forked from AI-Dot/competition_iqiyi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_map.py
226 lines (177 loc) · 6.88 KB
/
eval_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#!/usr/bin/python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import glob
import os
import numpy as np
import infer
def build_train_id_to_filenames():
lines = [line.rstrip('\n') for line in open(infer.TRAIN_DICT_DATA_PATH)]
id_to_filenames = {}
for line in lines:
filename, class_id = line.split()
if class_id not in id_to_filenames:
id_to_filenames[class_id] = []
id_to_filenames[class_id].append(filename)
return id_to_filenames
def build_valid_id_to_filenames():
lines = [line.rstrip('\n') for line in open(infer.VALID_DICT_DATA_PATH)]
id_to_filenames = {}
for line in lines:
l = line.split()
id = l[0]
id_to_filenames[id] = []
for filename in l[1:]:
id_to_filenames[id].append(filename)
return id_to_filenames
def build_train_feature_matrix_mean():
filename_to_id = infer.build_train_dict()
npz_id_to_features_list = {}
for npz in glob.glob(infer.TRAIN_NPZ_PATH):
head, tail = os.path.split(npz)
mp4_filename, npz_ext = os.path.splitext(tail)
# print(mp4_filename)
features = np.load(npz)
features = features.f.arr_0
class_id = filename_to_id[mp4_filename]
if class_id not in npz_id_to_features_list:
npz_id_to_features_list[class_id] = []
npz_id_to_features_list[class_id].append(features)
feature_matrix = []
row_index = 0
row_index_to_id = {}
feature_group = []
for k, v in npz_id_to_features_list.iteritems():
features = np.concatenate(tuple(v), axis=0)
feature_group.append(features)
feature = np.mean(features, axis=0)
feature_matrix.append([feature])
row_index_to_id[row_index] = (k, len(v))
row_index += 1
# for debug
for i in range(1, 575):
if not str(i) in npz_id_to_features_list:
print("** id has no features: ", i)
print("id to features list:", len(npz_id_to_features_list))
return np.concatenate(tuple(feature_matrix), axis=0), row_index_to_id, feature_group
def calc_mean_average_precision():
feature_matrix_mean, row_index_to_id, feature_group = build_train_feature_matrix_mean()
print(len(row_index_to_id))
feature_matrix_mean = feature_matrix_mean.T
row_to_filename = []
sim_mean_list = []
sim_list = []
for npz in glob.glob(infer.VALID_NPZ_PATH):
head, tail = os.path.split(npz)
mp4_filename, npz_ext = os.path.splitext(tail)
row_to_filename.append(mp4_filename)
features = np.load(npz)
features = features.f.arr_0
# sim[i] == class_i cos similarity
sim_mean = np.mean(np.dot(features, feature_matrix_mean), axis=0)
sim_mean_list.append([sim_mean])
sim = []
for feature in feature_group:
class_sim = np.mean(np.dot(features, feature.T), axis=0)
sim.append(np.max(class_sim))
sim_list.append([np.array(sim)])
# sim_matrix[i, j] == file_i cos similarity to class_j
sim_matrix = np.concatenate(tuple(sim_mean_list), axis=0)
print("sim matrix shape: ", sim_matrix.shape)
print("sim matrix max:{0}, min:{1}".format(sim_matrix.max(),
sim_matrix.min()))
# calc class_i average precision
map_with_mean_feature = calc_map(row_to_filename, row_index_to_id, sim_matrix)
sim_max_matrix = np.concatenate(tuple(sim_list), axis=0)
print("sim matrix shape: ", sim_max_matrix.shape)
print("sim matrix max:{0}, min:{1}".format(sim_max_matrix.max(),
sim_max_matrix.min()))
map_with_max_feature = calc_map(row_to_filename, row_index_to_id, sim_max_matrix)
return map_with_mean_feature, map_with_max_feature
def calc_map(row_to_filename, row_index_to_id, sim_matrix):
filename_to_id = infer.build_valid_dict()
class_to_ap = {}
valid_id_to_filenames = build_valid_id_to_filenames()
for i in range(sim_matrix.shape[1]):
class_id, _ = row_index_to_id[i]
gt_count = len(valid_id_to_filenames[class_id])
if gt_count > 100:
gt_count = 100
confidence = sim_matrix[:, i]
def index_to_class_id(index):
filename = row_to_filename[index]
id = filename_to_id[filename]
return id
ap = calc_ap(class_id, confidence, gt_count, index_to_class_id)
class_to_ap[class_id] = ap
# print(class_to_ap[class_id])
mean_ap = 0.0
for ap in class_to_ap.values():
mean_ap += ap
mean_ap = mean_ap / len(class_to_ap)
return mean_ap
def calc_ap(class_id, confidence, gt_count, index_to_class_id):
# sort descending order
#print(class_id, gt_count)
arg_sort = np.argsort(-confidence)
position = 1
hit_count = 1
precision = []
for index in arg_sort:
id = index_to_class_id(index)
if id == class_id:
precision.append(hit_count / position)
hit_count += 1
position += 1
if position > gt_count:
return np.sum(np.array(precision)) / gt_count
def infer_2():
valid_dict = infer.build_valid_dict()
feature_matrix, row_index_to_id, feature_group = build_train_feature_matrix_mean()
feature_matrix = feature_matrix.T
total = 0
hit = 0
total_2 = 0
hit_2 = 0
misclassified = {}
for npz in glob.glob(infer.VALID_NPZ_PATH):
head, tail = os.path.split(npz)
mp4_filename, npz_ext = os.path.splitext(tail)
features = np.load(npz)
features = features.f.arr_0
assert (len(features.shape) == 2)
sim = np.dot(features, feature_matrix)
sim = np.sum(sim, axis=0)
index = np.argmax(sim)
predict_id = row_index_to_id[index][0]
ground_truth = valid_dict[mp4_filename]
if predict_id == ground_truth:
hit += 1
else :
misclassified[mp4_filename] = (ground_truth, predict_id)
total += 1
#
sim_2 = []
for feature in feature_group:
class_sim = np.mean(np.dot(features, feature.T), axis=0)
sim_2.append(np.max(class_sim))
index = np.argmax(np.array(sim_2))
predict_id = row_index_to_id[index][0]
ground_truth = valid_dict[mp4_filename]
if predict_id == ground_truth:
hit_2 += 1
#else:
# misclassified[mp4_filename] = (ground_truth, predict_id)
total_2 += 1
print(
'hit: {0}, total: {1}, precision: {2}'.format(hit, total, hit / total))
print(
'hit_2: {0}, total_2: {1}, precision: {2}'.format(hit_2, total_2, hit_2 / total_2))
#print('miss predict: ')
#for key, val in misclassified.iteritems():
# print(key, val)
if __name__ == "__main__":
infer_2()
print("mean average precision: ", calc_mean_average_precision())