-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_flmoco.py
154 lines (127 loc) · 6.81 KB
/
run_flmoco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# %%
'''
FLmoco micro-batch baseline.
1. (optional) can use server multi-step.
2. Moco-V2 implemented
3. Moco-V3 symmetric loss implemented
4. Support resource/data heterogeneity
'''
from cmath import inf
import datasets
from configs import get_fl_args, set_deterministic
import torch
import torch.nn as nn
import numpy as np
from models import resnet
from models import vgg
from models.resnet import init_weights
from functions.flmoco_functions import flmoco_simulator
import gc
VERBOSE = False
#get default args
args = get_fl_args()
set_deterministic(args.seed)
'''Preparing'''
#get data
create_dataset = getattr(datasets, f"get_{args.dataset}")
train_loader, mem_loader, test_loader = create_dataset(batch_size=args.batch_size, num_workers=args.num_workers, shuffle=True,
num_client = args.num_client, data_proportion = args.data_proportion,
noniid_ratio = args.noniid_ratio, augmentation_option = True,
pairloader_option = args.pairloader_option, hetero = args.hetero, hetero_string = args.hetero_string)
num_batch = len(train_loader[0]) * args.local_epoch
if "ResNet" in args.arch or "resnet" in args.arch:
if "resnet" in args.arch:
args.arch = "ResNet" + args.arch.split("resnet")[-1]
create_arch = getattr(resnet, args.arch)
elif "vgg" in args.arch:
create_arch = getattr(vgg, args.arch)
#get model - use a larger classifier, as in Zhuang et al. Divergence-aware paper
global_model = create_arch(cutting_layer=args.cutlayer, num_client = args.num_client, num_class=args.K_dim, group_norm=True, input_size= args.data_size)
# editing the MLP head
if args.mlp:
if args.moco_version == "largeV2": # This one uses a larger classifier, same as in Zhuang et al. Divergence-aware paper
classifier_list = [nn.Linear(512 * global_model.expansion, 4096),
nn.BatchNorm1d(4096),
nn.ReLU(True),
nn.Linear(4096, args.K_dim)]
elif "V2" in args.moco_version:
classifier_list = [nn.Linear(512 * global_model.expansion, args.K_dim * global_model.expansion),
nn.ReLU(True),
nn.Linear(args.K_dim * global_model.expansion, args.K_dim)]
else:
raise("Unknown version! Please specify the classifier.")
global_model.classifier = nn.Sequential(*classifier_list)
global_model.classifier.apply(init_weights)
global_model.merge_classifier_cloud()
#get loss function
criterion = nn.CrossEntropyLoss().cuda()
#initialize fl-moco
fl = flmoco_simulator(global_model, criterion, train_loader, test_loader, args)
fl.cuda()
'''Training'''
if not args.resume:
fl.log(f"FL-Moco-microbatch (Moco-{args.moco_version}, Hetero: {args.hetero}, Sample_Ratio: {args.client_sample_ratio}) Train on {args.dataset} with cutlayer {args.cutlayer} and {args.num_client} clients with {args.noniid_ratio}-data-distribution: total epochs: {args.num_epoch}, total number of batches for each client is {num_batch}")
if args.hetero:
fl.log(f"Hetero setting: {args.hetero_string}")
fl.train()
#Training scripts (FL style)
knn_accu_max = 0.0
for epoch in range(1, args.num_epoch + 1):
if args.client_sample_ratio == 1.0:
pool = range(args.num_client)
else:
pool = np.random.choice(range(args.num_client), int(args.client_sample_ratio * args.num_client), replace=False) # 10 out of 1000
avg_loss = 0.0
avg_accu = 0.0
for batch in range(num_batch):
fl.optimizer_zero_grads()
#client forward
for i, client_id in enumerate(pool): # if distributed, this can be parallelly done.
query, pkey = fl.next_data_batch(client_id)
query = query.cuda()
pkey = pkey.cuda()
loss, accu = fl.c_instance_list[client_id].compute(query, pkey)
fl.c_optimizer_list[client_id].step()
if VERBOSE and (batch% 50 == 0 or batch == num_batch - 1):
fl.log(f"epoch {epoch} batch {batch}, loss {loss}")
avg_loss += loss
avg_accu += accu
gc.collect()
if batch == num_batch - 1 or (batch % (num_batch//args.avg_freq) == (num_batch//args.avg_freq) - 1):
# sync client-side models
divergence_list = fl.fedavg(pool, divergence_aware = args.divergence_aware, divergence_measure = args.divergence_measure)
if divergence_list is not None:
fl.log(f"divergence mean: {np.mean(divergence_list)}, std: {np.std(divergence_list)} and detailed_list: {divergence_list}")
pass #TODO: implement divergence measure
# if i in pool: # if current client is selected.
# weight_divergence = 0.0
# for key in global_weights.keys():
# if "running" in key or "num_batches" in key: # skipping batchnorm running stats
# continue
# weight_divergence += torch.linalg.norm(torch.flatten(self.model.local_list[i].state_dict()[key] - global_weights[key]).float(), dim = -1, ord = 2)
# adjusting learning rate
for i in range(args.num_client):
fl.c_scheduler_list[i].step()
avg_accu = avg_accu / num_batch / args.local_epoch / len(pool)
avg_loss = avg_loss / num_batch / args.local_epoch / len(pool)
knn_val_acc = fl.knn_eval(memloader=mem_loader)
if knn_val_acc > knn_accu_max:
knn_accu_max = knn_val_acc
fl.save_model(epoch, is_best = True)
fl.log(f"epoch:{epoch}, knn_val_accu: {knn_val_acc:.2f}, contrast_loss: {avg_loss:.2f}, contrast_acc: {avg_accu:.2f}")
gc.collect()
'''Testing'''
fl.load_model() # load model that has the lowest contrastive loss.
# finally, do a thorough evaluation.
val_acc = fl.knn_eval(memloader=mem_loader)
fl.log(f"final knn evaluation accuracy is {val_acc:.2f}")
create_train_dataset = getattr(datasets, f"get_{args.dataset}_trainloader")
mem_loader = create_train_dataset(128, args.num_workers, False, 1, 1.0, 1.0, False)
val_acc = fl.linear_eval(mem_loader, 100)
fl.log(f"final linear-probe evaluation accuracy is {val_acc:.2f}")
mem_loader = create_train_dataset(128, args.num_workers, False, 1, 0.1, 1.0, False)
val_acc = fl.semisupervise_eval(mem_loader, 100)
fl.log(f"final semi-supervised evaluation accuracy with 10% data is {val_acc:.2f}")
mem_loader = create_train_dataset(128, args.num_workers, False, 1, 0.01, 1.0, False)
val_acc = fl.semisupervise_eval(mem_loader, 100)
fl.log(f"final semi-supervised evaluation accuracy with 1% data is {val_acc:.2f}")