-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFull analysis.py
223 lines (199 loc) · 10.6 KB
/
Full analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import math
import pandas
import os
wdir=os.path.realpath(__file__).removesuffix('\\'+os.path.basename(__file__))
print(wdir)
os.chdir(wdir)
flist=os.listdir(wdir)
KOdict={}
KOMetabolicDict={}
NameSecondaryDict={}
KOSecondaryDict={}
KOHydrolasesDict={}
NameFactorsDict={}
KOAnnotationDict={}
GeneDataDict={}
NameList=[]
PathwaysDict={}
KOIDDict={}
Hand=open("query KO.txt")
for line in Hand:
if line.startswith("gene"):
KOline=line[5:].strip()
else: KOline=line.strip()
try:
KOdict[KOline.split("\t")[0]]=KOline.split("\t")[1]
NameList.append(KOline.split("\t")[0])
except:
KOdict[KOline]=None
NameList.append(KOline)
#Name KO
Hand=open("KEGG annotation.txt")
for line in Hand:
KOAnn=line.strip().split("\t")
KOAnnotationDict[KOAnn[0]]=KOAnn[1]
#KO Annotation
Hand=open("KEGG metabolism annotation.txt")
for line in Hand:
KOMAnn=line.strip().split("\t")
KOMetabolicDict[KOMAnn[0]]=KOMAnn[1]
#KO Annotation
Hand=open("Secondary metabolism.txt")
for line in Hand:
NameSec=line.strip().split("\t")
try:
NameSecondaryDict[NameSec[0]]=NameSec[1]
except:
NameSecondaryDict[NameSec[0]]=False
#Name Secondary func
Hand=open("KEGG sec metabolism annotation.txt")
for line in Hand:
KOSec=line.strip().split("\t")
KOSecondaryDict[KOSec[0]]=KOSec[1]
#KO Secondsry func
Hand=open("Hydrolases.txt")
for line in Hand:
Hydro=line.strip().split("\t")
KOHydrolasesDict[Hydro[0]]=Hydro[1]
#KO Annotation
Hand=open("Factors and regulation.txt")
for line in Hand:
NameFac=line.strip().split("\t")
NameFactorsDict[NameFac[0]]=NameFac[1]
#Name Factor
Hand=open("t_data.ctab")
for line in Hand:
GeneData=line.strip().split("\t")
if GeneData[0].startswith("t"): continue
GeneDataDict[int(GeneData[0])]=[GeneData[1],GeneData[3],GeneData[4]]
#Name Factor
'''
Hand=open("KOlistIDs")
for line in Hand:
IDG=line.strip().split("\t")
KOIDDict[IDG[1]]=IDG[0]
#KO Annotation
'''
Hand=open("KOlistPs")
for line in Hand:
if line.startswith("K")==False:
Pathway=line.strip()
else:
KOPS=line.split()
for KOP in KOPS:
PathwaysDict[KOP]=PathwaysDict.get(KOP,[])
PathwaysDict[KOP].append(Pathway)
for key in PathwaysDict:
PathwaysDict[key]=" ".join(PathwaysDict[key])
#KO Patwhays
Hand.close()
class Gene:
def __init__(self,ID,Qval,Fcb,Name):
self.ID=ID
self.Name=Name
self.Qval=Qval
self.Fc=math.log(((math.pow(2,Fcb))-1),2)
self.KO=None
self.IsHydrolase=False
self.IsSecondaryMetabolic=False
self.IsFactor=False
self.IsPrimaryMetabolic=False
self.Description=None
self.HowRegulated=None
self.Chromosome=None
self.ChrPos=None
self.Pathways=None
self.KOID=None
for file in flist:
if file.endswith(".csv"):
Data=open(file)
GeneList=[]
l=0
for line in Data:
if line[1]=='"':
continue
dataline=line.split(",")
try:
GeneList.append(Gene(int(dataline[0].strip('"')),float(dataline[-1]),float(dataline[3]),NameList[l]))
except:
GeneList.append(Gene(int(dataline[0].strip('"')),1, 1,NameList[l]))
l+=1
for item in GeneList:
item.Chromosome=GeneDataDict[item.ID][0]
item.ChrPos=f"{GeneDataDict[item.ID][1]}-{GeneDataDict[item.ID][2]}"
item.KO=KOdict[item.Name]
item.IsSecondaryMetabolic = NameSecondaryDict.get(item.Name,False)
item.IsFactor = NameFactorsDict.get(item.Name,False)
if item.KO:
item.Description=KOAnnotationDict.get(item.KO,None)
# item.KOID=KOIDDict.get(item.KO,None)
if KOHydrolasesDict.get(item.KO,None):
item.IsHydrolase=True
if item.IsSecondaryMetabolic==False:
if KOSecondaryDict.get(item.KO,None):
item.IsSecondaryMetabolic=True
elif KOMetabolicDict.get(item.KO,None):
item.IsPrimaryMetabolic=True
else:
if KOMetabolicDict.get(item.KO,None):
item.IsPrimaryMetabolic = True
item.Pathways=PathwaysDict.get(item.KO,None)
GeneListSignificant=[]
for item in GeneList:
if item.Qval<=0.05 and math.fabs(item.Fc)>=2:
if item.Fc>=2: item.HowRegulated="Up"
else: item.HowRegulated="Down"
GeneListSignificant.append(item)
up1=down1=0
for item in GeneListSignificant:
if item.HowRegulated=="Up": up1+=1
else: down1+=1
GeneListProfit=[]
for item in GeneListSignificant:
if item.IsHydrolase or item.IsFactor or item.IsSecondaryMetabolic or item.Description:
GeneListProfit.append(item)
up2=down2=0
secup = secdown = hydup = hydown = factup = factdown = keggedup=keggedown = 0
for item in GeneListProfit:
if item.HowRegulated=="Up":
up2+=1
if item.IsHydrolase: hydup+=1
if item.IsFactor: factup+=1
if item.IsSecondaryMetabolic: secup+=1
if item.KO: keggedup+=1
else:
down2+=1
if item.IsHydrolase: hydown+=1
if item.IsFactor: factdown+=1
if item.IsSecondaryMetabolic: secdown+=1
if item.KO: keggedown+=1
AllData=pandas.DataFrame({"ID":{item.ID:item.ID for item in GeneList},"Gene name":{item.ID:item.Name for item in GeneList},"Chromosome":{item.ID:item.Chromosome for item in GeneList},"Position":{item.ID:item.ChrPos for item in GeneList},"KO":{item.ID:item.KO for item in GeneList},"KO Description":{item.ID:item.Description for item in GeneList},"KO Pathways":{item.ID:item.Pathways for item in GeneList},"Fold change":{item.ID:item.Fc for item in GeneList},"Q-value":{item.ID:item.Qval for item in GeneList},"How regulated?":{item.ID:item.HowRegulated for item in GeneList},"Secondary metabolism":{item.ID:item.IsSecondaryMetabolic for item in GeneList},"Primary metabolism":{item.ID:item.IsPrimaryMetabolic for item in GeneList},"Hydrolitic enzyme?":{item.ID:item.IsHydrolase for item in GeneList},"Transcription regulator?":{item.ID:item.IsFactor for item in GeneList}})
SignificantData=pandas.DataFrame({"ID":{item.ID:item.ID for item in GeneListSignificant},"Gene name":{item.ID:item.Name for item in GeneListSignificant},"Chromosome":{item.ID:item.Chromosome for item in GeneListSignificant},"Position":{item.ID:item.ChrPos for item in GeneListSignificant},"KO":{item.ID:item.KO for item in GeneListSignificant},"KO Description":{item.ID:item.Description for item in GeneListSignificant},"KO Pathways":{item.ID:item.Pathways for item in GeneListSignificant},"Fold change":{item.ID:item.Fc for item in GeneListSignificant},"How regulated?":{item.ID:item.HowRegulated for item in GeneListSignificant},"Secondary metabolism":{item.ID:item.IsSecondaryMetabolic for item in GeneListSignificant},"Primary metabolism":{item.ID:item.IsPrimaryMetabolic for item in GeneListSignificant},"Hydrolitic enzyme?":{item.ID:item.IsHydrolase for item in GeneListSignificant},"Transcription regulator?":{item.ID:item.IsFactor for item in GeneListSignificant}})
ProfitData=pandas.DataFrame({"ID":{item.ID:item.ID for item in GeneListProfit},"Gene name":{item.ID:item.Name for item in GeneListProfit},"Chromosome":{item.ID:item.Chromosome for item in GeneListProfit},"Position":{item.ID:item.ChrPos for item in GeneListProfit},"KO":{item.ID:item.KO for item in GeneListProfit},"KO Description":{item.ID:item.Description for item in GeneListProfit},"KO Pathways":{item.ID:item.Pathways for item in GeneListProfit},"Fold change":{item.ID:item.Fc for item in GeneListProfit},"How regulated?":{item.ID:item.HowRegulated for item in GeneListProfit},"Secondary metabolism":{item.ID:item.IsSecondaryMetabolic for item in GeneListProfit},"Primary metabolism":{item.ID:item.IsPrimaryMetabolic for item in GeneListProfit},"Hydrolitic enzyme?":{item.ID:item.IsHydrolase for item in GeneListProfit},"Transcription regulator?":{item.ID:item.IsFactor for item in GeneListProfit}})
General=pandas.DataFrame({"N of upregulated features":{"All":up1,"Annotated":up2,"Of them...":"","Have KO":keggedup,"Secondary metabolism":secup,"Hydrolases":hydup,"Factors":factup},"N of downregulated features":{"All":down1,"Annotated":down2,"Of them...":"","Have KO":keggedown,"Secondary metabolism":secdown,"Hydrolases":hydown,"Factors":factdown}})
def QvalHighlight(qval):
if qval<=0.05:
return "background-color:lightgreen"
else: return None
def FoldChange(Fold):
if Fold=="Up":
return "background-color:#7F6BFF"
elif Fold=="Down":
return "background-color:#FF6464"
else: return None
def BoolVal(b):
if b:
return "background-color:#65FF32"
else:
return "background-color:#FF8080"
def Position(pos):
if 383<=pos<=536:
return "background-color:#F5C43D"
elif 300<=pos<383:
return "background-color:#FCD568"
writer=pandas.ExcelWriter(f"{file.removesuffix('csv')}xlsx", engine="openpyxl")
AllData.style.applymap(QvalHighlight,subset="Q-value").applymap(Position,subset="ID").applymap(FoldChange,subset="How regulated?").applymap(BoolVal, subset=["Secondary metabolism","Primary metabolism","Hydrolitic enzyme?","Transcription regulator?"]).to_excel(writer,sheet_name="All data")
SignificantData.style.applymap(FoldChange,subset="How regulated?").applymap(Position,subset="ID").applymap(BoolVal, subset=["Secondary metabolism","Primary metabolism","Hydrolitic enzyme?","Transcription regulator?"]).to_excel(writer,sheet_name="Significant change")
ProfitData.style.applymap(FoldChange,subset="How regulated?").applymap(Position,subset="ID").applymap(BoolVal, subset=["Secondary metabolism","Primary metabolism","Hydrolitic enzyme?","Transcription regulator?"]).to_excel(writer,sheet_name="Significant annotated")
General.to_excel(writer,sheet_name="General Info")
writer.close()