-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathctgan_model.py
67 lines (58 loc) · 2.87 KB
/
ctgan_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
from sdv.single_table import CTGANSynthesizer
from sdv.metadata import SingleTableMetadata
import pandas as pd
import json
import os
class CTGANER:
"""
Initialize CTGANER instance with given file path
### Note:
- If in "load_mode" file_path will be assumed to be data_artifact path (.csv file)
- If not in "load_mode" file_path will be assumed to be model path (.pkl file)
"""
def __init__(self, file_path, main_config, load_mode=False) -> None:
if not load_mode:
self.data_df = pd.read_csv(file_path)
self.main_config = main_config
self.metadata = SingleTableMetadata.load_from_dict(main_config["metadata"])
self.model = CTGANSynthesizer(
metadata = self.metadata,
enforce_min_max_values = main_config["enforce_min_max_values"],
enforce_rounding = main_config["enforce_rounding"],
locales = main_config["locales"],
embedding_dim = main_config["embedding_dim"],
generator_dim = main_config["generator_dim"],
discriminator_dim = main_config["discriminator_dim"],
generator_lr = main_config["generator_lr"],
generator_decay = main_config["generator_decay"],
discriminator_lr = main_config["discriminator_lr"],
discriminator_decay = main_config["discriminator_decay"],
batch_size = main_config["batch_size"],
discriminator_steps = main_config["discriminator_steps"],
log_frequency = main_config["log_frequency"],
verbose = main_config["verbose"],
epochs = main_config["epochs"],
pac = main_config["pac"],
cuda = main_config["cuda"]
)
else:
model_path = file_path
# ctgan_config_path = os.path.join(project_directory_path, "ctgan_config.json")
self.model = CTGANSynthesizer.load(model_path)
# with open(ctgan_config_path, "r") as json_file:
# self.main_config = json.load(json_file)
# self.metadata = SingleTableMetadata.load_from_dict(main_config["metadata"])
def train(self):
self.model.fit(self.data_df)
def generate_synthetic_data_df(self, num_examples):
return self.model.sample(num_examples)
def generate_synthetic_data_csv(self, filename, num_examples, index=False, encoding='utf-8'):
self.generate_synthetic_data_df(num_examples).to_csv(filename, index = index, encoding=encoding)
def show_df(self):
return self.data_df
def save(self, save_model_file_path):
self.model.save(save_model_file_path)
if __name__ == "__main__":
pass
# model = CTGANER("client/ctgan_model_7af9e00f-c1b6-44bb-bf30-206efc9413f9.pkl",None,True)
# model.generate_synthetic_data_csv("synthetic_data.csv", 5000)