-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainFacial.py
133 lines (105 loc) · 4.67 KB
/
trainFacial.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import tensorflow.keras as ks
from tensorflow.keras.datasets import mnist
from tensorflow.keras import optimizers
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
from tensorflow.keras import backend as K
from tensorflow.keras.callbacks import ModelCheckpoint
from sklearn.model_selection import train_test_split
import argparse
import datetime
from loadImages import loadDataset
from genLabel import getLabelFileLabels,newW,newH
def prepareData():
img_rows, img_cols = newH,newW
X, Y = loadDataset()
print('X.shape=',X.shape)
print('Y.shape=',Y.shape)
X = X.reshape(X.shape[0], img_rows, img_cols, 1)
if 0:
test_size=0.2
trainLen = int(len(X)*(1-test_size))
x_train = X[:trainLen]
y_train = Y[:trainLen]
x_test = X[trainLen:]
y_test = Y[trainLen:]
print('total:',len(X),len(Y),'train:',trainLen,'test:',len(X)-trainLen)
else:
x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3)
print('X_train.shape = ', x_train.shape)
print('y_train.shape = ', y_train.shape)
print('X_test.shape = ', x_test.shape)
print('Y_test.shape = ', y_test.shape)
return x_train, y_train, x_test, y_test, (img_rows, img_cols, 1)
def createModel(input_shape,ptSize=68):
model = Sequential()
model.add(Conv2D(16, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2),strides=2))
model.add(Dropout(0.25))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.1))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.1))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.1))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(256, activation='relu'))
model.add(Dropout(0.1))
model.add(Dense(ptSize*2))
lr = 0.0001
#opt = optimizers.SGD(learning_rate=lr, momentum=0.0, nesterov=False)
#opt = optimizers.Adadelta(learning_rate=lr, rho=0.95)
#opt = optimizers.RMSprop(lr=0.001, rho=0.9)
#opt = optimizers.Adagrad(learning_rate=lr)
opt = optimizers.Adam(learning_rate=lr, beta_1=0.9, beta_2=0.999, amsgrad=False)
#opt = optimizers.Adamax(learning_rate=lr, beta_1=0.9, beta_2=0.999)
#opt = optimizers.Nadam(learning_rate=lr, beta_1=0.9, beta_2=0.999)
#model.compile(loss=ks.losses.categorical_crossentropy, optimizer=opt, metrics=['accuracy'])
model.compile(loss='mean_squared_error',
optimizer=opt)
model.summary()
return model
def argCmdParse():
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--epoch', help = 'epochs')
return parser.parse_args()
def main():
arg = argCmdParse()
epoch = 300
if arg.epoch:
epoch = int(arg.epoch)
print('epoch=',epoch)
x_train, y_train, x_test, y_test, input_shape = prepareData() #prepareMnistData() #
print('input_shape = ', input_shape)
modelName = r'./weights/trainFacialRecognition.h5'
#weightsFiles = r'./weights'
#model = createModel(input_shape)
model = ks.models.load_model(modelName)
#model.load_weights(weightsFiles)
log_dir = r"logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = ks.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)
checkpoint_filepath = r'./checkpoint'
checkpointer = ModelCheckpoint(filepath=checkpoint_filepath, verbose=1, save_best_only=False,save_freq=100)
#model.fit(x_train, y_train, epochs=10, callbacks = [tensorboard_callback,checkpointer])
model.fit(x_train, y_train, epochs=epoch, verbose=1, batch_size=100,
validation_data=(x_test, y_test),callbacks = [tensorboard_callback,checkpointer]) #
#score = model.evaluate(x_test, y_test, verbose=0)
#print('Test loss:', score[0])
#print('Test accuracy:', score[1]
model.save(modelName)
model.save(r'./weights/' + 'trainFacialRecognition' + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") + '.h5')
#model.save_weights(weightsFiles)
if __name__=='__main__':
main()