forked from TrustAI/DeepConcolic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcdc_pulp.py
69 lines (52 loc) · 2.2 KB
/
mcdc_pulp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from typing import *
from pulp import *
from utils import *
from pulp_encoding import *
import numpy as np
# ---
from engine import LayerLocalAnalyzer, CoverableLayer, Input
from ssc import SScAnalyzer4RootedSearch, SScTarget
from lp import PulpLinearMetric, PulpSolver4DNN
class SScPulpAnalyzer (SScAnalyzer4RootedSearch, LayerLocalAnalyzer, PulpSolver4DNN):
"""
Pulp-based analyzer for sign-sign coverage.
"""
def __init__(self, input_metric: PulpLinearMetric = None, **kwds):
assert isinstance (input_metric, PulpLinearMetric)
super().__init__(**kwds)
self.metric = input_metric
def finalize_setup(self, clayers: Sequence[CoverableLayer]):
super().setup (self.dnn, self.metric,
self._input_bounds, self._postproc_inputs,
upto = deepest_tested_layer (self.dnn, clayers))
def input_metric(self) -> PulpLinearMetric:
return self.metric
def search_input_close_to(self, x: Input, target: SScTarget) -> Optional[Tuple[float, Any, Any]]:
activations = self.eval (x)
dec_layer, dec_pos = target.decision_layer, target.decision_position
cond_layer, cond_pos = target.condition_layer, target.condition_position
assert cond_layer is not None
problem = self.for_layer (dec_layer)
cstrs = []
# Augment problem with activation constraints up to condition
# layer:
prev = self.input_layer_encoder
for lc in self.layer_encoders:
if lc.layer_index < cond_layer.layer_index: # < k
cstrs.extend(lc.pulp_replicate_activations (activations, prev))
elif lc.layer_index == cond_layer.layer_index: # == k
cstrs.extend(lc.pulp_replicate_activations (\
activations, prev, exclude = (lambda nidx: nidx == cond_pos)))
cstrs.extend(lc.pulp_negate_activation (activations, cond_pos, prev))
elif lc.layer_index == dec_layer.layer_index: # == k + 1
cstrs.extend(lc.pulp_negate_activation (activations, dec_pos, prev))
break
prev = lc
res = self.find_constrained_input (problem, self.metric, x,
extra_constrs = cstrs)
if not res:
return None
else:
dist = self.metric.distance (x, res[1])
return dist, res[1]
# ---