|
| 1 | +%YAML:1.0 |
| 2 | + |
| 3 | +#common parameters |
| 4 | +#support: 1 imu 1 cam; 1 imu 2 cam: 2 cam; |
| 5 | +imu: 1 |
| 6 | +num_of_cam: 2 |
| 7 | + |
| 8 | +imu_topic: "/hardware_go1/imu" |
| 9 | +image0_topic: "/camera_forward/infra1/image_rect_raw" |
| 10 | +image1_topic: "/camera_forward/infra2/image_rect_raw" |
| 11 | +output_path: "/root/vilo_ws/src/vilo/output" |
| 12 | + |
| 13 | +cam0_calib: "go1_realsense_left.yaml" |
| 14 | +cam1_calib: "go1_realsense_right.yaml" |
| 15 | +image_width: 424 |
| 16 | +image_height: 240 |
| 17 | + |
| 18 | + |
| 19 | +# leg related |
| 20 | +robot_type: "go1" # should be go1 or a1 |
| 21 | +dataset_name: "cut" # to keep track of datasets |
| 22 | +use_leg_odom: 1 |
| 23 | +num_of_leg: 4 |
| 24 | +leg_topic: "/hardware_go1/joint_foot" |
| 25 | +optimize_leg_bias: 1 |
| 26 | + |
| 27 | +joint_angle_n: 0.00001 |
| 28 | +joint_velocity_n: 0.00001 |
| 29 | + |
| 30 | +contact_sensor_type: 2 # 0 use KF output; 1 use plan contact; 2 use foot force sensor reading (then a complicated force model is needed) |
| 31 | + |
| 32 | +leg_bias_c_n: 0.00000001 |
| 33 | +leg_bias_nc_n: 0.00000000001 |
| 34 | +# contact model |
| 35 | +v_n_force_thres_ratio: 0.8 |
| 36 | +v_n_min_xy: 0.001 |
| 37 | +v_n_min_z: 0.005 |
| 38 | +v_n_min: 0.005 |
| 39 | +v_n_max: 900.0 |
| 40 | +# v_n_w1: 0.333 |
| 41 | +# v_n_w2: 0.333 |
| 42 | +# v_n_w3: 0.333 |
| 43 | +v_n_term1_steep: 10 |
| 44 | +v_n_term2_var_rescale: 1.0e-6 |
| 45 | +v_n_term3_distance_rescale: 1.0e-3 |
| 46 | +v_n_final_ratio: 0.1 |
| 47 | + |
| 48 | +# leg kinematics parameter |
| 49 | +lower_leg_length: 0.21 |
| 50 | + |
| 51 | + |
| 52 | +# Extrinsic parameter between IMU and Camera. |
| 53 | +estimate_extrinsic: 0 # 0 Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it. |
| 54 | + # 1 Have an initial guess about extrinsic parameters. We will optimize around your initial guess. |
| 55 | + |
| 56 | +body_T_cam0: !!opencv-matrix |
| 57 | + rows: 4 |
| 58 | + cols: 4 |
| 59 | + dt: d |
| 60 | + data: [ 0, 0, 1, 0.24, |
| 61 | + -1, 0, 0, 0.025, |
| 62 | + 0, -1, 0, 0.1114, |
| 63 | + 0., 0., 0., 1. ] |
| 64 | + |
| 65 | +body_T_cam1: !!opencv-matrix |
| 66 | + rows: 4 |
| 67 | + cols: 4 |
| 68 | + dt: d |
| 69 | + data: [ 0, 0, 1, 0.24, |
| 70 | + -1, 0, 0, -0.025, |
| 71 | + 0, -1, 0, 0.1114, |
| 72 | + 0., 0., 0., 1. ] |
| 73 | + |
| 74 | +#Multiple thread support |
| 75 | +multiple_thread: 1 |
| 76 | + |
| 77 | +#feature traker paprameters |
| 78 | +max_cnt: 250 # max feature number in feature tracking |
| 79 | +min_dist: 7 # min distance between two features |
| 80 | +freq: 15 # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image |
| 81 | +F_threshold: 1.0 # ransac threshold (pixel) |
| 82 | +show_track: 1 # publish tracking image as topic |
| 83 | +flow_back: 1 # perform forward and backward optical flow to improve feature tracking accuracy |
| 84 | + |
| 85 | +#optimization parameters |
| 86 | +max_solver_time: 0.1 # max solver itration time (ms), to guarantee real time |
| 87 | +max_num_iterations: 12 # max solver itrations, to guarantee real time |
| 88 | +keyframe_parallax: 10.0 # keyframe selection threshold (pixel) |
| 89 | + |
| 90 | +#imu parameters The more accurate parameters you provide, the better performance |
| 91 | +acc_n: 1.0 # accelerometer measurement noise standard deviation. #0.2 0.04 |
| 92 | +acc_n_z: 5.0 |
| 93 | +gyr_n: 0.1 # gyroscope measurement noise standard deviation. #0.05 0.004 |
| 94 | +acc_w: 0.0004 # accelerometer bias random work noise standard deviation. #0.002 |
| 95 | +gyr_w: 0.0002 # gyroscope bias random work noise standard deviation. #4.0e-5 |
| 96 | +g_norm: 9.805 # gravity magnitude |
| 97 | + |
| 98 | +#unsynchronization parameters |
| 99 | +estimate_td: 0 # online estimate time offset between camera and imu |
| 100 | +td: 0.00240 # initial value of time offset. unit: s. readed image clock + td = real image clock (IMU clock) |
| 101 | + |
| 102 | +#loop closure parameters |
| 103 | +load_previous_pose_graph: 0 # load and reuse previous pose graph; load from 'pose_graph_save_path' |
| 104 | +pose_graph_save_path: "/root/vilo_ws/src/vilo/output/pose_graph/" # save and load path |
| 105 | +save_image: 0 # save image in pose graph for visualization prupose; you can close this function by setting 0 |
0 commit comments