-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_💻_Laptop.py
78 lines (58 loc) · 1.95 KB
/
1_💻_Laptop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import streamlit as st
from streamlit_lottie import st_lottie
import json
import pickle
import numpy as np
st.set_page_config(
page_title="Gadget-Price-Prediction",
page_icon=":video_game:",
layout="wide",
initial_sidebar_state="expanded",
)
pipe = pickle.load(open('pipe.pkl','rb'))
df = pickle.load(open('df.pkl','rb'))
st.sidebar.info("This is Laptop Price Pridiction Section Of App")
st.title("Laptop Predictor")
st.snow()
# brand
company = st.selectbox('Brand',df['Company'].unique())
# type of laptop
type = st.selectbox('Type',df['TypeName'].unique())
# Ram
ram = st.selectbox('RAM(in GB)',[2,4,6,8,12,16,24,32,64])
# weight
weight = st.number_input('Weight of the Laptop', value=1.5)
# Touchscreen
touchscreen = st.selectbox('Touchscreen',['No','Yes'])
# IPS
ips = st.selectbox('IPS',['No','Yes'])
# screen size
screen_size = st.number_input('Screen Size', value=14)
# resolution
resolution = st.selectbox('Screen Resolution',['1920x1080','1366x768','1600x900','3840x2160','3200x1800','2880x1800','2560x1600','2560x1440','2304x1440'])
#cpu
cpu = st.selectbox('CPU',df['Cpu BrandName'].unique())
hdd = st.selectbox('HDD(in GB)',[0,128,256,512,1024,2048])
ssd = st.selectbox('SSD(in GB)',[0,8,128,256,512,1024])
gpu = st.selectbox('GPU',df['Gpu Brand'].unique())
os = st.selectbox('OS',df['Os'].unique())
if st.button('Predict Price'):
# query
ppi = None
if touchscreen == 'Yes':
touchscreen = 1
else:
touchscreen = 0
if ips == 'Yes':
ips = 1
else:
ips = 0
X_res = int(resolution.split('x')[0])
Y_res = int(resolution.split('x')[1])
ppi = ((X_res**2) + (Y_res**2))**0.5/screen_size
query = np.array([company,type,ram,weight,touchscreen,ips,ppi,cpu,hdd,ssd,gpu,os])
query = query.reshape(1,12)
st.title("The predicted price of this configuration is " + str(int(np.exp(pipe.predict(query)[0]))))
with st.expander("Show Configuration"):
st.write(query)
st.balloons()