forked from TrustAI/DeepConcolic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnc.py
128 lines (87 loc) · 3.42 KB
/
nc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from utils_io import *
from utils import *
from engine import (Input, TestTarget,
BoolMappedCoverableLayer, LayerLocalCriterion,
Criterion4RootedSearch,
Analyzer4RootedSearch)
from l0_encoding import L0EnabledTarget
# ---
class NcLayer (BoolMappedCoverableLayer):
'''
Covered layer that tracks per-neuron activation.
'''
pass
# ---
class NcTarget (NamedTuple, L0EnabledTarget, TestTarget):
"""Inherits :class:`engine.TestTarget` as well."""
layer: NcLayer
position: Tuple[int, ...]
def cover(self, acts) -> None:
self.layer.cover_neuron (self.position[1:])
def __repr__(self) -> str:
return 'activation of {} in {}'.format(xtuple (self.position[1:]),
self.layer)
def log_repr(self) -> str:
return '#layer: {} #pos: {}'.format(self.layer.layer_index,
xtuple (self.position[1:]))
def eval_inputs (self, inputs: Sequence[Input], eval_batch = None) \
-> Sequence[float]:
"""
Measures how a new input `t` improves towards fulfilling the
target. A negative returned value indicates that no progress is
being achieved by the given input.
"""
acts = eval_batch (inputs, layer_indexes = (self.layer.layer_index,))
acts = acts[self.layer.layer_index][(Ellipsis,) + self.position[1:]]
return acts
def valid_inputs (self, evals: Sequence[float]) -> Sequence[bool]:
return evals > 0
# ---
class NcAnalyzer (Analyzer4RootedSearch):
'''
Analyzer that finds inputs by focusing on a target within a
designated layer.
'''
@abstractmethod
def search_input_close_to(self, x: Input, target: NcTarget) -> Optional[Tuple[float, Input]]:
raise NotImplementedError
# ---
class NcCriterion (LayerLocalCriterion, Criterion4RootedSearch):
"""
Neuron coverage criterion
"""
def __init__(self, clayers: Sequence[NcLayer], analyzer: NcAnalyzer, **kwds):
assert isinstance (analyzer, NcAnalyzer)
super().__init__(clayers = clayers, analyzer = analyzer, **kwds)
def __repr__(self):
return "NC"
def find_next_rooted_test_target(self) -> Tuple[Input, NcTarget]:
cl, nc_pos, nc_value, test_case = self.get_max ()
cl.inhibit_activation (nc_pos)
return test_case, NcTarget(cl, nc_pos[1:])
# ---
from engine import setup as engine_setup, Engine
def setup (test_object = None,
setup_analyzer: Callable[[dict], NcAnalyzer] = None,
criterion_args: dict = {},
**kwds) -> Engine:
"""
Helper to build an engine for neuron-coverage (using
:class:`NcCriterion` and an analyzer constructed using
`setup_analyzer`).
Extra arguments are passed to `setup_analyzer`.
"""
setup_layer = (
lambda l, i, **kwds: NcLayer (layer = l, layer_index = i,
feature_indices = test_object.feature_indices,
**kwds))
cover_layers = get_cover_layers (test_object.dnn, setup_layer,
layer_indices = test_object.layer_indices,
exclude_direct_input_succ = False)
return engine_setup (test_object = test_object,
cover_layers = cover_layers,
setup_analyzer = setup_analyzer,
setup_criterion = NcCriterion,
criterion_args = criterion_args,
**kwds)
# ---