forked from TrustAI/DeepConcolic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathl0_encoding.py
176 lines (127 loc) · 5.21 KB
/
l0_encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from utils import *
from itertools import product
from engine import Input, Analyzer4RootedSearch
from norms import L0
import numpy as np
# ---
MAX_DIM = 50
def _unsqueeze_shape (shape, single = False):
unsqueeze = len (shape) < (2 if single else 3)
return (shape + (1,)) if unsqueeze else shape
def _unsqueeze (data, **kwds):
return data.reshape (_unsqueeze_shape (data.shape, **kwds))
# ---
class L0EnabledTarget:
@abstractmethod
def eval_inputs (self, inputs: Sequence[Input], eval_batch = None) \
-> Sequence[float]:
raise NotImplementedError
@abstractmethod
def valid_inputs (self, evals: Sequence[float]) -> Sequence[bool]:
raise NotImplementedError
# ---
class L0Analyzer:
"""
Custom analyzer for generating new inputs, based on the L0 norm.
"""
def __init__(self, input_shape, eval_batch, gran = 2):
self.input_shape = input_shape
self.shape = _unsqueeze_shape (input_shape)
self.dims = tuple (min (i, MAX_DIM) for i in self.shape[:-1])
grid = np.meshgrid (*(np.arange (d) for d in self.dims))
self.flat = tuple (np.split (fc, len (fc))
for fc in (c.flatten ('F') for c in grid))
self.gran = gran
self.eval_batch = eval_batch
super().__init__()
def input_metric(self) -> L0:
return self.norm
def eval_inputs (self, inputs, n, target: L0EnabledTarget):
return target.eval_inputs (inputs.reshape((n,) + self.input_shape), self.eval_batch)
def sort_input_features (self, input, target: L0EnabledTarget):
sort_list = np.linspace (0, 1, self.gran)
input_batch = np.kron (np.ones((self.gran,) + (1,) * len (self.shape)),
_unsqueeze (input, single = True))
selected = tuple (np.random.choice (d, dl)
for d, dl in zip (self.shape[:-1], self.dims))
inputs = []
for idx in product (*selected):
new_input_batch = input_batch.copy()
for g in range(0, self.gran):
new_input_batch[g][idx] = sort_list[g]
inputs.append(new_input_batch)
inputs = np.asarray (inputs)
target_change = \
self.eval_inputs (inputs, np.prod (self.dims) * self.gran, target) \
.reshape(-1, self.gran).T
min_indices = np.argmax(target_change, axis=0)
min_evals = np.amax(target_change, axis=0)
min_idx_evals = min_indices.astype('float32') / (self.gran - 1)
target_list = np.hstack((*self.flat,
np.split(min_evals, len(min_evals)),
np.split(min_idx_evals, len(min_idx_evals))))
sorted_map = target_list[(target_list[:, -2]).argsort()]
sorted_map = np.flipud (sorted_map)
for i in range (len (sorted_map)):
for d in range (len (self.dims)):
sorted_map[i][d] = selected[d][int(sorted_map[i][d])]
return sorted_map
def accumulate (self, input, target: L0EnabledTarget, sorted_features, mani_range):
inputs = []
mani_input = _unsqueeze (input.copy(), single = True)
for i in range(0, min (mani_range, len (sorted_features))):
idx = tuple (sorted_features[i, :len(self.dims)].astype (int))
mani_input[idx] = sorted_features[i, -1]
assert mani_input[idx] == sorted_features[i, -1]
inputs.append (mani_input.copy ())
inputs = np.asarray(inputs)
evals = self.eval_inputs (inputs, len (inputs), target)
valid_evals = target.valid_inputs (evals)
new_inputs = inputs[valid_evals]
if new_inputs.any ():
return new_inputs, np.amin (valid_evals.nonzero (), axis = 1)
else:
return None
def refine (self, input, target: L0EnabledTarget, sorted_features, act_first, idx_first):
input = _unsqueeze (input, single = True)
refined = act_first.copy ()
total_idx = 0
idx_range = np.arange (idx_first)
while True:
length = len (idx_range)
for i in range(0, idx_first[0]):
idx = tuple (sorted_features[i, :len(self.dims)].astype (int))
refined[idx] = input[idx]
refined_evals = self.eval_inputs (refined, 1, target)
valid = target.valid_inputs (refined_evals)
if not valid.any (): # == label:
refined[idx] = sorted_features[i, -1]
else:
total_idx = total_idx + 1
idx_range = idx_range[~(idx_range == i)]
if len(idx_range) == length:
break
return refined
# ---
class GenericL0Analyzer (Analyzer4RootedSearch, L0Analyzer):
"""Generic analyzer that is dedicated to find close inputs w.r.t L0 norm.
"""
def __init__(self, l0_args = {}, **kwds):
super().__init__(**kwds)
if 'LB_hard' in l0_args:
l0_args = dict (**l0_args, scale = 1 / l0_args['LB_hard'])
del l0_args['LB_hard']
self.norm = L0 (**l0_args)
def input_metric(self) -> L0:
return self.norm
def search_input_close_to(self, x: Input, target: L0EnabledTarget) -> Optional[Tuple[float, Any]]:
mani_range = 100
sorted_features = self.sort_input_features (x, target)
res = self.accumulate (x, target, sorted_features, mani_range)
if res:
act_inputs, idx_first = res
new_input = self.refine (x, target, sorted_features, act_inputs[0], idx_first)
new_input = self._postproc_inputs (new_input.reshape (x.shape))
return self.norm.distance (x, new_input), new_input
return None
# ---