forked from TrustAI/DeepConcolic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdbncXplore.py
executable file
·822 lines (686 loc) · 31.3 KB
/
dbncXplore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
#!/usr/bin/env python3
import argparse
from utils_funcs import random, rng_seed
from utils_io import *
from utils import *
from plotting import plt
from bounds import UniformBounds
from main import deepconcolic
import scripting
import json
import datasets
import plotting
# ---
# Some defaults:
train_size = 20000
max_iterations = 100
init_tests_range = (10, 100, 1000)
n_components_range = tuple (range (1, 6))
n_bins_range = tuple (range (1, 6, 2))
all_feat_extr_techs = ('pca', 'ica')
input_bounds = UniformBounds (0.0, 1.0)
norm_args = dict (factor = .25,
LB_hard = 1 / 255,
LB_noise = 0.1)
base_report_args = dict (save_new_tests = True,
save_input_func = save_an_image,
amplify_diffs = True)
# ---
# Arg parsing and general dataset and model setup
parser = argparse.ArgumentParser ( \
description = 'Concolic testing for neural networks (stats script)')
subparsers = parser.add_subparsers (title = 'sub-commands')
# Options (potentially) shared by every sub-command:
parser.add_argument ("--outputs", dest = "outputs", required = True,
help = "the output directory", metavar = "DIR")
# ---
def load_dataset (name):
print ('Loading {} dataset... '.format (name), end = '', flush = True)
(x_train, y_train), (x_test, y_test), dims, kind, _ = datasets.load_by_name (name)
train_data = raw_datat (x_train, y_train, name)
test_data = raw_datat (x_test, y_test, name)
print ('done.')
return train_data, test_data
def load_model (model):
# NB: Eager execution needs to be disabled before any model loading.
tf.compat.v1.disable_eager_execution ()
dnn = keras.models.load_model (model)
dnn.summary()
return dnn
def add_common_run_args (parser):
parser.add_argument ('--model', dest='model', required = True,
help='the input neural network model (.h5)')
parser.add_argument ("--dataset", dest='dataset', required = True,
help="selected dataset", choices=datasets.choices)
parser.add_argument ("--layers", dest="layers", nargs="+", required = True,
help="test layers given by name or index")
parser.add_argument ("--max-iterations", dest = "max_iterations",
metavar = "INT", type = int, default = max_iterations,
help = "maximum number of engine iterations "
f'(default is {max_iterations})')
def setup_run_common (args):
test_object = test_objectt (load_model (args.model),
*load_dataset (args.dataset))
test_object.set_layer_indices (int (l) if l.isdigit () else l
for l in args.layers)
return (test_object, args.outputs)
# ---
# NC: Engine setup and helper functions
def setup_results_file (go):
return scripting.setup_results_file \
(go, 'crit', 'run',
'init_tests', 'total_iterations',
'setup_time', 'init_time', 'run_time',
'init_coverage', 'final_coverage',
'num_tests', 'num_adversarials')
def generic_setup (outdir, init_tests, crit, test_object, **dc_kwargs):
report_args = dict (**base_report_args, outdir = outdir)
return deepconcolic (crit, 'linf',
test_object, report_args,
**dc_kwargs,
initial_test_cases = init_tests,
max_iterations = 0)
def generic_run (test_object,
outdir,
append_results,
init_tests,
setup_args,
max_iterations = max_iterations,
**analyzer_args):
tic, get_times = scripting.init_tics ()
engine, report = generic_setup (outdir, init_tests, *setup_args,
test_object,
norm_args = norm_args,
input_bounds = input_bounds,
**analyzer_args)
init_coverage = engine.criterion.coverage ().as_prop
tic ()
report = engine.run (report = report, max_iterations = max_iterations)
final_coverage = engine.criterion.coverage ().as_prop
tic ()
append_results (str (c) for c in
(*setup_args,
init_tests, report.nsteps,
*get_times (),
init_coverage, final_coverage,
report.num_tests,
report.num_adversarials))
# ---
def add_generic_args (parser):
add_common_run_args (parser)
parser.add_argument ('-c', '--criterion', # required = True,
choices = ('nc',), default ='nc',
help = 'criterion to focus on')
parser.add_argument ('-n', '--total-runs', dest = 'total_runs',
type = int, default = 1, metavar = 'INT',
help = 'total number of runs (default is 1)',)
def generic (args):
test_object, outs = setup_run_common (args)
max_iterations = args.max_iterations
crit = args.criterion
global_outdir = OutputDir (f'{outs}/{crit}/', log = False)
append_results = setup_results_file (global_outdir)
init_tests_range = (1000,)
_run = 0
while _run < args.total_runs:
_run += 1
# draw parameters (not much...)
init_tests = random.choice (init_tests_range)
# setup output directory for this run
basename = f'{crit}-X{init_tests}'
outdir = global_outdir.fresh_dir (basename, enable_stamp = False,
log = True)
generic_run (test_object, outdir, append_results,
init_tests, (crit,),
max_iterations = max_iterations)
parser_generic = subparsers.add_parser ('generic')
parser_generic.set_defaults (func = generic)
add_generic_args (parser_generic)
# ---
# DBNC: Engine setup and helper functions
def add_common_dbnc_run_args (parser):
add_common_run_args (parser)
parser.add_argument ("--train-size", dest = "train_size",
metavar = "INT", type = int, default = train_size,
help = 'size of training dataset (default is '
f'{train_size})')
# Setup outputs
def setup_dbnc_results_file (go, discr_fields = ()):
return scripting.setup_results_file \
(go, 'crit', 'tech', 'N', 'skip', 'focus',
'discr', *discr_fields, 'run',
'min_n_bins', 'mean_n_bins', 'max_n_bins',
'init_tests', 'total_iterations',
'init_time', 'run_time',
'init_coverage', 'final_coverage',
'num_tests', 'num_adversarials')
def setup_init_coverages_file (outdir, init_tests, discr_fields = [], discr_fields_fmt = ()):
init_coverages_file = outdir.stamped_filepath (f'init_coverages-{init_tests}',
suff = '.csv')
init_coverages_dtype = ([('tech', 'U4'), ('discr', 'U10')] + discr_fields +
[('N', 'i4'), ('crit', 'U6'), ('run', 'O')] +
[(f'f{i}', 'f8') for i in range (1, init_tests + 1)])
init_coverages_header = '\t'.join (f[0] for f in init_coverages_dtype)
init_coverages_fmt = ('%s', '%s', *discr_fields_fmt, '%d', '%s', '%d',) + ('%f',) * init_tests
init_coverages = []
def write ():
ic = np.asarray (init_coverages, dtype = np.dtype (init_coverages_dtype,
(len (init_coverages),)))
np.savetxt (init_coverages_file, ic, delimiter = '\t', encoding = 'utf8',
header = init_coverages_header, fmt = init_coverages_fmt)
return init_coverages.append, write
# DBNC specifications
def base_dbnc_spec (bn_abstr_train_size = train_size, **k):
return dict (bn_abstr_train_size = bn_abstr_train_size,
report_on_feature_extractions = False,
bn_abstr_n_jobs = 8,
discr_n_jobs = 8,
**k)
def feats_pca_spec (n_components = 1, **k):
return dict (decomp = 'pca',
n_components = n_components,
# svd_solver = 'full',
# svd_solver = 'arpack',
# svd_solver = 'randomized',
**k)
def feats_ipca_spec (n_components = 1, **k):
return dict (decomp = 'ipca',
n_components = n_components,
**k)
def feats_ica_spec (n_components = 1, **k):
return dict (decomp = 'ica',
n_components = n_components,
max_iter = 10000,
tol = max (0.01, 0.01 * (n_components - 1)),
**k)
def feats_spec (tech, n_components = None, **k):
return feats_pca_spec (n_components = n_components, **k) if tech == 'pca' else \
feats_ipca_spec (n_components = n_components, **k) if tech == 'ipca' else \
feats_ica_spec (n_components = n_components, **k)
def discr_kde (extended = True, **k):
return dict (strategy = 'kde',
kde_dip_space = 'dens',
extended = extended,
**k)
def discr_uniform (extended = True, n_bins = 1, **k):
return dict (strategy = 'uniform',
n_bins = n_bins,
extended = extended,
**k)
def dbnc_setup (outdir, init_tests, crit, tech, N, skip, focus, test_object,
train_size, discr = discr_kde, **dc_kwargs):
dbnc_spec = dict (**base_dbnc_spec (bn_abstr_train_size = train_size),
feats = feats_spec (tech, n_components = N,
skip = skip, focus = focus),
discr = discr ())
report_args = dict (**base_report_args, outdir = outdir)
return deepconcolic (crit, 'linf',
test_object, report_args,
**dc_kwargs,
dbnc_spec = dbnc_spec,
initial_test_cases = init_tests,
max_iterations = 0)
def acc_init_coverages (engine, report, init_tests, allow_skip = True):
coverages = [ engine.criterion.coverage ().as_prop ]
n = 1
for i in range (1, init_tests):
if coverages[-1] < 1. or not allow_skip:
# skip step if full coverage (assumes monotonicity)
report = engine.run (report = report,
initial_test_cases = 1,
max_iterations = 0)
n += 1
coverages += [ engine.criterion.coverage ().as_prop ]
return coverages, n
def acc_init_dbnc_coverages (engine, report, init_tests):
bfc_coverages = [ engine.criterion.bfc_coverage ().as_prop ]
bfdc_coverages = [ engine.criterion.bfdc_coverage ().as_prop ]
n = 1
for i in range (1, init_tests):
# skip step if full coverage (assumes monotonicity)
report = engine.run (report = report,
initial_test_cases = 1,
max_iterations = 0)
n += 1
bfc_coverages += [ engine.criterion.bfc_coverage ().as_prop ]
bfdc_coverages += [ engine.criterion.bfdc_coverage ().as_prop ]
return bfc_coverages, bfdc_coverages, n
def dbnc_run (test_object,
outdir,
append_results,
init_tests,
setup_args,
extra_descr = (),
discr = None,
max_iterations = max_iterations,
train_size = train_size,
**analyzer_args):
tic, get_times = scripting.init_tics ()
engine, report = dbnc_setup (outdir, init_tests, *setup_args,
test_object, train_size,
norm_args = norm_args,
input_bounds = input_bounds,
discr = discr,
**analyzer_args)
init_coverage = engine.criterion.coverage ().as_prop
tic ()
report = engine.run (report = report, max_iterations = max_iterations)
final_coverage = engine.criterion.coverage ().as_prop
tic ()
feature_parts = engine.criterion.BN.num_feature_parts
append_results (str (c) for c in
(*setup_args, *extra_descr,
np.amin (feature_parts),
np.mean (feature_parts),
np.amax (feature_parts),
init_tests, report.nsteps,
*get_times (),
init_coverage, final_coverage,
report.num_tests,
report.num_adversarials))
# ---
num_runs = 3
def add_run_args (parser):
add_common_dbnc_run_args (parser)
parser.add_argument ("--runs", type = int, default = num_runs,
help = 'number of runs for each parameter selection (default is '
f'{num_runs})')
def run (args):
test_object, outs = setup_run_common (args)
max_iterations = args.max_iterations
num_runs = args.runs
train_size = args.train_size
for crit in ('bfc', 'bfdc',):
global_outdir = OutputDir (f'{outs}/{crit}/', log = True)
append_results = setup_dbnc_results_file (global_outdir,
discr_fields = ('n_bins',))
for init_tests in init_tests_range:
for tech in all_feat_extr_techs:
for N in n_components_range:
skip, focus = 0, N
for run in range (num_runs):
rng_seed (42 + run)
outdir = OutputDir (global_outdir.filepath \
(f'{crit}-{tech}-N{N}-{skip}-{focus}-X{init_tests}-KDE-R{run}'),
enable_stamp = False, log = True)
dbnc_run (test_object, outdir, append_results,
init_tests, (crit, tech, N, skip, focus),
extra_descr = ('kde', 0, run),
discr = discr_kde,
max_iterations = max_iterations,
train_size = train_size)
for n_bins in n_bins_range:
for run in range (num_runs):
rng_seed (42 + run)
outdir = OutputDir (global_outdir.filepath \
(f'{crit}-{tech}-N{N}-{skip}-{focus}-X{init_tests}-U{n_bins}-R{run}'),
enable_stamp = False, log = True)
dbnc_run (test_object, outdir, append_results,
init_tests, (crit, tech, N, skip, focus),
extra_descr = ('uniform', n_bins, run),
discr = lambda : discr_uniform (n_bins = n_bins),
max_iterations = max_iterations,
train_size = train_size)
# ---
# global_outdir = OutputDir (f'{outs}/', log = True)
# for init_tests in (# 1,
# # 2, 3, 4, 8, 16,
# 30,):
# append_init_coverages, write_init_coverages = \
# setup_init_coverages_file (global_outdir, init_tests)
# for tech in ('pca', 'ica',):
# for N in (1, 2, 3, 4,):
# for run in range (num_runs):
# rng_seed (42 + run)
# outdir = OutputDir (global_outdir.filepath \
# (f'{tech}-N{N}-X{init_tests}-R{run}'),
# enable_stamp = False, log = True)
# engine, report = dbnc_setup (outdir, 1, 'bfc', tech, N,
# test_object, norm_args = norm_args,
# input_bounds = input_bounds)
# bfc_coverages, bfdc_coverages, n_init = \
# acc_init_dbnc_coverages (engine, report, init_tests)
# append_init_coverages ((tech, 'kde', N, 'bfc', run,) + tuple (bfc_coverages))
# append_init_coverages ((tech, 'kde', N, 'bfdc', run,) + tuple (bfdc_coverages))
# write_init_coverages ()
# ---
# global_outdir = OutputDir (f'{outs}/', log = True)
# for init_tests in (# 1,
# # 2, 3, 4, 8, 16,
# 100,):
# append_init_coverages, write_init_coverages = \
# setup_init_coverages_file (global_outdir, init_tests,
# discr_fields = [('n_bins', 'i4')],
# discr_fields_fmt = ('%d',))
# for tech in ('pca', 'ica',):
# for N in (1, 2, 3, 4, 5,):
# for n_bins in range (1, 5):
# for run in range (num_runs):
# rng_seed (42 + run)
# outdir = OutputDir (global_outdir.filepath \
# (f'{tech}-N{N}-X{init_tests}-U{n_bins}-R{run}'),
# enable_stamp = False, log = True)
# discr = lambda : discr_uniform (n_bins = n_bins)
# engine, report = dbnc_setup (outdir, 1, 'bfc', tech, N,
# test_object, norm_args = norm_args,
# input_bounds = input_bounds,
# discr = discr)
# bfc_coverages, bfdc_coverages, n_init = \
# acc_init_dbnc_coverages (engine, report, init_tests)
# append_init_coverages ((tech, 'uniform', n_bins, N, 'bfc', run,) + tuple (bfc_coverages))
# append_init_coverages ((tech, 'uniform', n_bins, N, 'bfdc', run,) + tuple (bfdc_coverages))
# write_init_coverages ()
# ---
# global_outdir = OutputDir (f'{outs}/', log = True)
# for init_tests in (# 1,
# # 2, 3, 4, 8, 16,
# 30,):
# append_init_coverages, write_init_coverages = \
# setup_init_coverages_file (global_outdir, init_tests,
# discr_fields = [('n_bins', 'i4')],
# discr_fields_fmt = ('%d',))
# for tech in ('pca', 'ica',):
# for N in (1, 2, 3, 4,):
# for n_bins in range (1, 4):
# for run in range (num_runs):
# rng_seed (42 + run)
# outdir = OutputDir (global_outdir.filepath \
# (f'{tech}-N{N}-X{init_tests}-U{n_bins}-R{run}'),
# enable_stamp = False, log = True)
# discr = lambda : discr_uniform (n_bins = n_bins)
# engine, report = dbnc_setup (outdir, init_tests, 'bfc', tech, N,
# test_object, norm_args = norm_args,
# input_bounds = input_bounds,
# discr = discr)
# bfc_coverages, bfdc_coverages, n_init = \
# acc_init_dbnc_coverages (engine, report, init_tests)
# append_init_coverages ((tech, 'uniform', n_bins, N, 'bfc', run,) + tuple (bfc_coverages))
# append_init_coverages ((tech, 'uniform', n_bins, N, 'bfdc', run,) + tuple (bfdc_coverages))
# write_init_coverages ()
parser_run = subparsers.add_parser ('run')
parser_run.set_defaults (func = run)
add_run_args (parser_run)
# ---
def add_randrun_args (parser):
add_common_dbnc_run_args (parser)
parser.add_argument ('-c', '--criterion', required = True,
choices = ('bfc', 'bfdc'),
help = 'criterion to focus on')
parser.add_argument ('-n', '--total-runs', dest = 'total_runs',
type = int, default = 1, metavar = 'INT',
help = 'total number of runs (default is 1)',)
def randrun (args):
test_object, outs = setup_run_common (args)
max_iterations = args.max_iterations
train_size = args.train_size
crit = args.criterion
global_outdir = OutputDir (f'{outs}/{crit}/', log = False)
append_results = setup_dbnc_results_file (global_outdir,
discr_fields = ('n_bins',))
discr_strats = ('KDE',) + tuple (range (1, 6))
_run = 0
while _run < args.total_runs:
_run += 1
# draw parameters
tech = random.choice (all_feat_extr_techs)
N = random.randint (1, 5) # extract up to 5 features
skip = 0 # fixed for now
focus = min (random.randint (1, N - skip), 5) # cap to 5 to avoid too large BNs
discr_strat = random.choice (discr_strats)
init_tests = random.choice (init_tests_range)
n_bins, discr_strat = (0, discr_strat) if discr_strat == 'KDE' else \
(discr_strat, f'U{discr_strat}')
# setup output directory for this run
basename = f'{crit}-{tech}-N{N}-{skip}-{focus}-X{init_tests}-{discr_strat}'
outdir = global_outdir.fresh_dir (basename, enable_stamp = False,
log = True)
extra_descr = ('kde', 0, _run) if discr_strat == 'KDE' else \
('uniform', n_bins, _run)
discr = discr_kde if discr_strat == 'KDE' else \
lambda : discr_uniform (n_bins = n_bins)
dbnc_run (test_object, outdir, append_results,
init_tests, (crit, tech, N, skip, focus),
extra_descr = extra_descr,
discr = discr,
max_iterations = max_iterations,
train_size = train_size)
parser_randrun = subparsers.add_parser ('randrun')
parser_randrun.set_defaults (func = randrun)
add_randrun_args (parser_randrun)
# ---
# see https://matplotlib.org/api/pyplot_api.html
plotting.generic_setup (**{
'ytick.labelsize': 'small',
'ytick.major.size': 4,
'ytick.major.width': .4,
'ytick.major.pad': 4,
'ytick.direction': 'in',
'xtick.labelsize': 'small',
'xtick.major.size': 4,
'xtick.major.width': .4,
'xtick.major.pad': 4,
'axes.labelsize': 'medium',
'axes.labelpad': 2.,
'axes.linewidth': .5,
# 'xaxis.labellocation': 'right',
'lines.markersize': 1.5,
'lines.linewidth': .8,
})
plotting.pgf_setup (**{
'ytick.labelsize': 'xx-small',
'ytick.major.size': 2,
'ytick.major.width': .2,
'ytick.major.pad': 2,
'ytick.direction': 'in',
'xtick.labelsize': 'xx-small',
'xtick.major.size': 1,
'xtick.major.width': .1,
'xtick.major.pad': 1,
'axes.labelsize': 'x-small',
'axes.titlesize': 'small',
'axes.formatter.limits': (-2, 2),
'axes.formatter.useoffset': True,
'axes.formatter.use_mathtext': True,
'lines.markersize': .2,
'lines.linewidth': .2,
})
def add_plots_args (parser):
parser.add_argument ('--reports-dir', dest = 'dir', metavar = "DIR", required = True,
help = 'directory where all execution reports are to be found')
parser.add_argument ('-p', '--outputs-prefix', dest = 'prefix', type = str,
help = 'prefix of output filenames (e.g. PNGs, PDFs, PGFs...)')
parser.add_argument ('-c', '--criterion', required = True, choices = ('bfc', 'bfdc'),
help = 'criterion to focus on')
parser.add_argument ('--no-pca-progress', dest='no_pca_progress', action = 'store_true',
help = 'disable plotting of PCA distances and progress')
parser.add_argument ('--no-ica-progress', dest='no_ica_progress', action = 'store_true',
help = 'disable plotting of ICA distances and progress')
parser.add_argument ('--no-summary', dest='no_summary', action = 'store_true',
help = 'disable plotting of overall summary')
parser.add_argument ('--dnn-name', dest='dnn_name', default = r'\mathcal{N}',
help = 'name of the DNN (in LaTeX math)')
parser.add_argument ('--hist-bins', dest='hist_bins', type = int, default = 200,
help = 'number of bins in each histogram')
def read_reports (dir):
T = scripting.gather_all_reports \
(dir,
'{crit}-{tech}-N{N:g}-{skip:d}-{focus:d}-X{init_tests:d}-{discr}-{run}',
[('crit', 'U4'),
('tech', 'U4'),
('N', 'f8'),
('skip', 'i4'),
('focus', 'i4'),
('init_tests', 'i4'),
('discr', 'U10'),
('run', 'O')],
ignore_head = 1) # ignore first init entry
print ('Found {} report{}'.format (*s_(len(T))))
for k in ('crit', 'tech', 'N', 'skip', 'focus', 'discr', 'init_tests'):
print (f'>> {k}:', *(np.unique (T[k])))
return T
def plots (args):
T = read_reports (args.dir)
outdir = OutputDir (args.outputs, log = True)
filename = lambda f: args.prefix + '-' + f if args.prefix is not None else f
T = T[T['crit'] == args.criterion]
T_init_tests = { n: T[T['init_tests'] == n] for n in np.unique(T['init_tests']) }
for init_tests in T_init_tests:
generated_tests = sum (run['report']['#tests'][-1] - init_tests
for run in T_init_tests[init_tests])
n_runs = len (T_init_tests[init_tests])
print (f'{generated_tests} tests generated for |X_0|={init_tests}'
'(average = {} test{}/run).'
.format (*s_(generated_tests * 1. / n_runs)))
def tech_style (tech):
return dict (color = 'blue' if tech == 'pca' else 'red')
# Progress/ICA
def plot_progress (tech, T):
P_tech = T[T['tech'] == tech]['progress']
P_tech = [ P for P in P_tech if len (P.shape) > 0 ]
nDists = np.concatenate([P['new_dist'].astype (float) for P in P_tech ])
oDists = np.concatenate([P['old_dist'].astype (float) for P in P_tech ])
dDists = oDists - nDists
fig, ax = plotting.subplots (1, 2,
figsize_adjust = (1.0, 0.5),
constrained_layout = True)
ax[0].hist (nDists, bins = args.hist_bins, **tech_style (tech))
ax[0].axvline (x = 0, lw = 1, color = 'black')
ax[0].set_ylabel (r'\#steps where new distance is $d$')
ax[0].set_xlabel (r'Distance ($d$ — '+tech+r')')
ax[1].hist (dDists, bins = args.hist_bins, **tech_style (tech))
ax[1].axvline (x = 0, lw = 1, color = 'black')
ax[1].set_ylabel (r'\#steps where progress is $\delta$')
ax[1].set_xlabel (r'Progress ($\delta$ — '+tech+r')')
plotting.show (fig,
outdir = outdir,
basefilename = filename (tech + '-dist-n-progress'),
w_pad = 0.06)
if not args.no_pca_progress:
plot_progress ('pca', T)
# Progress/ICA
if not args.no_ica_progress:
plot_progress ('ica', T)
# Summary
if not args.no_summary:
def plot_style (report):
return tech_style (report['tech'])
def it_(ax):
return ax if len (T_init_tests) > 1 else [ax]
Nms = args.dnn_name# r'\mathcal{N}_{\mathsf{ms}}'
cov_label_ = lambda d, n, x: r'\mathrm{'+ d +r'}(\mathcal{B}_{'+n+r', '+x+'})'
cov_label = lambda n, x: \
cov_label_ ('BFCov', n, x) if args.criterion == 'bfc' else \
cov_label_ ('BFdCov', n, x)
fig, ax = plotting.subplots (3, len (T_init_tests),
sharex='col', sharey='row',
constrained_layout = True)
for axi in it_(ax[-1]):
# unshare x axes for the bottom row:
g = axi.get_shared_x_axes()
g.remove (axi)
for a in g.get_siblings(axi): g.remove (a)
for init_tests, axi in zip (T_init_tests, it_(ax[0])):
for run in T_init_tests[init_tests]:
axi.plot (run['report']['#tests'] - init_tests,
**plot_style (run))
from matplotlib.ticker import StrMethodFormatter
for init_tests, axi in zip (T_init_tests, it_(ax[1])):
for run in T_init_tests[init_tests]:
if len (run['report']) == 0:
continue
axi.plot (run['report']['coverage'] - run['report']['coverage'][0],
**plot_style (run))
axi.yaxis.set_major_formatter(StrMethodFormatter('{x:2.1f}'))
axi.yaxis.set_ticks(np.arange (0, np.amax(axi.get_yticks()), step=0.1))
for init_tests, axi in zip (T_init_tests, it_(ax[2])):
init_covs = [run['report']['coverage'][ 0]
for run in T_init_tests[init_tests]
if len (run['report']) > 0]
final_covs = [run['report']['coverage'][-1]
for run in T_init_tests[init_tests]
if len (run['report']) > 0]
bp = axi.boxplot ([init_covs, final_covs],
positions = [0, 20], widths = 6,
# labels = [r'initial ($i=0$)', 'final'],
flierprops = dict (marker='.', markersize = 1),
bootstrap = 1000,
manage_ticks = False)
axi.yaxis.set_major_formatter(StrMethodFormatter('{x:2.1f}'))
for box in bp['boxes']: box.set(linewidth=.5)
for box in bp['caps']: box.set(linewidth=.5)
plt.setp(axi.get_xticklabels(), visible=False)
for init_tests, axi in zip (T_init_tests, it_(ax[1])):
axi.xaxis.set_tick_params(which='both', labelbottom=True)
# Set labels and column titles:
for init_tests, axi in zip (T_init_tests, it_(ax[0])):
axi.set_title (f'$|X_0| = {init_tests}$')
for axi in it_(ax[-1]):
axi.set_xlabel (r'iteration ($i$)')
it_(ax[0])[0].set_ylabel (r'$|X_i| - |X_0|$')
it_(ax[1])[0].set_ylabel (r'$' +
cov_label (Nms, r'X_i') +
'-' +
cov_label (Nms, r'X_0') +
'$')
it_(ax[2])[0].set_ylabel (r'$' +
cov_label (Nms, r'X_i') +
'$')
# it_(ax[-1])[(len (T_init_tests) - 1) // 2 + 1].set_xlabel (r'iteration ($i$)')
plotting.show (fig,
basefilename = filename ('summary-per-X0'),
outdir = outdir,
rect = (.01, 0, 1, 1))
# fig, ax = plotting.subplots (2, len (T_init_tests),
# sharex='col', sharey='row')
# for init_tests, axi in zip (T_init_tests, it_(ax[0])):
# for run in T_init_tests[init_tests]:
# axi.plot (run['report']['#tests'] - init_tests,
# **plot_style (run))
# for init_tests, axi in zip (T_init_tests, it_(ax[1])):
# for run in T_init_tests[init_tests]:
# axi.plot (run['report']['coverage'] - run['report']['coverage'][0],
# **plot_style (run))
# # cov_diff = np.diff(run['report']['coverage'])
# # axi.plot (range (1, len(cov_diff) + 1), cov_diff,
# # **plot_style (run))
# # for init_tests, axi in zip (T_init_tests, it_(ax[2])):
# # init_covs = [run['report']['coverage'][ 0] for run in T_init_tests[init_tests]]
# # final_covs = [run['report']['coverage'][-1] for run in T_init_tests[init_tests]]
# # axi.boxplot ([init_covs, final_covs],
# # labels = [r'initial ($i=0$)', 'final'], bootstrap = 1000)
# # unshare x axes:
# # g = axi.get_shared_x_axes()
# # g.remove (axi)
# # for a in g.get_siblings(axi): g.remove (a)
# for init_tests, axi in zip (T_init_tests, it_(ax[0])):
# axi.set_title (f'$|X_0| = {init_tests}$')
# # for init_tests, axi in zip (T_init_tests, it_(ax[-1])):
# ax[-1][1].set_xlabel (r'iteration')
# it_(ax[0])[0].set_ylabel (r'$\Delta(|X|)$')
# it_(ax[1])[0].set_ylabel (r'$'+ bfc_label (mnist_small, r'X') + '-' +
# bfc_label (mnist_small, r'X_0') + '$')
# # it_(ax[2])[0].set_ylabel (r'$'+ bfc_label (mnist_small, r'X_i') + '$')
# plotting.show (fig, basefilename = 'num_tests-per-X0')
# ---
# fig, ax = plotting.subplots (1, len (T_init_tests),
# figsize_adjust = (1., .5),
# sharex='col', sharey='row')
# for init_tests, axi in zip (T_init_tests, it_(ax)):
# init_covs = [run['report']['coverage'][ 0] for run in T_init_tests[init_tests]]
# final_covs = [run['report']['coverage'][-1] for run in T_init_tests[init_tests]]
# axi.boxplot ([init_covs, final_covs],
# labels = [r'initial ($i=0$)', 'final'],
# bootstrap = 1000)
# it_(ax)[0].set_ylabel (r'$'+ bfc_label (mnist_small, r'X_i') + '$')
# plotting.show (fig, basefilename = 'coverage-per-X0')
parser_plots = subparsers.add_parser ('plots')
parser_plots.set_defaults (func = plots)
add_plots_args (parser_plots)
# ---
if __name__=="__main__":
args = parser.parse_args()
if 'func' in args:
args.func (args)
else:
parser.print_help ()
sys.exit (1)