forked from TrustAI/DeepConcolic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbounds.py
89 lines (61 loc) · 2.31 KB
/
bounds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from utils_io import *
from utils import *
from engine import _InputsStatBasedInitializable, Input, Bounds
# ---
class UniformBounds (Bounds):
"""
Basic class to represent any uniform bounds on inputs.
"""
def __init__ (self, LB = 0.0, UB = 1.0, **kwds):
super().__init__(**kwds)
self.LB = LB
self.UB = UB
@property
def low (self):
return np.array([self.LB])
@property
def up (self):
return np.array([self.UB])
def __getitem__ (self, _idx: Tuple[int, ...]) -> Tuple[float, float]:
return self.LB, self.UB
# ---
class StatBasedInputBounds (Bounds, _InputsStatBasedInitializable):
"""
Stat-based bounds for generating inputs.
Analyzes given training samples to compute per-component bounds for
inputs.
- `looseness` is a factor that widens the range by some amount (0.1%
by default).
- `hard_bounds` is an optional object of type :class:`Bounds`, that
is used to restrict the bounds after they have been widenned as
above.
"""
def __init__(self, looseness: float = .001, hard_bounds: Bounds = None, **kwds):
assert hard_bounds is None or isinstance (hard_bounds, Bounds)
self.looseness = looseness
self.hard_bounds = hard_bounds
super ().__init__(**kwds)
def inputs_stat_initialize (self,
train_data: raw_datat = None,
test_data: raw_datat = None):
if isinstance (self.hard_bounds, _InputsStatBasedInitializable):
# Forward call to to hard_bounds, in case.
self.hard_bounds.inputs_stat_initialize (train_data, test_data)
np1 ('Initializing stat-based input bounds with {} training samples... '
.format (len (train_data.data)))
ptp = np.ptp (train_data.data, axis = 0)
self._up = np.amax (train_data.data, axis = 0) + self.looseness * ptp
self._low = np.amin (train_data.data, axis = 0) - self.looseness * ptp
if self.hard_bounds is not None:
np.minimum (self._up, self.hard_bounds.up, out = self._up)
np.maximum (self._low, self.hard_bounds.low, out = self._low)
c1 ('done')
@property
def low (self) -> np.array(float):
return self._low
@property
def up (self) -> np.array(float):
return self._up
def __getitem__ (self, idx: Tuple[int, ...]) -> Tuple[float, float]:
return self._low[idx], self._up[idx]
# ---