-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsentinel.py
200 lines (163 loc) · 7.08 KB
/
sentinel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
from github import Github
import base64
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import groq
from langchain_groq import ChatGroq
from langchain.prompts import PromptTemplate
from langchain_core.output_parsers import StrOutputParser
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
os.environ["LANGCHAIN_TRACING_V2"] = os.getenv("LANGCHAIN_TRACING_V2", "true")
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
# Initialize GitHub client
g = Github(os.getenv("GITHUB_TOKEN"))
# Initialize Groq client with LangChain
llm = ChatGroq(
model="mixtral-8x7b-32768",
groq_api_key=os.getenv("GROQ_API_KEY"),
temperature=0.5
)
parser = StrOutputParser()
embedder = SentenceTransformer('all-MiniLM-L6-v2')
# Initialize FAISS index and file tracking
dimension = 384
index = faiss.IndexFlatL2(dimension)
file_paths = []
repo_files = {}
system_prompt = """
You are an expert software engineer and code reviewer. Your objective is to provide focused, constructive feedback on code, emphasizing best practices, readability, efficiency, and security. Prioritize concise, actionable suggestions.
- Structure: Evaluate code organization, logic flow, and modularity.
- Readability: Assess naming conventions, inline comments, and clarity.
- Optimization: Identify areas for performance improvement, reducing unnecessary computations or memory usage.
- Robustness: Verify error handling and edge-case coverage.
- Security: Flag vulnerabilities, such as unsafe data handling or injection risks.
- Best Practices: Ensure adherence to language or framework-specific guidelines.
When suggesting changes, list each on a new line for readability, formatted as: Suggestion 1 /n Suggestion 2 /n Suggestion 3. Avoid generic feedback; be as specific as possible and use examples where helpful.
Summary: Provide a brief overview of strengths and areas for improvement.
"""
prompt_template = PromptTemplate(
input_variables=["system_prompt", "context", "query"],
template="{system_prompt}\n\nHere are some relevant files: {context}\n\nUser's question: {query}\nAnswer:",
)
def fetch_github_repo_files(repo_name):
repo = g.get_repo(repo_name)
contents = repo.get_contents("")
files = {}
while contents:
file_content = contents.pop(0)
if file_content.type == "dir":
contents.extend(repo.get_contents(file_content.path))
else:
try:
file_data = base64.b64decode(file_content.content).decode("utf-8")
files[file_content.path] = file_data
except (UnicodeDecodeError, base64.binascii.Error):
print(f"Skipping binary file: {file_content.path}")
continue
return files
def update_rag_index(repo_name):
global index, file_paths, repo_files
index.reset()
file_paths.clear()
repo_files = fetch_github_repo_files(repo_name)
for path, content in repo_files.items():
embedding = embed_text_with_transformers(content)
index.add(np.array([embedding], dtype=np.float32))
file_paths.append(path)
print(f"Indexed to new RAG {len(file_paths)} files from {repo_name}.")
def embed_text_with_transformers(text):
return embedder.encode(text)
def search_faiss(query, top_k=3):
query_embedding = embed_text_with_transformers(query)
query_embedding = np.array([query_embedding], dtype=np.float32)
distances, indices = index.search(query_embedding, top_k)
relevant_files = [file_paths[i] for i in indices[0] if i < len(file_paths)]
return relevant_files
def fetch_file_content(file_paths, repo_files):
return "\n\n".join([repo_files[file] for file in file_paths if file in repo_files])
def generate_response(query, context):
prompt = prompt_template.format(system_prompt=system_prompt, context=context, query=query)
chain = llm | parser
response = chain.invoke(prompt)
return response
def process_github_repo(repo_name, user_query):
# Ensure the index is up to date
update_rag_index(repo_name)
# Retrieve relevant files and their content
relevant_files = search_faiss(user_query, top_k=3)
relevant_files_content = fetch_file_content(relevant_files, repo_files)
# Generate response from the model
response = generate_response(user_query, relevant_files_content)
return {
"query": user_query,
"repo": repo_name,
"relevant_files": relevant_files,
"response": response
}
def process_pull_request(repo_name, pr_number):
# Update the RAG index with the repository content
update_rag_index(repo_name)
# Get the pull request object
repo = g.get_repo(repo_name)
pull_request = repo.get_pull(pr_number)
comments = []
for file in pull_request.get_files():
file_path = file.filename
if file_path in repo_files:
relevant_files_content = repo_files[file_path]
review_comment = generate_response(f"Review the file: {file_path}", relevant_files_content)
comments.append(f"**{file_path}**\n{review_comment}")
review_body = "\n\n".join(comments)
try:
pull_request.create_review(
body=review_body if review_body else "Automated code review feedback",
event="COMMENT"
)
return {"status": "Review comments added", "review": review_body}
except Exception as e:
print(f"Error creating review: {e}")
return {"status": "Error creating review", "error": str(e)}
import requests
def get_open_pr_numbers(owner, repo):
"""
Fetches open pull requests from a GitHub repository and returns a list of PR numbers.
:param owner: Repository owner (e.g., 'Spirizeon')
:param repo: Repository name (e.g., 'claxvim')
:param token: (Optional) GitHub personal access token for authentication
:return: List of open PR numbers
"""
url = f"https://api.github.com/repos/{owner}/{repo}/pulls"
headers = {}
headers["Authorization"] = f"token {os.getenv('GITHUB_TOKEN')}"
response = requests.get(url, headers=headers)
if response.status_code == 200:
pr_list = response.json()
return [pr['number'] for pr in pr_list]
else:
print(f"Error: {response.status_code}, {response.json()}")
return []
# Example usage:
if __name__ == '__main__':
# Example 1: Process a repository with a query
"""
repo_name = 'Spirizeon/claxvim' # Default repository
user_query = "What improvements can be made to error handling?"
result = process_github_repo(repo_name, user_query)
print(f"Query: {result['query']}")
print(f"Relevant files: {result['relevant_files']}")
print(f"Response: {result['response']}")
"""
open_prs = get_open_pr_numbers("spirizeon","claxvim")
print(f"Open PRs: {open_prs}")
if open_prs == []:
print(f"Nothing to review!")
for i in open_prs:
pr_result = process_pull_request('Spirizeon/claxvim', i)
print(f"PR Review Status: {pr_result['status']}")
if 'review' in pr_result:
print(f"Review: {pr_result['review']}")