forked from TrustAI/DeepConcolic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpulp_norms.py
39 lines (29 loc) · 1.03 KB
/
pulp_norms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
from typing import *
from pulp import *
from norms import LInf
from lp import PulpLinearMetric
# ---
class LInfPulp (LInf, PulpLinearMetric):
"""
L-inf norm to use for :class:`lp.PulpSolver4DNN`.
"""
def pulp_constrain(self, dist_var, var_names, values,
name_prefix = 'input_') -> Sequence[LpConstraint]:
cstrs = []
for idx, x in np.ndenumerate (var_names):
# NB: `vname` is only used for identifying coinstraints
u = values[idx]
vname = '_'.join(str(i) for i in (name_prefix,) + idx)
cstrs.extend([
# x <= u + d
LpConstraint(LpAffineExpression([(dist_var, -1), (x, +1)]),
LpConstraintLE, rhs = float(u),
name = '{}<=x0+{}'.format(vname, self.dist_var_name)),
# x >= u - d
LpConstraint(LpAffineExpression([(dist_var, +1), (x, +1)]),
LpConstraintGE, rhs = float(u),
name = '{}>=x0-{}'.format(vname, self.dist_var_name)),
])
return cstrs
# ---