_classes=test_object.top_classes
inp_ub=test_object.inp_ub
if feasible:
test_cases.append((new_image, old_image))
if inp_ub==255:
new_image=new_image.astype('uint8')
old_image=old_image.astype('uint8')
diff_image=np.abs(new_image-old_image)
l0_d=np.count_nonzero(diff_image)/(new_image.size*1.0)
y1s=(np.argsort(test_object.dnn.predict(np.array([new_image]))))[0][-top_classes:]
y2s=(np.argsort(test_object.dnn.predict(np.array([old_image]))))[0][-top_classes:]
if y1s[top_classes-1]!=y2s[top_classes-1]: top1_adv_flag=True
if not y1s[top_classes-1] in y2s: top5b_adv_flag=True
for label in labels:
if label in y1s: y1_flag=True
if label in y2s: y2_flag=True
if y1_flag!=y2_flag: top5_adv_flag=True
if top5_adv_flag:
print ('found an adversarial example')
adversarials.append((new_image, old_image))
save_an_image(new_image/(inp_ub*1.0), '{0}-adv-{1}.png'.format(len(adversarials), y1s[top_classes-1]),
f_results.split('/')[0])
save_an_image(old_image/(inp_ub*1.0), '{0}-original-{1}.png'.format(len(adversarials), y2s[top_classes-1]),
f_results.split('/')[0])
save_an_image(diff_image/(inp_ub*1.0), '{0}-diff.png'.format(len(adversarials)),
f_results.split('/')[0])
adv_flag=True
else:
print ("not feasible")
append_in_file (f_results,
'{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13}\n'
.format(count, len(test_cases), len(adversarials),
feasible, top1_adv_flag, top5_adv_flag, top5b_adv_flag,
d_min, d_norm, l0_d, dec_layer.layer_index,
cond_layer.ssc_map.size, y1s, y2s))