forked from TrustAI/DeepConcolic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdbnabstr.py
executable file
·232 lines (201 loc) · 8.78 KB
/
dbnabstr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/usr/bin/env python3
from utils import *
from utils_funcs import rng_seed
from utils_args import *
from dbnc import BNAbstraction, layer_setup, interval_repr
from tabulate import tabulate
import datasets
import plugins
import scipy
# ---
def load_model (filename, print_summary = True):
tf.compat.v1.disable_eager_execution ()
dnn = keras.models.load_model (filename)
if print_summary:
dnn.summary ()
return dnn
def load_dataset (name):
train, test, _, _, _ = datasets.load_by_name (name)
return raw_datat (*train, name), raw_datat (*test, name)
def fit_data (dnn, bn_abstr, data, indexes):
indexes = np.arange (len (data.data)) if indexes is None else indexes
np1 (f'| Fitting BN with {len (indexes)} samples... ')
lazy_activations_on_indexed_data \
(bn_abstr.fit_activations, dnn, data, indexes,
layer_indexes = [ fl.layer_index for fl in bn_abstr.flayers ],
pass_kwds = False)
c1 ('done')
def fit_data_sample (dnn, bn_abstr, data, size, rng):
bn_abstr.reset_bn ()
idxs = np.arange (len (data.data))
if size is not None:
idxs = rng.choice (a = idxs, axis = 0, size = min (size, len (idxs)))
fit_data (dnn, bn_abstr, data, idxs)
def eval_coverages (dnn, bn_abstr, data, size, rng):
fit_data_sample (dnn, bn_abstr, data, size, rng)
return dict (bfc = bn_abstr.bfc_coverage (),
bfdc = bn_abstr.bfdc_coverage ())
def eval_probas (dnn, bn_abstr, data, size, rng, indexes = None):
if indexes is None:
indexes = np.arange (len (data.data))
if size is not None:
indexes = rng.choice (a = indexes, axis = 0, size = min (size, len (indexes)))
probas = lazy_activations_on_indexed_data \
(bn_abstr.activations_probas, dnn, data, indexes,
layer_indexes = [ fl.layer_index for fl in bn_abstr.flayers ],
pass_kwds = False)
return dict (probas = probas,
stats = scipy.stats.describe (probas))
# ---
parser = argparse.ArgumentParser (description = 'BN abstraction manager')
parser.add_argument ('--dataset', dest='dataset', required = True,
help = "selected dataset", choices = datasets.choices)
parser.add_argument ('--model', dest='model', required = True,
help = 'neural network model (.h5)')
parser.add_argument ('--rng-seed', dest="rng_seed", metavar="SEED", type=int,
help="Integer seed for initializing the internal random number "
"generator, and therefore get some(what) reproducible results")
subparsers = parser.add_subparsers (title = 'sub-commands', required = True,
dest = 'cmd')
# ---
ap_create = subparsers.add_parser ('create')
add_abstraction_arg (ap_create)
ap_create.add_argument ("--layers", dest = "layers", nargs = "+", metavar = "LAYER",
help = 'considered layers (given by name or index)')
ap_create.add_argument ('--train-size', '-ts', type = int,
help = 'train dataset size (default is all)',
metavar = 'INT')
ap_create.add_argument ('--feature-extraction', '-fe',
choices = ('pca', 'ipca', 'ica',), default = 'pca',
help = 'feature extraction technique (default is pca)')
ap_create.add_argument ('--num-features', '-nf', type = int, default = 2,
help = 'number of extracted features for each layer '
'(default is 2)', metavar = 'INT')
ap_create.add_argument ('--num-intervals', '-ni', type = int, default = 2,
help = 'number of intervals for each extracted feature '
'(default is 2)', metavar = 'INT')
ap_create.add_argument ('--discr-strategy', '-ds',
choices = ('uniform', 'quantile',), default = 'uniform',
help = 'discretisation strategy (default is uniform)')
ap_create.add_argument ('--extended-discr', '-xd', action = 'store_true',
help = 'use extended partitions')
def create (test_object,
layers = None,
train_size = None,
feature_extraction = None,
num_features = None,
num_intervals = None,
discr_strategy = None,
extended_discr = False,
abstraction = None,
**_):
if layers is not None:
test_object.set_layer_indices (int (l) if l.isdigit () else l for l in layers)
n_bins = num_intervals - 2 if extended_discr else num_intervals
if n_bins < 1:
raise ValueError (f'The total number of intervals for each extracted feature '
f'must be strictly positive (got {n_bins} '
f'with{"" if extended_discr else "out"} extended discretization)')
feats = dict (decomp = feature_extraction, n_components = num_features)
discr = dict (strategy = discr_strategy, n_bins = n_bins, extended = extended_discr)
setup_layer = lambda l, i, **kwds: \
layer_setup (l, i, feats, discr, discr_n_jobs = 8)
clayers = get_cover_layers \
(test_object.dnn, setup_layer, layer_indices = test_object.layer_indices,
activation_of_conv_or_dense_only = False,
exclude_direct_input_succ = False,
exclude_output_layer = False)
bn_abstr = BNAbstraction (clayers, dump_abstraction = False)
lazy_activations_on_indexed_data \
(bn_abstr.initialize, test_object.dnn, test_object.train_data,
np.arange (min (train_size or sys.maxsize, len (test_object.train_data.data))),
[fl.layer_index for fl in clayers])
bn_abstr.dump_abstraction (pathname = abstraction_path (abstraction))
ap_create.set_defaults (cmd = create)
# ---
ap_show = subparsers.add_parser ('show')
add_abstraction_arg (ap_show)
def show (test_object,
abstraction = None,
**_):
rng = np.random.default_rng (randint ())
bn_abstr = BNAbstraction.from_file (test_object.dnn, abstraction_path (abstraction),
log = False)
table = [
[str (fl)] +
[ '\n'.join (str (f) for f in range (fl.num_features)) ] +
[ '\n'.join (', '.join (interval_repr (i) for i in fi_intervals)
for fi_intervals in fl.intervals) ]
for fl in bn_abstr.flayers
]
h1 ('Extracted Features and Associated Intervals')
p1 (tabulate (table, headers = ('Layer', 'Feature', 'Intervals')))
ap_show.set_defaults (cmd = show)
# ---
ap_check = subparsers.add_parser ('check')
add_abstraction_arg (ap_check)
ap_check.add_argument ('--train-size', '-ts', type = int,
help = 'train dataset size (default is all)')
# ap_check.add_argument ('--trained-bn', metavar = 'YML',
# help = 'BN fit with training data (.yml)')
ap_check.add_argument ('--size', '-s', dest = 'test_size',
type = int, default = 100,
help = 'test dataset size (default is 100)')
ap_check.add_argument ('--summarize-probas', '-p', action = 'store_true',
help = 'fit the BN with all training data and then '
'assess the probability of the test dataset')
def check (test_object,
abstraction = None,
test_size = 100,
train_size = None,
summarize_probas = False,
summarize_coverages = True,
transformed_data = {},
**_):
rng = np.random.default_rng (randint ())
tests = dict (raw = test_object.raw_data, **transformed_data)
bn_abstr = BNAbstraction.from_file (test_object.dnn, abstraction_path (abstraction))
if summarize_probas:
fit_data_sample (test_object.dnn, bn_abstr, test_object.train_data, train_size, rng)
probs = {
t: eval_probas (test_object.dnn, bn_abstr, tests[t], test_size, rng)
for t in tests
}
print (probs)
if summarize_coverages:
covs = {
t: eval_coverages (test_object.dnn, bn_abstr, tests[t], test_size, rng)
for t in tests
}
print (covs)
ap_check.set_defaults (cmd = check)
# ---
def get_args (args = None, parser = parser):
args = parser.parse_args () if args is None else args
# Initialize with random seed first, if given:
try: rng_seed (args.rng_seed)
except ValueError as e:
sys.exit (f'Invalid argument given for \`--rng-seed\': {e}')
return args
def main (args = None, parser = parser, pp_args = (pp_abstraction_arg (),)):
try:
args = get_args (args, parser = parser)
# args = reduce (lambda args, pp: pp (args), pp_args, args)
for pp in pp_args: pp (args)
test_object = test_objectt (load_model (args.model),
*load_dataset (args.dataset))
if 'cmd' in args:
args.cmd (test_object, **vars (args))
else:
parser.print_help ()
sys.exit (1)
except ValueError as e:
sys.exit (f'Error: {e}')
except FileNotFoundError as e:
sys.exit (f'Error: {e}')
except KeyboardInterrupt:
sys.exit ('Interrupted.')
# ---
if __name__=="__main__":
main ()
# ---