1
+ {
2
+ "nbformat" : 4 ,
3
+ "nbformat_minor" : 0 ,
4
+ "metadata" : {
5
+ "colab" : {
6
+ "provenance" : [],
7
+ "authorship_tag" : " ABX9TyMCs8ZurbYjKgvOK2E6DVNY" ,
8
+ "include_colab_link" : true
9
+ },
10
+ "kernelspec" : {
11
+ "name" : " python3" ,
12
+ "display_name" : " Python 3"
13
+ },
14
+ "language_info" : {
15
+ "name" : " python"
16
+ }
17
+ },
18
+ "cells" : [
19
+ {
20
+ "cell_type" : " markdown" ,
21
+ "metadata" : {
22
+ "id" : " view-in-github" ,
23
+ "colab_type" : " text"
24
+ },
25
+ "source" : [
26
+ " <a href=\" https://colab.research.google.com/github/Sinrez/PythonProjects/blob/main/pulsar.ipynb\" target=\" _parent\" ><img src=\" https://colab.research.google.com/assets/colab-badge.svg\" alt=\" Open In Colab\" /></a>"
27
+ ]
28
+ },
29
+ {
30
+ "cell_type" : " code" ,
31
+ "execution_count" : null ,
32
+ "metadata" : {
33
+ "colab" : {
34
+ "base_uri" : " https://localhost:8080/"
35
+ },
36
+ "id" : " SWq3BNV2eRWO" ,
37
+ "outputId" : " 4ddf0662-3d33-4149-a4f0-c1571322b6b0"
38
+ },
39
+ "outputs" : [
40
+ {
41
+ "output_type" : " stream" ,
42
+ "name" : " stdout" ,
43
+ "text" : [
44
+ " <class 'pandas.core.frame.DataFrame'>\n " ,
45
+ " RangeIndex: 17898 entries, 0 to 17897\n " ,
46
+ " Data columns (total 9 columns):\n " ,
47
+ " # Column Non-Null Count Dtype \n " ,
48
+ " --- ------ -------------- ----- \n " ,
49
+ " 0 MIP 17898 non-null float64\n " ,
50
+ " 1 STDIP 17898 non-null float64\n " ,
51
+ " 2 EKIP 17898 non-null float64\n " ,
52
+ " 3 SIP 17898 non-null float64\n " ,
53
+ " 4 MC 17898 non-null float64\n " ,
54
+ " 5 STDC 17898 non-null float64\n " ,
55
+ " 6 EKC 17898 non-null float64\n " ,
56
+ " 7 SC 17898 non-null float64\n " ,
57
+ " 8 TG 17898 non-null int64 \n " ,
58
+ " dtypes: float64(8), int64(1)\n " ,
59
+ " memory usage: 1.2 MB\n "
60
+ ]
61
+ }
62
+ ],
63
+ "source" : [
64
+ " import pandas as pd\n " ,
65
+ " data = pd.read_csv('/content/asset-v1_ITMOUniversity+DATSC+summer_2022_1+type@asset+block@pulsar_stars_new.csv')\n " ,
66
+ " data.info()"
67
+ ]
68
+ },
69
+ {
70
+ "cell_type" : " code" ,
71
+ "source" : [
72
+ " data.head()"
73
+ ],
74
+ "metadata" : {
75
+ "colab" : {
76
+ "base_uri" : " https://localhost:8080/" ,
77
+ "height" : 206
78
+ },
79
+ "id" : " N4xCsN4zh-cu" ,
80
+ "outputId" : " a3216c63-41d3-4602-c0ba-ce9641610581"
81
+ },
82
+ "execution_count" : null ,
83
+ "outputs" : [
84
+ {
85
+ "output_type" : " execute_result" ,
86
+ "data" : {
87
+ "text/plain" : [
88
+ " MIP STDIP EKIP SIP MC STDC EKC \\\n " ,
89
+ " 0 140.562500 55.683782 -0.234571 -0.699648 3.199833 19.110426 7.975532 \n " ,
90
+ " 1 102.507812 58.882430 0.465318 -0.515088 1.677258 14.860146 10.576487 \n " ,
91
+ " 2 103.015625 39.341649 0.323328 1.051164 3.121237 21.744669 7.735822 \n " ,
92
+ " 3 136.750000 57.178449 -0.068415 -0.636238 3.642977 20.959280 6.896499 \n " ,
93
+ " 4 88.726562 40.672225 0.600866 1.123492 1.178930 11.468720 14.269573 \n " ,
94
+ " \n " ,
95
+ " SC TG \n " ,
96
+ " 0 74.242225 0 \n " ,
97
+ " 1 127.393580 0 \n " ,
98
+ " 2 63.171909 0 \n " ,
99
+ " 3 53.593661 0 \n " ,
100
+ " 4 252.567306 0 "
101
+ ],
102
+ "text/html" : [
103
+ " \n " ,
104
+ " <div id=\" df-f2850226-f07b-42b7-9513-775eb70439ca\" >\n " ,
105
+ " <div class=\" colab-df-container\" >\n " ,
106
+ " <div>\n " ,
107
+ " <style scoped>\n " ,
108
+ " .dataframe tbody tr th:only-of-type {\n " ,
109
+ " vertical-align: middle;\n " ,
110
+ " }\n " ,
111
+ " \n " ,
112
+ " .dataframe tbody tr th {\n " ,
113
+ " vertical-align: top;\n " ,
114
+ " }\n " ,
115
+ " \n " ,
116
+ " .dataframe thead th {\n " ,
117
+ " text-align: right;\n " ,
118
+ " }\n " ,
119
+ " </style>\n " ,
120
+ " <table border=\" 1\" class=\" dataframe\" >\n " ,
121
+ " <thead>\n " ,
122
+ " <tr style=\" text-align: right;\" >\n " ,
123
+ " <th></th>\n " ,
124
+ " <th>MIP</th>\n " ,
125
+ " <th>STDIP</th>\n " ,
126
+ " <th>EKIP</th>\n " ,
127
+ " <th>SIP</th>\n " ,
128
+ " <th>MC</th>\n " ,
129
+ " <th>STDC</th>\n " ,
130
+ " <th>EKC</th>\n " ,
131
+ " <th>SC</th>\n " ,
132
+ " <th>TG</th>\n " ,
133
+ " </tr>\n " ,
134
+ " </thead>\n " ,
135
+ " <tbody>\n " ,
136
+ " <tr>\n " ,
137
+ " <th>0</th>\n " ,
138
+ " <td>140.562500</td>\n " ,
139
+ " <td>55.683782</td>\n " ,
140
+ " <td>-0.234571</td>\n " ,
141
+ " <td>-0.699648</td>\n " ,
142
+ " <td>3.199833</td>\n " ,
143
+ " <td>19.110426</td>\n " ,
144
+ " <td>7.975532</td>\n " ,
145
+ " <td>74.242225</td>\n " ,
146
+ " <td>0</td>\n " ,
147
+ " </tr>\n " ,
148
+ " <tr>\n " ,
149
+ " <th>1</th>\n " ,
150
+ " <td>102.507812</td>\n " ,
151
+ " <td>58.882430</td>\n " ,
152
+ " <td>0.465318</td>\n " ,
153
+ " <td>-0.515088</td>\n " ,
154
+ " <td>1.677258</td>\n " ,
155
+ " <td>14.860146</td>\n " ,
156
+ " <td>10.576487</td>\n " ,
157
+ " <td>127.393580</td>\n " ,
158
+ " <td>0</td>\n " ,
159
+ " </tr>\n " ,
160
+ " <tr>\n " ,
161
+ " <th>2</th>\n " ,
162
+ " <td>103.015625</td>\n " ,
163
+ " <td>39.341649</td>\n " ,
164
+ " <td>0.323328</td>\n " ,
165
+ " <td>1.051164</td>\n " ,
166
+ " <td>3.121237</td>\n " ,
167
+ " <td>21.744669</td>\n " ,
168
+ " <td>7.735822</td>\n " ,
169
+ " <td>63.171909</td>\n " ,
170
+ " <td>0</td>\n " ,
171
+ " </tr>\n " ,
172
+ " <tr>\n " ,
173
+ " <th>3</th>\n " ,
174
+ " <td>136.750000</td>\n " ,
175
+ " <td>57.178449</td>\n " ,
176
+ " <td>-0.068415</td>\n " ,
177
+ " <td>-0.636238</td>\n " ,
178
+ " <td>3.642977</td>\n " ,
179
+ " <td>20.959280</td>\n " ,
180
+ " <td>6.896499</td>\n " ,
181
+ " <td>53.593661</td>\n " ,
182
+ " <td>0</td>\n " ,
183
+ " </tr>\n " ,
184
+ " <tr>\n " ,
185
+ " <th>4</th>\n " ,
186
+ " <td>88.726562</td>\n " ,
187
+ " <td>40.672225</td>\n " ,
188
+ " <td>0.600866</td>\n " ,
189
+ " <td>1.123492</td>\n " ,
190
+ " <td>1.178930</td>\n " ,
191
+ " <td>11.468720</td>\n " ,
192
+ " <td>14.269573</td>\n " ,
193
+ " <td>252.567306</td>\n " ,
194
+ " <td>0</td>\n " ,
195
+ " </tr>\n " ,
196
+ " </tbody>\n " ,
197
+ " </table>\n " ,
198
+ " </div>\n " ,
199
+ " <button class=\" colab-df-convert\" onclick=\" convertToInteractive('df-f2850226-f07b-42b7-9513-775eb70439ca')\"\n " ,
200
+ " title=\" Convert this dataframe to an interactive table.\"\n " ,
201
+ " style=\" display:none;\" >\n " ,
202
+ " \n " ,
203
+ " <svg xmlns=\" http://www.w3.org/2000/svg\" height=\" 24px\" viewBox=\" 0 0 24 24\"\n " ,
204
+ " width=\" 24px\" >\n " ,
205
+ " <path d=\" M0 0h24v24H0V0z\" fill=\" none\" />\n " ,
206
+ " <path d=\" M18.56 5.44l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\" /><path d=\" M17.41 7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 1.47 1.35L5.41 20z\" />\n " ,
207
+ " </svg>\n " ,
208
+ " </button>\n " ,
209
+ " \n " ,
210
+ " <style>\n " ,
211
+ " .colab-df-container {\n " ,
212
+ " display:flex;\n " ,
213
+ " flex-wrap:wrap;\n " ,
214
+ " gap: 12px;\n " ,
215
+ " }\n " ,
216
+ " \n " ,
217
+ " .colab-df-convert {\n " ,
218
+ " background-color: #E8F0FE;\n " ,
219
+ " border: none;\n " ,
220
+ " border-radius: 50%;\n " ,
221
+ " cursor: pointer;\n " ,
222
+ " display: none;\n " ,
223
+ " fill: #1967D2;\n " ,
224
+ " height: 32px;\n " ,
225
+ " padding: 0 0 0 0;\n " ,
226
+ " width: 32px;\n " ,
227
+ " }\n " ,
228
+ " \n " ,
229
+ " .colab-df-convert:hover {\n " ,
230
+ " background-color: #E2EBFA;\n " ,
231
+ " box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n " ,
232
+ " fill: #174EA6;\n " ,
233
+ " }\n " ,
234
+ " \n " ,
235
+ " [theme=dark] .colab-df-convert {\n " ,
236
+ " background-color: #3B4455;\n " ,
237
+ " fill: #D2E3FC;\n " ,
238
+ " }\n " ,
239
+ " \n " ,
240
+ " [theme=dark] .colab-df-convert:hover {\n " ,
241
+ " background-color: #434B5C;\n " ,
242
+ " box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n " ,
243
+ " filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n " ,
244
+ " fill: #FFFFFF;\n " ,
245
+ " }\n " ,
246
+ " </style>\n " ,
247
+ " \n " ,
248
+ " <script>\n " ,
249
+ " const buttonEl =\n " ,
250
+ " document.querySelector('#df-f2850226-f07b-42b7-9513-775eb70439ca button.colab-df-convert');\n " ,
251
+ " buttonEl.style.display =\n " ,
252
+ " google.colab.kernel.accessAllowed ? 'block' : 'none';\n " ,
253
+ " \n " ,
254
+ " async function convertToInteractive(key) {\n " ,
255
+ " const element = document.querySelector('#df-f2850226-f07b-42b7-9513-775eb70439ca');\n " ,
256
+ " const dataTable =\n " ,
257
+ " await google.colab.kernel.invokeFunction('convertToInteractive',\n " ,
258
+ " [key], {});\n " ,
259
+ " if (!dataTable) return;\n " ,
260
+ " \n " ,
261
+ " const docLinkHtml = 'Like what you see? Visit the ' +\n " ,
262
+ " '<a target=\" _blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n " ,
263
+ " + ' to learn more about interactive tables.';\n " ,
264
+ " element.innerHTML = '';\n " ,
265
+ " dataTable['output_type'] = 'display_data';\n " ,
266
+ " await google.colab.output.renderOutput(dataTable, element);\n " ,
267
+ " const docLink = document.createElement('div');\n " ,
268
+ " docLink.innerHTML = docLinkHtml;\n " ,
269
+ " element.appendChild(docLink);\n " ,
270
+ " }\n " ,
271
+ " </script>\n " ,
272
+ " </div>\n " ,
273
+ " </div>\n " ,
274
+ " "
275
+ ]
276
+ },
277
+ "metadata" : {},
278
+ "execution_count" : 5
279
+ }
280
+ ]
281
+ },
282
+ {
283
+ "cell_type" : " code" ,
284
+ "source" : [
285
+ " sample_data = data[((data.TG == 0) & (data.MIP >= 73.4765625) & (data.MIP <= 77.6015625)) | ((data.TG == 1) & (data.MIP >= 25.890625) & (data.MIP <= 31.5078125))]\n " ,
286
+ " sample_data.info()"
287
+ ],
288
+ "metadata" : {
289
+ "colab" : {
290
+ "base_uri" : " https://localhost:8080/"
291
+ },
292
+ "id" : " RyO1fWR8iB04" ,
293
+ "outputId" : " 912b06a5-7c9f-44fb-9c7a-f2efd5432582"
294
+ },
295
+ "execution_count" : null ,
296
+ "outputs" : [
297
+ {
298
+ "output_type" : " stream" ,
299
+ "name" : " stdout" ,
300
+ "text" : [
301
+ " <class 'pandas.core.frame.DataFrame'>\n " ,
302
+ " Int64Index: 203 entries, 61 to 17711\n " ,
303
+ " Data columns (total 9 columns):\n " ,
304
+ " # Column Non-Null Count Dtype \n " ,
305
+ " --- ------ -------------- ----- \n " ,
306
+ " 0 MIP 203 non-null float64\n " ,
307
+ " 1 STDIP 203 non-null float64\n " ,
308
+ " 2 EKIP 203 non-null float64\n " ,
309
+ " 3 SIP 203 non-null float64\n " ,
310
+ " 4 MC 203 non-null float64\n " ,
311
+ " 5 STDC 203 non-null float64\n " ,
312
+ " 6 EKC 203 non-null float64\n " ,
313
+ " 7 SC 203 non-null float64\n " ,
314
+ " 8 TG 203 non-null int64 \n " ,
315
+ " dtypes: float64(8), int64(1)\n " ,
316
+ " memory usage: 15.9 KB\n "
317
+ ]
318
+ }
319
+ ]
320
+ },
321
+ {
322
+ "cell_type" : " code" ,
323
+ "source" : [
324
+ " mean_mip_rounded = round(sample_data['MIP'].mean(), 3)\n " ,
325
+ " mean_mip_rounded"
326
+ ],
327
+ "metadata" : {
328
+ "colab" : {
329
+ "base_uri" : " https://localhost:8080/"
330
+ },
331
+ "id" : " 8goniWKdjnSx" ,
332
+ "outputId" : " 5534457d-5d7e-4131-cfae-eb3da95bc079"
333
+ },
334
+ "execution_count" : null ,
335
+ "outputs" : [
336
+ {
337
+ "output_type" : " execute_result" ,
338
+ "data" : {
339
+ "text/plain" : [
340
+ " 52.159"
341
+ ]
342
+ },
343
+ "metadata" : {},
344
+ "execution_count" : 12
345
+ }
346
+ ]
347
+ }
348
+ ]
349
+ }
0 commit comments