-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMathe_12_2.tex
1284 lines (1282 loc) · 65.7 KB
/
Mathe_12_2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\part{12/2}
\section{Abstand eines Punktes von einer Geraden}
gegeben:
\begin{gather*}
g \colon \vv{x} = \vv{a} + r \cdot \vv{b} \\
P: \vv{p}
\end{gather*}
\begin{gather*}
\begin{tikzpicture}[scale=1.1]
\coordinate (O) at (0,0);
\coordinate (A) at (1,4);
\coordinate (B) at (3,5);
\coordinate (P) at (10,1);
\coordinate (Q) at (12,2);
\draw (-1,3) -- (11,9);
\draw[->,blue,thick] (O) -- (A);
\draw[->,blue,thick] (O) -- (P);
\draw[->,blue,thick] (A) -- (B);
\draw[->,red] (A) -- (P);
\draw[red] (B) -- (Q);
\draw[red] (P) -- (Q);
\fill[red!10] (A) -- (B) -- (Q) -- (P) -- cycle;
\draw[->,green,very thick] (7,7) -- (P);
\node[below left] at (O) {$O$};
\node[above left] at (A) {$A$};
\node[below right] at (P) {$P$};
\node at (10,8.1) {$g$};
\node[blue] at (0.8,2) {$\vv{a}$};
\node[blue] at (1.7,4.8) {$\vv{b}$};
\node[blue] at (5,0.1) {$\vv{p}$};
\node[green] at (8.6,4.5) {$\vv{h}$};
\node[red] at (5,2.2) {$\vv{AP}$};
\end{tikzpicture}
\end{gather*}
\begin{gather*}
\text{Bilde } |\vv{b} \times \vv{AP}| = A_{Parallelogramm} \\
|\vv{b}| \cdot |\vv{h}| = A_{Parallelogramm} \\\\
|\vv{b} \times \vv{AP}| = |\vv{b}| \cdot |\vv{h}| \\
\;\Rightarrow\quad \frac{|\vv{b} \times \vv{AP}|}{|\vv{b}|} = |\vv{h}|
\end{gather*}
$|\vv{h}|$ ist der gesuchte Abstand von Punkt $P$ zur Geraden $g$.
\begin{exercise}{373/5}
\item [c]
\begin{gather*}
g \colon \vv{x} = \begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix} + t \cdot \begin{pmatrix}2 \\ 1 \\ -1\end{pmatrix} \qquad R(-2|-1|1) \\
\vv{PR} = \begin{pmatrix}-3 \\ -2 \\ 1\end{pmatrix} \qquad \vv{u} = \begin{pmatrix}2 \\ 1 \\ -1\end{pmatrix} \\
|\vv{h}| = \frac{|\vv{u} \times \vv{PR}|}{|\vv{u}|} = \frac{\left|\begin{pmatrix}-1 \\ 1 \\ -1\end{pmatrix}\right|}{\left|\begin{pmatrix}2 \\ 1 \\ -1\end{pmatrix}\right|} = \frac{\sqrt{3}}{\sqrt{6}} = \sqrt{\frac{1}{2}} \approx 0.7071
\end{gather*}
\begin{gather*}
g \colon \vv{x} = \begin{pmatrix}2 \\ 3 \\ 2\end{pmatrix} + t \cdot \begin{pmatrix}2 \\ -3 \\ -6\end{pmatrix} \qquad R(1|2|-3) \\
\vv{PR} = \begin{pmatrix}-1 \\ -1 \\ -5\end{pmatrix} \qquad \vv{u} = \begin{pmatrix}2 \\ -3 \\ -6\end{pmatrix} \\
|\vv{h}| = \frac{|\vv{u} \times \vv{PR}|}{|\vv{u}|} = \frac{\left|\begin{pmatrix}-9 \\ -16 \\ -5\end{pmatrix}\right|}{\left|\begin{pmatrix}2 \\ -3 \\ -6\end{pmatrix}\right|} = \frac{\sqrt{362}}{\sqrt{49}} \approx 2.7180
\end{gather*}
\end{exercise}
\section{Ebenendarstellung}
\subsection{Normalenform}
\begin{gather*}
E \colon \vv{x} = \vv{a} + r \cdot \vv{b} + s \cdot \vv{c} \\\\
E \colon (\vv{x} - \vv{a}) \cdot \vv{n} = 0 \\
\; \vv{AX} \cdot \vv{n} = 0
\end{gather*}
$\vv{n}$ ... Normalenvektor der Ebene \\
$\vv{a}$ ... Stützvektor, Ortsvektor eines bestimmten Punktes \\
$\vv{x}$ ... allgemeiner Ortsvektor aller Punkte der Ebene \\
$\vv{AX}$ ... Verbindungsvektor, der in der Ebene liegt \\\\
Punkte $X$ der Ebene sind diejenigen, deren Verbindungsvektoren $\vv{AX}$ orthogonal zu $\vv{h}$ stehen. \\\\
z. B.
\begin{gather*}
\left(\vv{x} - \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix}\right) \cdot \begin{pmatrix}-1 \\ 0 \\ 4\end{pmatrix} = 0 \\\\
\text{Beispiellösung } x_1 = \begin{pmatrix}5 \\ 0 \\ 4\end{pmatrix} \\\\
\text{Punktprobe } P(2|1|1) \quad P \in E ? \\
\begin{pmatrix}2 - 1 \\ 1 - 2 \\ 1 - 3\end{pmatrix} \cdot \begin{pmatrix}-1 \\ 0 \\ 4\end{pmatrix} = 0 \qquad -1 + 0 - 8 = -9 \neq 0 \quad\Rightarrow\quad P \not\in E
\end{gather*}
Normalengleichung aus $A(1|0|5)$, $B(0|2|1)$, $C(4|5|6)$
\begin{gather*}
E \colon \vv{x} = \begin{pmatrix}1 \\ 0 \\ 5\end{pmatrix} + r \cdot \begin{pmatrix}-1 \\ 2 \\ -4\end{pmatrix} + s \cdot \begin{pmatrix}3 \\ 5 \\ 1\end{pmatrix} \\
\vv{n} = \vv{AB} \times \vv{AC} = \begin{pmatrix}-1 \\ 2 \\ -4\end{pmatrix} \times \begin{pmatrix}3 \\ 5 \\ 1\end{pmatrix} = \begin{pmatrix}22 \\ -11 \\ -11\end{pmatrix} \\
E \colon \left(\vv{x} - \begin{pmatrix}1 \\ 0 \\ 5\end{pmatrix} \right) \cdot \begin{pmatrix}22 \\ -11 \\ -11\end{pmatrix} = 0
\end{gather*}
\subsection{Koordinatenform}
Berechne das Skalarprodukt in der Normalengleichung mit $\vv{x} = \begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}$
\begin{gather*}
E \colon \left(\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix} - \begin{pmatrix}a_1 \\ a_2 \\ a_3\end{pmatrix}\right) \cdot \begin{pmatrix}n_1 \\ n_2 \\ n_3\end{pmatrix} = 0 \\
\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix} \cdot \begin{pmatrix}n_1 \\ n_2 \\ n_3\end{pmatrix} - \begin{pmatrix}a_1 \\ a_2 \\ a_3\end{pmatrix} \cdot \begin{pmatrix}n_1 \\ n_2 \\ n_3\end{pmatrix} = 0 \\
(n_1 \cdot x_1 + n_2 \cdot x_2 + n_3 \cdot x_3) - (a_1 \cdot n_1 + a_2 \cdot n_2 + a_3 \cdot n_3) = 0 \\\\
\text{z. B. } 22x_1 - 11x_2 - 11x_3 = -33 \\
\text{Beispiellösungen } \vv{x} = \begin{pmatrix}-1 \\ 1 \\ 0\end{pmatrix}, \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix}, \begin{pmatrix}2 \\ 1 \\ 6\end{pmatrix}, ...
\end{gather*}
\begin{gather*}
E \colon ax_1 + bx_2 + cx_3 = d
\end{gather*}
Betrache die Koordinatenform als eine Gleichung für drei Variablen $x_1$, $x_2$, $x_3$. Die Lösungen der Gleichung sind Dreiertupel $L = \{(...,\;...,\;...),\;...\}$. Notiere ich die Dreiertupel als Spaltenvektoren, so stellen sie die Ortsvektoren der Punkte der Ebene $E$ dar. Die Koeffizienten $a$, $b$, $c$ der Koordinatenform sind die Koordinaten von $\vv{n}$, des Normalenvektors.
\subsubsection{Koordinatenform $\rightarrow$ Normalenform}
\begin{gather*}
\text{z. B. } 5x_1 - x_2 + 3x_3 = 9
\end{gather*}
\begin{enumerate}
\item Lies ab $\vv{n} = \begin{pmatrix}5 \\ -1 \\ 3\end{pmatrix}$
\item Finde eine Lösung $\begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix}$, z. B. $\begin{pmatrix}0 \\ 0 \\ 3\end{pmatrix}$
\end{enumerate}
\begin{gather*}
E \colon \left(\vv{x} - \begin{pmatrix}0 \\ 0 \\ 3\end{pmatrix}\right) \cdot \begin{pmatrix}5 \\ -1 \\ 3\end{pmatrix} = 0
\end{gather*}
\subsubsection{Sonderfälle}
\begin{itemize}
\item
\begin{gather*}
E \colon x_3 = 5 \quad\rightarrow\quad \vv{n} = \begin{pmatrix}0 \\ 0 \\ 1\end{pmatrix}
\end{gather*}
Punkte der Ebene haben $x_3 = 5$; $x_1$, $x_2$ sind beliebige Koordinaten.
\begin{gather*}
\text{z. B. } \begin{pmatrix}1 \\ 1 \\ 5\end{pmatrix}, \begin{pmatrix}-2 \\ 3 \\ 5\end{pmatrix}, \begin{pmatrix}0 \\ 7 \\ 5\end{pmatrix}, ...
\end{gather*}
$x_1$ und $x_2$ sind nicht erwähnt, also frei wählbar.
\item
\begin{gather*}
E \colon 2x_1 - 4x_2 = 0
\end{gather*}
Der Ursprung $O$ ist Teil der Ebene $E$. Der Verbindungsvektor $\vv{O} - \vv{a}$, also der Ortsvektor $\vv{a}$ liegt in der Ebene $E$ und steht orthogonal zu $\vv{n}$. Daher sind $\vv{a} \cdot \vv{n} = 0$ und damit $d = 0$.
\end{itemize}
\begin{exercise}{325/3}
\begin{gather*}
D(-7|1|3)
\end{gather*}
\item [a]
\begin{gather*}
A(1|1|1) \qquad B(1|0|1) \qquad C(0|1|1) \\
\vv{AB} = \begin{pmatrix}0 \\ -1 \\ 0\end{pmatrix} \qquad \vv{AC} = \begin{pmatrix}-1 \\ 0 \\ 0\end{pmatrix} \\
\vv{n} = \vv{AB} \times \vv{AC} = \begin{pmatrix}0 \\ 0 \\ -1\end{pmatrix} \\\\
E \colon \left(\vv{x} - \begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix}\right) \cdot \begin{pmatrix}0 \\ 0 \\ -1\end{pmatrix} = 0 \\
E \colon -x_3 = 0 + 0 - 1 = -1 \\\\
D \in E ? \qquad -x_3 = -3 \neq -1 \qquad \Rightarrow\quad D \not\in E
\end{gather*}
\item [b]
\begin{gather*}
A(-1|2|0) \qquad B(-3|1|1) \qquad C(1|-1|-1) \\
\vv{AB} = \begin{pmatrix}-2 \\ -1 \\ 1\end{pmatrix} \qquad \vv{AC} = \begin{pmatrix}2 \\ -3 \\ -1\end{pmatrix} \\
\vv{n} = \vv{AB} \times \vv{AC} = \begin{pmatrix}4 \\ 0 \\ 8\end{pmatrix} \\\\
E \colon \left(\vv{x} - \begin{pmatrix}-1 \\ 2 \\ 0\end{pmatrix}\right) \cdot \begin{pmatrix}4 \\ 0 \\ 8\end{pmatrix} = 0 \\
E \colon 4x_1 + 8x_3 = -4 + 0 + 0 = -4 \\\\
D \in E? \qquad 4x_1 + 8x_3 = -28 + 24 = -4 \qquad \Rightarrow\quad D \in E
\end{gather*}
\end{exercise}
\subsection{Ebenen zeichnen}
Zeichne Ebene $E \colon 2x_1 - 3x_2 + 5x_3 = 12$ \\\\
Schnitt mit der ...
\begin{itemize}
\item [] $x_1$-Achse:
\begin{gather*}
x_2 = x_3 = 0 \quad\Rightarrow\quad 2x_1 = 12 \quad x_1 = 6 \quad P(6|0|0)
\end{gather*}
\item [] $x_2$-Achse:
\begin{gather*}
x_1 = x_3 = 0 \quad\Rightarrow\quad -3x_2 = 12 \quad x_2 = -4 \quad Q(0|-4|0)
\end{gather*}
\item [] $x_3$-Achse:
\begin{gather*}
x_1 = x_2 = 0 \quad\Rightarrow\quad 5x_3 = 12 \quad x_3 = 2.4 \quad R(0|0|2.4)
\end{gather*}
\end{itemize}
$P$, $Q$, $R$ heißen Spurpunkte. \\
Gerade durch $P$ und $Q$ (bzw. $Q$ und $R$, $P$ und $R$) heißt Spurgerade.
\begin{gather*}
\begin{tikzpicture}
\coordinate (P) at (6,0,0);
\coordinate (Q) at (0,-4,0);
\coordinate (R) at (0,0,2.4);
\node[above] at (P) {$P$};
\node[below left] at (Q) {$Q$};
\node[above left] at (R) {$R$};
\draw[red,fill=red!10] (P) -- (Q) -- (R) -- (P);
\draw[thick,->] (-1,0,0) -- (7,0,0) node[anchor=north east]{$x_1$};
\draw[thick,->] (0,-5,0) -- (0,1,0) node[anchor=north west]{$x_2$};
\draw[thick,->] (0,0,-1) -- (0,0,4) node[anchor=south east]{$x_3$};
\end{tikzpicture}
\end{gather*}
Spurgerade (PQ):
\begin{gather*}
g \colon \vv{x} = \begin{pmatrix}0 \\ -4 \\ 0\end{pmatrix} + r \cdot \begin{pmatrix}6 \\ 4 \\ 0\end{pmatrix}
\end{gather*}
Spezialfälle
\begin{itemize}
\item
\begin{gather*}
3x_1 + 6x_3 = 18 \qquad P(6|0|0) \quad R(0|0|3) \quad Q(0|\infty|0)
\end{gather*}
Kein Schnitt mit der $x_2$-Achse, verläuft parallel zur $x_2$-Achse.
\item
\begin{gather*}
2x_1 = 5 \qquad P(2.5|0|0)
\end{gather*}
Kein Schnitt mit der $x_2$- und $x_3$-Achse, verläuft parallel zur $x_2x_3$-Ebene.
\end{itemize}
\begin{exercise}{328/3}
Fig. 1
\begin{gather*}
P(2|0|0) \qquad Q(0|5|0) \qquad R(0|0|3) \\
15x_1 = 30 \qquad 6x_2 = 30 \qquad 10x_3 = 30 \\
E \colon 15x_1 + 6x_2 + 10x_3 = 30
\end{gather*}
Fig. 2
\begin{gather*}
P(1|0|0) \qquad Q(0|4|0) \qquad R(0|0|-1.5) \\
12x_1 = 12 \qquad 3x_2 = 12 \qquad -8x_3 = 12 \\
E \colon 12x_1 + 3x_2 - 8x_3 = 12
\end{gather*}
\end{exercise}
\begin{exercise}{328/5}
\item [a]
\begin{gather*}
E \colon \vv{x} = \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix} + r \cdot \begin{pmatrix}-1 \\ 2 \\ 0\end{pmatrix} + s \cdot \begin{pmatrix}1 \\ 0 \\ 3\end{pmatrix} \\
\vv{n} = \begin{pmatrix}-1 \\ 2 \\ 0\end{pmatrix} \times \begin{pmatrix}1 \\ 0 \\ 3\end{pmatrix} = \begin{pmatrix}6 \\ 3 \\ -2\end{pmatrix} \qquad \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix} \cdot \vv{n} = 6 \\
E \colon 6x_1 + 3x_2 - 2x_3 = 6 \\
P(1|0|0) \qquad Q(0|2|0) \qquad R(0|0|-3)
\end{gather*}
\begin{gather*}
\begin{tikzpicture}[scale=1.7]
\coordinate (P) at (1,0,0);
\coordinate (Q) at (0,2,0);
\coordinate (R) at (0,0,-3);
\node[below] at (P) {$P$};
\node[left] at (Q) {$Q$};
\node[below right] at (R) {$R$};
\draw[thick,->] (-1,0,0) -- (2,0,0) node[anchor=north east]{$x_1$};
\draw[thick,->] (0,-1,0) -- (0,3,0) node[anchor=north west]{$x_2$};
\draw[thick,->] (0,0,-4) -- (0,0,1) node[anchor=south east]{$x_3$};
\draw[red,fill=red!10] (P) -- (Q) -- (R) -- (P);
\draw[dashed] (0,0,-1.7) -- (R);
\end{tikzpicture}
\end{gather*}
\item [b]
\begin{gather*}
E \colon \vv{x} = \begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix} + r \cdot \begin{pmatrix}5 \\ 0 \\ 5\end{pmatrix} + s \cdot \begin{pmatrix}0 \\ 1 \\ 4\end{pmatrix} \\
\vv{n} = \begin{pmatrix}5 \\ 0 \\ 5\end{pmatrix} \times \begin{pmatrix}0 \\ 1 \\ 4\end{pmatrix} = \begin{pmatrix}-5 \\ -20 \\ 5\end{pmatrix} \qquad \begin{pmatrix}1 \\ 1 \\ 1\end{pmatrix} \cdot \vv{n} = -20 \\
E \colon -5x_1 - 20x_2 + 5x_3 = -20 \\
P(4|0|0) \qquad Q(0|1|0) \qquad R(0|0|-4)
\end{gather*}
\begin{gather*}
\begin{tikzpicture}[scale=1.7]
\coordinate (P) at (4,0,0);
\coordinate (Q) at (0,1,0);
\coordinate (R) at (0,0,-4);
\node[below] at (P) {$P$};
\node[left] at (Q) {$Q$};
\node[above left] at (R) {$R$};
\draw[thick,->] (-1,0,0) -- (5,0,0) node[anchor=north east]{$x_1$};
\draw[thick,->] (0,-1,0) -- (0,2,0) node[anchor=north west]{$x_2$};
\draw[thick,->] (0,0,-5) -- (0,0,1) node[anchor=south east]{$x_3$};
\draw[red,fill=red!10] (P) -- (Q) -- (R) -- (P);
\draw[dashed] (0,0,-2) -- (R);
\end{tikzpicture}
\end{gather*}
\end{exercise}
\begin{exercise}{328/6}
Fig. 3
\begin{gather*}
P(0|3|0) \\
E \colon x_2 = 3 \\
\text{parallel zur $x_1x_3$-Ebene}
\end{gather*}
Fig. 4
\begin{gather*}
P(1|0|0) \qquad Q(0|5|0) \\
5x_1 = 5 \qquad x_2 = 5 \\
E \colon 5x_1 + x_2 = 5 \\
\text{parallel zur $x_3$-Ebene}
\end{gather*}
\end{exercise}
\section{Lage Ebene $\leftrightarrow$ Gerade}
\begin{itemize}
\item schneiden sich
\item verlaufen parallel
\item Gerade ist Teil der Ebene
\end{itemize}
Beispiel:
\begin{gather*}
E \colon 2x_1 - x_2 + 3x_3 = 16 \\
g \colon \vv{x} = \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix} + r \cdot \begin{pmatrix}2 \\ -1 \\ 0\end{pmatrix} = \begin{pmatrix}1 + 2r \\ 2 - r \\ 3\end{pmatrix} = \begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix} \\\\
\text{$g$ in $E$ eingesetzt} \\
2 \cdot (1 + 2r) - (2 - r) + 3 \cdot 3 = 16 \\
\Rightarrow\quad r = \frac{7}{5} \\
\text{Schnittpunkt } \vv{OS} = \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix} + \frac{7}{5} \cdot \begin{pmatrix}2 \\ -1 \\ 0\end{pmatrix} = \begin{pmatrix}3.8 \\ 0.6 \\ 3\end{pmatrix}
\end{gather*}
\begin{itemize}
\item eindeutige Lösung für $r$ $\Rightarrow$ schneiden sich
\item kein $r$ erfüllt die Gleichung $\Rightarrow$ kein Schnittpunkt, parallele Lage
\item für jedes $r$ ein möglicher gemeinsamer Punkt $\Rightarrow$ Gerade liegt in der Ebene
\end{itemize}
\begin{exercise}{330/1}
\begin{gather*}
g \colon \vv{x} = \begin{pmatrix}4 \\ 6 \\ 2\end{pmatrix} + t \cdot \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix}
\end{gather*}
\item [a]
\begin{gather*}
E \colon 2x_1 + 4x_2 + 6x_3 = 16 \\\\
2 \cdot (4 + t) + 4 \cdot (6 + 2t) + 6 \cdot (2 + 3t) = 16 \\
\Rightarrow\quad t = -1 \\\\
\begin{pmatrix}4 \\ 6 \\ 2\end{pmatrix} - 1 \cdot \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix} = \begin{pmatrix}3 \\ 4 \\ -1\end{pmatrix} \\\\
S(3|4|-1)
\end{gather*}
\item [b]
\begin{gather*}
E \colon 5x_2 - 7x_3 = 13 \\\\
5 \cdot (6 + 2t) - 7 \cdot (2 + 3t) = 13 \\
t = \frac{3}{11} \\\\
\begin{pmatrix}4 \\ 6 \\ 2\end{pmatrix} + \frac{3}{11} \cdot \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix} = \begin{pmatrix}4.\overline{27} \\ 6.\overline{54} \\ 2.\overline{81}\end{pmatrix} \\\\
S(4.\overline{27}|6.\overline{54}|2.\overline{81})
\end{gather*}
\end{exercise}
\begin{exercise}{330/2}
\item [a]
\begin{gather*}
g \colon \vv{x} = \begin{pmatrix}-2 \\ 1 \\ 4\end{pmatrix} + t \cdot \begin{pmatrix}7 \\ 8 \\ 6\end{pmatrix} \qquad E \colon \vv{x} = \begin{pmatrix}1 \\ 4 \\ 3\end{pmatrix} + r \cdot \begin{pmatrix}0 \\ -1 \\ 1\end{pmatrix} + s \cdot \begin{pmatrix}1 \\ 0 \\ 3\end{pmatrix} \\\\
-2 + 7t = 1 + s \\
1 + 8t = 4 - r \\
4 + 6t = 3 + r + 3s \\
t = 1 \qquad r = -5 \qquad s = 4 \\\\
\begin{pmatrix}-2 \\ 1 \\ 4\end{pmatrix} + 1 \cdot \begin{pmatrix}7 \\ 8 \\ 6\end{pmatrix} = \begin{pmatrix}5 \\ 9 \\ 10\end{pmatrix} \\\\
S(5|9|10)
\end{gather*}
\item [b]
\begin{gather*}
g \colon \vv{x} = \begin{pmatrix}22 \\ -18 \\ -7\end{pmatrix} + t \cdot \begin{pmatrix}4 \\ 1 \\ -5\end{pmatrix} \qquad E \colon \vv{x} = \begin{pmatrix}2 \\ 1 \\ 0\end{pmatrix} + r \cdot \begin{pmatrix}4 \\ -7 \\ 1\end{pmatrix} + s \cdot \begin{pmatrix}0 \\ 4 \\ -3\end{pmatrix} \\\\
22 + 4t = 2 + 4r \\
-18 + t = 1 - 7r + 4s \\
-7 - 5t = r - 3s \\\\
t = r - 5 \qquad s = 2r - 6 \\\\
g \in E
\end{gather*}
\item [c]
\begin{gather*}
g \colon \vv{x} = t \cdot \begin{pmatrix}-1 \\ -1 \\ -1\end{pmatrix} \qquad E \colon \vv{x} = \begin{pmatrix}0 \\ 0 \\ 2\end{pmatrix} + r \cdot \begin{pmatrix}2 \\ 0 \\ 0\end{pmatrix} + s \cdot \begin{pmatrix}0 \\ 2 \\ 0\end{pmatrix} \\\\
-t = 2r \\
-t = 2s \\
-t = 2 \\\\
t = -2 \qquad r = 1 \qquad s = 1 \\\\
-2 \cdot \begin{pmatrix}-1 \\ -1 \\ -1\end{pmatrix} = \begin{pmatrix}2 \\ 2 \\ 2\end{pmatrix} \\\\
S(2|2|2)
\end{gather*}
\end{exercise}
\subsection{Schnittwinkel}
\begin{gather*}
g \colon \vv{x} = \vv{a} + r \cdot \vv{b} \qquad h \colon \vv{x} = \vv{c} + s \cdot \vv{d} \\\\
\vv{b} \cdot \vv{d} = |\vv{b}| \cdot |\vv{d}| \cdot cos(\alpha) \\
\alpha = acos\left(\frac{\vv{b} \cdot \vv{d}}{|\vv{b}| \cdot |\vv{d}|}\right) \qquad \alpha < 90^\circ \\\\
\alpha = acos\left(\frac{\vv{n} \cdot \vv{b}}{|\vv{n}| \cdot |\vv{b}|}\right) \qquad \beta = asin\left(\frac{\vv{n} \cdot \vv{b}}{|\vv{n}| \cdot |\vv{b}|}\right) \qquad \beta = 90^\circ - \alpha
\end{gather*}
\section{Wiederholung}
\begin{exercise}{344/7}
\begin{gather*}
g_a \colon \vv{x} = \begin{pmatrix}2 \\ 7 \\ 3\end{pmatrix} + t \cdot \begin{pmatrix}4 + 2a \\ -1 + 5a \\ 1 + 3a\end{pmatrix} \qquad a \in \mathbb{R} \\
P(1|0|2),\; Q(2|0|3),\; R(0|2|2) \in E
\end{gather*}
\item [a]
\begin{gather*}
\vv{PQ} = \begin{pmatrix}1 \\ 0 \\ 1\end{pmatrix} \qquad \vv{PR} = \begin{pmatrix}-1 \\ 2 \\ 0\end{pmatrix} \\
\vv{n} = \vv{PQ} \times \vv{PR} = \begin{pmatrix}-2 \\ -1 \\ 2\end{pmatrix} \qquad \vv{OP} \cdot \vv{n} = 2 \\
E \colon -2x_1 - x_2 + 2x_3 = 2 \\\\
g_0 \colon \vv{x} = \begin{pmatrix}2 \\ 7 \\ 3\end{pmatrix} + t \cdot \begin{pmatrix}4 \\ -1 \\ 1\end{pmatrix} \qquad g_1 \colon \vv{x} = \begin{pmatrix}2 \\ 7 \\ 3\end{pmatrix} + t \cdot \begin{pmatrix}6 \\ 4 \\ 4\end{pmatrix} \\\\
g_0 = E \qquad -2(2 + 4t) - (7 - t) + 2(3 + t) = 2 \quad\Rightarrow\quad t = -\frac{7}{5} \\
g_1 = E \qquad -2(2 + 6t) - (7 + 4t) + 2(3 + 4t) = 2 \quad\Rightarrow\quad t = \frac{-7}{8} \\\\
\end{gather*}
\begin{gather*}
\vv{OS_0} = \begin{pmatrix}2 \\ 7 \\ 3\end{pmatrix} - \frac{7}{5} \cdot \begin{pmatrix}4 \\ -1 \\ 1\end{pmatrix} = \begin{pmatrix}-3.6 \\ 8.4 \\ 1.6\end{pmatrix} \qquad \vv{OS_1} = \begin{pmatrix}2 \\ 7 \\ 3\end{pmatrix} - \frac{7}{8} \cdot \begin{pmatrix}6 \\ 4 \\ 4\end{pmatrix} = \begin{pmatrix}-3.25 \\ 3.5 \\ -0.5\end{pmatrix} \\
\vv{S_0S_1} = \begin{pmatrix}0.35 \\ -4.9 \\ -2.1\end{pmatrix} \\\\
h \colon \vv{x} = \begin{pmatrix}-3.6 \\ 8.4 \\ 1.6\end{pmatrix} + t \cdot \begin{pmatrix}0.35 \\ -4.9 \\ -2.1\end{pmatrix}
\end{gather*}
\item [b]
\begin{gather*}
t \cdot \begin{pmatrix}0.35 \\ -4.9 \\ -2.1\end{pmatrix} = \begin{pmatrix}4 + 2a \\ -1 + 5a \\ 1 + 3a\end{pmatrix} \\\\
0.35t = 4 + 2a \\
-4.9t = -1 + 5a \\
-2.1t = 1 + 3a \\\\
\Rightarrow\quad a = -\frac{5}{3} \qquad (t \approx 1.905)
\end{gather*}
\end{exercise}
\begin{exercise}{326/15}
\item [a]
\begin{gather*}
2t = 0 \quad\Rightarrow\quad t = 0 \\
4 = 0 \quad\Rightarrow\quad \text{keine Lösung} \\
t = 0 \quad\Rightarrow\quad t = 0 \\\\
\Rightarrow\quad t = 0
\end{gather*}
\item [b]
\begin{gather*}
t - 1 = 0 \quad\Rightarrow\quad t = 1 \\
t^2 - 1 = 0 \quad\Rightarrow\quad t = \pm1 \\
t + 1 = 0 \quad\Rightarrow\quad t = -1 \\\\
\Rightarrow\quad t = \pm1
\end{gather*}
\end{exercise}
\newpage
\begin{exercise}{374/7}
\item [b]
\begin{gather*}
A(1|-2|12) \qquad B(11|3|5) \qquad C(3|5|8) \qquad D(19|4|4) \\
\vv{AB} = \begin{pmatrix}10 \\ 5 \\ -7\end{pmatrix} \qquad \vv{AC} = \begin{pmatrix}2 \\ 7 \\ -4\end{pmatrix} \qquad \vv{AD} = \begin{pmatrix}18 \\ 6 \\ -8\end{pmatrix} \\
V = \frac{1}{6} \cdot |\vv{AB} \times \vv{AC} \cdot \vv{AD}| = \frac{1}{6} \cdot \left|\begin{pmatrix}10 \\ 5 \\ -7\end{pmatrix} \times \begin{pmatrix}2 \\ 7 \\ -4\end{pmatrix} \cdot \begin{pmatrix}18 \\ 6 \\ -8\end{pmatrix}\right| \\
\;= \frac{1}{6} \cdot \left|\begin{pmatrix}29 \\ 26 \\ 60\end{pmatrix} \cdot \begin{pmatrix}18 \\ 6 \\ -8\end{pmatrix}\right| = \frac{1}{6} \cdot |198| = 33
\end{gather*}
\end{exercise}
\section{Lage Ebene $\leftrightarrow$ Ebene}
3 Fälle sind möglich:
\begin{itemize}
\item 2 Ebenen schneiden sich in einer Geraden (Normalenvektoren sind nicht kollinear)
\begin{gather*}
2x_1 - x_2 = 7 \qquad \vv{n} = \begin{pmatrix}2 \\ -1 \\ 0\end{pmatrix} \\
5x_2 + x_3 = 5 \qquad \vv{n} = \begin{pmatrix}0 \\ 5 \\ 1\end{pmatrix}
\end{gather*}
\item 2 Ebenen sind parallel (kollineare Normalenvektoren)
\begin{gather*}
2x_1 - x_2 = 7 \qquad \vv{n} = \begin{pmatrix}2 \\ -1 \\ 0\end{pmatrix} \\
10x_1 - 5x_2 = 1 \qquad \vv{n} = \begin{pmatrix}10 \\ -5 \\ 0\end{pmatrix}
\end{gather*}
\item 2 Ebenen sind identisch (Koordinatengleichungen lassen sich ineinander umformen)
\begin{gather*}
2x_1 - x_2 = 7 \equ \cdot 5 \\
10x_1 - 5x_2 = 35
\end{gather*}
\end{itemize}
\begin{gather*}
E \colon \vv{x} = \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix} + r \cdot \begin{pmatrix}0 \\ 1 \\ 3\end{pmatrix} + s \cdot \begin{pmatrix}-1 \\ 0 \\ 5\end{pmatrix} = \begin{pmatrix}1 - s \\ 2 + r \\ 3 + 3r + 5s\end{pmatrix} = \begin{pmatrix}x_1 \\ x_2 \\ x_3\end{pmatrix} \\
F \colon \vv{x} = x_1 - x_2 + 3x_3 = 5 \\\\
\text{setze $E$ in $F$ ein} \\
1 - s - (2 + r) + 3 \cdot (3 + 3r + 5s) = 5 \\
8r + 14s = -3 \\
r = -\frac{3}{8} - \frac{14}{8}s \\\\
g \colon \vv{x} = \begin{pmatrix}1 - s \\ 2 - \frac{3}{8} - \frac{14}{8}s \\[0.4em] 3 + 3 \cdot (-\frac{3}{8} - \frac{14}{8}s) + 5s\end{pmatrix} = \begin{pmatrix}1 \\ \frac{13}{8} \\[0.4em] \frac{15}{8}\end{pmatrix} + s \cdot \begin{pmatrix}-1 \\ -\frac{7}{4} \\[0.4em] -\frac{1}{4}\end{pmatrix}
\end{gather*}
\begin{exercise}{333/2}
\item [a]
\begin{gather*}
E_1 \colon x_1 - x_2 + 2x_3 = 7 \qquad E_2 \colon 6x_1 + x_2 - x_3 = -7 \\\\
x_3 = 3.5 - 0.5x_1 + 0.5x_3 \\
E_1 \colon \vv{x} = \begin{pmatrix}0 \\ 0 \\ 3.5\end{pmatrix} + r \cdot \begin{pmatrix}1 \\ 0 \\ -0.5\end{pmatrix} + s \cdot \begin{pmatrix}0 \\ 1 \\ 0.5\end{pmatrix} = \begin{pmatrix}r \\ s \\ 3.5 - 0.5r + 0.5s\end{pmatrix} \\\\
\text{$E_1$ in $E_2$ einsetzen:} \\
6r + s - (3.5 - 0.5r + 0.5s) = -7 \\
s = -7 - 13r \\\\
g \colon \vv{x} = \begin{pmatrix}r \\ -7 - 13r \\ -7r\end{pmatrix} = \begin{pmatrix}0 \\ -7 \\ 0\end{pmatrix} + r \cdot \begin{pmatrix}1 \\ -13 \\ -7\end{pmatrix}
\end{gather*}
\end{exercise}
\newpage
\begin{exercise}{334/3}
\item [a]
\begin{gather*}
E_1 \colon \vv{x} = \begin{pmatrix}1 \\ 0 \\ 3\end{pmatrix} + r \cdot \begin{pmatrix}1 \\ 0 \\ 0\end{pmatrix} + s \cdot \begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix} \qquad E_2 \colon \vv{x} = \begin{pmatrix}2 \\ 3 \\ 2\end{pmatrix} + r \cdot \begin{pmatrix}0 \\ 1 \\ 1\end{pmatrix} + s \cdot \begin{pmatrix}2 \\ 0 \\ 1\end{pmatrix} \\\\
E_2 \colon x_1 + 2x_2 - 2x_3 = 4 \\\\
\text{$E_1$ in $E_2$ einsetzen:} \\
1 + r + s + 2s - 2 \cdot 3 = 4 \\
r = 9 - 3s \\\\
g \colon \vv{x} = \begin{pmatrix}10 - 2s \\ s \\ 3\end{pmatrix} = \begin{pmatrix}10 \\ 0 \\ 3\end{pmatrix} + s \cdot \begin{pmatrix}-2 \\ 1 \\ 0\end{pmatrix}
\end{gather*}
\end{exercise}
\section{Abstand Ebene $\leftrightarrow$ Punkt}
Fußlotpunkt-Methode
\begin{gather*}
E \colon \left(\vv{x} - \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix}\right) \cdot \begin{pmatrix}1 \\ 0 \\ 4\end{pmatrix} = 0 \qquad P(8|-3|0) \\\\
\text{orthogonale Gerade durch Punkt $P$} \\
g \colon \vv{x} = \begin{pmatrix}8 \\ -3 \\ 0\end{pmatrix} + r \cdot \begin{pmatrix}1 \\ 0 \\ 4\end{pmatrix} \\\\
\text{Schnittpunkt $g \leftrightarrow E$} \\
\text{$g$ in $E$} \quad \begin{pmatrix}8 + r - 1 \\ -3 - 2 \\ 0 + 4r - 3\end{pmatrix} \cdot \begin{pmatrix}1 \\ 0 \\ 4\end{pmatrix} = 0 \\
\vv{OS} = \begin{pmatrix}\frac{141}{17} \\ -3 \\ \frac{20}{17}\end{pmatrix} \qquad r = \frac{5}{17} \\\\
\text{Abstand $P \leftrightarrow E$ ist $|\vv{PS}|$} \\
d(P, E) = 1.21LE
\end{gather*} \\
Hessesche Normalenform (HNF)
\begin{gather*}
E_0 \colon \left(\vv{x} - \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix}\right) \cdot \underbrace{\frac{1}{\sqrt{17}} \cdot \begin{pmatrix}1 \\ 0 \\ 4\end{pmatrix}}_{\mathclap{\text{Normaleneinheitsvektor $\vv{n_0} \quad |\vv{n_0}| = 1$}}} = 0 \\\\
\text{setze $P$ für $\vv{x}$ in $E_0$ ein} \\
\left|\left(\begin{pmatrix}8 \\ -3 \\ 0\end{pmatrix} - \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix}\right) \cdot \frac{1}{\sqrt{17}} \cdot \begin{pmatrix}1 \\ 0 \\ 4\end{pmatrix}\right| = d \\\\
d(P, E) = 1.21LE
\end{gather*}
\begin{gather*}
\begin{tikzpicture}[scale=2]
\coordinate[label=below:$A$] (A) at (0,0);
\coordinate[label=below:$S$] (S) at (-3,0);
\coordinate[label=above left:$P$] (P) at (-3,3);
\draw[ultra thick] (-5,0) -- (2,0);
\node[above right] at (-5,0) {$E$};
\draw (A) -- (P);
\draw[color=red] (P) -- (S);
\draw[arrows={-triangle 45}] (A) -- (0,1);
\node[below right] at (0,1) {$\vv{n_0}$};
\draw[arrows={-triangle 45}] (A) -- (0,3);
\node[below right] at (0,3) {$\vv{AP}_{\vv{n}}$};
\draw[dashed,lightgray] (P) -- (0,3);
\draw[arrows={-triangle 45}] (A) -- (0,4);
\node[below right] at (0,4) {$\vv{n}$};
\draw (0,0.5) arc (90:135:0.5);
\node at (-0.15,0.35) {$\alpha$};
\end{tikzpicture}
\end{gather*}
\begin{gather*}
\vv{a} \cdot \vv{b} = |\vv{a}| \cdot |\vv{b}| \cdot cos(\alpha) \\
\;= |\vv{a_b}| \cdot |\vv{b}| \\\\
\vv{AP} \cdot \vv{n_0} = |\vv{AP_{\vv{n}}}| \cdot |\vv{n_0}| \\
\;= |\vv{AP_{\vv{n}}}| \cdot 1 \\
\;= d
\end{gather*}
\newpage
\begin{exercise}{353/1}
\item [a]
\begin{gather*}
E \colon 3x_2 + 4x_3 = 0 \qquad A(3|-1|7) \qquad B(6|8|19) \qquad C(-3|-3|-4) \\
E \colon \left(\vv{x} - \begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix}\right) \cdot \begin{pmatrix}0 \\ 3 \\ 4\end{pmatrix} = 0 \\\\
g_A \colon \vv{x} = \begin{pmatrix}3 \\ -1 \\ 7\end{pmatrix} + r \cdot \begin{pmatrix}0 \\ 3 \\ 4\end{pmatrix} \qquad \begin{pmatrix}3 \\ -1 + 3r \\ 7 + 4r\end{pmatrix} \cdot \begin{pmatrix}0 \\ 3 \\ 4\end{pmatrix} = 0 \\
\vv{OS} = \begin{pmatrix}3 \\ -4 \\ 3\end{pmatrix} \qquad r = -1 \qquad |\vv{AS}| = \left|\begin{pmatrix}3 - 3 \\ -4 + 1 \\ -3 + 7\end{pmatrix}\right| = 5 \\\\
g_B \colon \vv{x} = \begin{pmatrix}6 \\ 8 \\ 19\end{pmatrix} + r \cdot \begin{pmatrix}0 \\ 3 \\ 4\end{pmatrix} \qquad \begin{pmatrix}6 \\ 8 + 3r \\ 19 + 4r\end{pmatrix} \cdot \begin{pmatrix}0 \\ 3 \\ 4\end{pmatrix} = 0 \\
\vv{OS} = \begin{pmatrix}6 \\ -4 \\ 3\end{pmatrix} \qquad r = -4 \qquad |\vv{AS}| = \left|\begin{pmatrix}6 - 6 \\ -4 - 8 \\ 3 - 19\end{pmatrix}\right| = 20 \\\\
g_C \colon \vv{x} = \begin{pmatrix}-3 \\ -3 \\ -4\end{pmatrix} + r \cdot \begin{pmatrix}0 \\ 3 \\ 4\end{pmatrix} \qquad \begin{pmatrix}-3 \\ -3 + 3r \\ -4 + 4r\end{pmatrix} \cdot \begin{pmatrix}0 \\ 3 \\ 4\end{pmatrix} = 0 \\
\vv{OS} = \begin{pmatrix}-3 \\ 0 \\ 0\end{pmatrix} \qquad r = 1 \qquad |\vv{AS}| = \left|\begin{pmatrix}-3 + 3 \\ 0 + 3 \\ 0 + 4\end{pmatrix}\right| = 5
\end{gather*}
\item [b]
\begin{gather*}
E \colon \left(\vv{x} - \begin{pmatrix}1 \\ 2.5 \\ 3.5\end{pmatrix}\right) \cdot \begin{pmatrix}12 \\ 6 \\ -4\end{pmatrix} = 0 \\
A(-2|0|3) \qquad B(13|8.5|-0.5) \qquad C(-33|-20|14.25) \\
\vv{n_0} = \frac{1}{14} \cdot \begin{pmatrix}12 \\ 6 \\ -4\end{pmatrix} \qquad E_0 \colon \left(\vv{x} - \begin{pmatrix}1 \\ 2.5 \\ 3.5\end{pmatrix}\right) \cdot \frac{1}{14} \cdot \begin{pmatrix}12 \\ 6 \\ -4\end{pmatrix} = 0 \\\\
\left|\left(\begin{pmatrix}-2 \\ 0 \\ 3\end{pmatrix} - \begin{pmatrix}1 \\ 2.5 \\ 3.5\end{pmatrix}\right) \cdot \frac{1}{14} \cdot \begin{pmatrix}12 \\ 6 \\ -4\end{pmatrix}\right| = 3.5 \\
\left|\left(\begin{pmatrix}13 \\ 8.5 \\ -0.5\end{pmatrix} - \begin{pmatrix}1 \\ 2.5 \\ 3.5\end{pmatrix}\right) \cdot \frac{1}{14} \cdot \begin{pmatrix}12 \\ 6 \\ -4\end{pmatrix}\right| = 14 \\
\left|\left(\begin{pmatrix}-33 \\ -20 \\ 14.25\end{pmatrix} - \begin{pmatrix}1 \\ 2.5 \\ 3.5\end{pmatrix}\right) \cdot \frac{1}{14} \cdot \begin{pmatrix}12 \\ 6 \\ -4\end{pmatrix}\right| \approx 41.857
\end{gather*}
\item [c]
\begin{gather*}
E \colon \vv{x} = \begin{pmatrix}2 \\ 1 \\ -2\end{pmatrix} + r \cdot \begin{pmatrix}5 \\ 5 \\ -1\end{pmatrix} + s \cdot \begin{pmatrix}-1 \\ 0 \\ 0\end{pmatrix} \qquad E \colon \left(\vv{x} - \begin{pmatrix}2 \\ 1 \\ -2\end{pmatrix}\right) \cdot \begin{pmatrix}0 \\ 1 \\ 5\end{pmatrix} = 0 \\
A(2|4|13) \qquad B(8|-6|-11) \qquad C(3|-2|9) \\
\vv{n_0} = \sqrt{26} \qquad E_0 \colon \left(\vv{x} - \begin{pmatrix}2 \\ 1 \\ -2\end{pmatrix}\right) \cdot \frac{1}{\sqrt{26}} \cdot \begin{pmatrix}0 \\ 1 \\ 5\end{pmatrix} = 0 \\\\
\left|\left(\begin{pmatrix}2 \\ 4 \\ 13\end{pmatrix} - \begin{pmatrix}2 \\ 1 \\ -2\end{pmatrix}\right) \cdot \frac{1}{\sqrt{26}} \cdot \begin{pmatrix}0 \\ 1 \\ 5\end{pmatrix}\right| \approx 15.297 \\
\left|\left(\begin{pmatrix}8 \\ -6 \\ -11\end{pmatrix} - \begin{pmatrix}2 \\ 1 \\ -2\end{pmatrix}\right) \cdot \frac{1}{\sqrt{26}} \cdot \begin{pmatrix}0 \\ 1 \\ 5\end{pmatrix}\right| \approx 10.198 \\
\left|\left(\begin{pmatrix}3 \\ -2 \\ 9\end{pmatrix} - \begin{pmatrix}2 \\ 1 \\ -2\end{pmatrix}\right) \cdot \frac{1}{\sqrt{26}} \cdot \begin{pmatrix}0 \\ 1 \\ 5\end{pmatrix}\right| \approx 10.198
\end{gather*}
\end{exercise}
\subsection{HNF - Koordinatenform}
\begin{gather*}
E \colon n_1x_1 + n_2x_2 + n_3x_3 - \underbrace{(n_1a_1 + n_2a_2 + n_3a_3)}_b = 0 \\
n_1x_1 + n_2x_2 + n_3x_3 = b \\\\
\text{HNF:} \\
E \colon \frac{1}{|\vv{n}|} \cdot (n_1x_1 + n_2x_2 + n_3x_3 - b) = 0 \qquad d(P, E) = \left|(\vv{p} - \vv{a}) \cdot \frac{\vv{n}}{|\vv{n}|}\right| = d \\
\left|\frac{1}{|\vv{n}|} \cdot (n_1p_1 + n_2p_2 + n_3p_3 - b)\right| = d \\\\
\text{Beispiel} \\
E \colon 3x_1 + 4x_3 = 15 \\
\vv{n} = \begin{pmatrix}3 \\ 0 \\ 4\end{pmatrix} \qquad |\vv{n}| = 5 \\
E \colon \frac{1}{5} \cdot (3x_1 + 4x_3) = \frac{1}{5} \cdot 15 \\
\frac{3}{5}x_1 + \frac{4}{5}x_3 = 3 \\\\
\text{Abstand von $E$ zum Ursprung $O$} \\
d(O, E) = \left|\frac{3}{5} \cdot 0 + \frac{4}{5} \cdot 0 - 3\right| = |-3| = 3 \\\\
\text{Sind $\vv{n}$ und $\vv{p}$ im gleichen Halbraum, so gilt $\vv{n} \cdot \vv{p} > 0$, sonst $\vv{n} \cdot \vv{p} < 0$} \\
\text{Ausnahme: $\vv{p} \in E \Rightarrow \vv{n} \cdot \vv{p} = 0$} \\\\
\text{Parallele Ebenen zu $E$ im Abstand $5LE$} \\
F \colon \frac{3}{5}x_1 + \frac{4}{5}x_2 = -2 \\
G \colon \frac{3}{5}x_1 + \frac{4}{5}x_2 = 8
\end{gather*}
\newpage
\begin{exercise}{357/5}
\begin{gather*}
A(3|2|-1) \qquad B(4|4|0) \qquad C(7|3|2)
\end{gather*}
\item [a]
\begin{gather*}
E \colon \left(\vv{x} - \begin{pmatrix}1 \\ 2 \\ 4\end{pmatrix}\right) \cdot \begin{pmatrix}10 \\ -11 \\ 2\end{pmatrix} = 0 \qquad E_0 \colon \left(\vv{x} - \begin{pmatrix}1 \\ 2 \\ 4\end{pmatrix}\right) \cdot \frac{1}{15} \cdot \begin{pmatrix}10 \\ -11 \\ 2\end{pmatrix} = 0 \\\\
d(A, E) = \left|\left(\begin{pmatrix}3 \\ 2 \\ -1\end{pmatrix} - \begin{pmatrix}1 \\ 2 \\ 4\end{pmatrix}\right) \cdot \frac{1}{15} \cdot \begin{pmatrix}10 \\ -11 \\ 2\end{pmatrix}\right| = \frac{2}{3} \\
d(B, E) = \left|\left(\begin{pmatrix}4 \\ 4 \\ 0\end{pmatrix} - \begin{pmatrix}1 \\ 2 \\ 4\end{pmatrix}\right) \cdot \frac{1}{15} \cdot \begin{pmatrix}10 \\ -11 \\ 2\end{pmatrix}\right| = 0 \\
d(C, E) = \left|\left(\begin{pmatrix}7 \\ 3 \\ 2\end{pmatrix} - \begin{pmatrix}1 \\ 2 \\ 4\end{pmatrix}\right) \cdot \frac{1}{15} \cdot \begin{pmatrix}10 \\ -11 \\ 2\end{pmatrix}\right| = 3
\end{gather*}
\item [b]
\begin{gather*}
E \colon 3x_1 + 5x_2 - x_3 = 20 \qquad |\vv{n}| = \sqrt{35} \\\\
d(A, E) = \left|\frac{1}{\sqrt{35}} \cdot (3 \cdot 3 + 5 \cdot 2 - 1 \cdot (-1) - 20)\right| = 0 \\
d(B, E) = \left|\frac{1}{\sqrt{35}} \cdot (3 \cdot 4 + 5 \cdot 4 - 1 \cdot 0 - 20)\right| \approx 2.0284 \\
d(C, E) = \left|\frac{1}{\sqrt{35}} \cdot (3 \cdot 7 + 5 \cdot 3 - 1 \cdot 2 - 20)\right| \approx 2.3664
\end{gather*}
\item [c]
\begin{gather*}
E \colon x_1 = 4 \\\\
d(A, E) = |a_1 - x_1| = |3 - 4| = 1 \\
d(B, E) = |b_1 - x_1| = |4 - 4| = 0 \\
d(C, E) = |c_1 - x_1| = |7 - 4| = 3
\end{gather*}
\end{exercise}
\begin{exercise}{357/7}
\begin{gather*}
E \colon 10x_1 + 2x_2 - 11x_3 = 30 \\
d(P, E) = \left|\frac{1}{15} \cdot (10p_1 + 2p_2 - 11p_3 - 30)\right| = 5 \\\\
\text{$x_1$-Achse:} \\
p_2 = p_3 = 0 \\
d(P, E) = \left|\frac{1}{15} \cdot (10p_1 - 30)\right| = 5 \\
p_{1,1} = 10.5 \qquad p_{1,2} = -4.5 \\
P_1(10.5|0|0) \qquad P_2(-4.5|0|0) \\\\
\text{$x_2$-Achse:} \\
p_1 = p_3 = 0 \\
d(P, E) = \left|\frac{1}{15} \cdot (2p_2 - 30)\right| = 5 \\
p_{2,1} = 52.5 \qquad p_{2,2} = -22.5 \\
P_3(0|52.5|0) \qquad P_4(0|-22.5|0) \\\\
\text{$x_3$-Achse:} \\
p_1 = p_2 = 0 \\
d(P, E) = \left|\frac{1}{15} \cdot (-11p_3 - 30)\right| = 5 \\
p_{3,1} = \frac{45}{11} = 4.\overline{09} \qquad p_{3,2} = -\frac{105}{11} = -9.\overline{54} \\
P_5(0|0|4.\overline{09}) \qquad P_6(0|0|-9.\overline{54})
\end{gather*}
\end{exercise}
\begin{exercise}{357/9}
\begin{gather*}
A(2|0|0) \qquad B(0|2|0) \qquad C(-2|0|0) \qquad D(0|-2|0) \qquad S(0|0|6) \\
M(0|0|d) \\\\
E_{ABCD} \colon \vv{x} = \begin{pmatrix}2 \\ 0 \\ 0\end{pmatrix} + r \cdot \begin{pmatrix}2 \\ -2 \\ 0\end{pmatrix} + s \cdot \begin{pmatrix}4 \\ 0 \\ 0\end{pmatrix} \qquad E_{ABCD} \colon x_3 = 0 \\
E_{ABS} \colon \vv{x} = \begin{pmatrix}2 \\ 0 \\ 0\end{pmatrix} + r \cdot \begin{pmatrix}2 \\ -2 \\ 0\end{pmatrix} + s \cdot \begin{pmatrix}2 \\ 0 \\ -6\end{pmatrix} \qquad E_{ABS} \colon 3x_1 + 3x_2 + x_3 = 6 \\\\
d(M, E_{ABCD}) = |m_3| \qquad d(M, E_{ABS}) = \left|\frac{1}{\sqrt{19}} \cdot (m_3 - 6)\right| \\
|m_3| = \left|\frac{1}{\sqrt{19}} \cdot (m_3 - 6)\right| \\
m_{3,1} \approx 1.1196 \qquad (m_{3,2} \approx -1.7863) \\\\
M(0|0|1.1196)
\end{gather*}
\end{exercise}
\section{Abstand Gerade $\leftrightarrow$ Punkt}
\begin{gather*}
g \colon \vv{x} = \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix} + r \cdot \begin{pmatrix}1 \\ -1 \\ 0\end{pmatrix} \qquad P(0|1|4) \qquad P \not\in g \\\\
\text{Hilfsebene $E$ orthogonal zu $g$ durch $P$} \\
E \colon \left(\vv{x} - \begin{pmatrix}0 \\ 1 \\ 4\end{pmatrix} \right) \cdot \begin{pmatrix}1 \\ -1 \\ 0\end{pmatrix} = 0 \qquad x_1 - x_2 = -1 \\\\
\text{Suche Schnittpunkt $S$ von $E$ und $g$} \\
\text{$S$ ist der nächstliegende Punkt auf $g$, von $P$ aus gesehen} \\\\
\text{$g$ in $E$ eingesetzt} \\
1 + r - 2 + r = -1 \quad\Rightarrow\quad r = 0 \\
S(1|2|3) \\\\
\text{$|\vv{SP}|$ ist der gesuchte Abstand $d$ zwischen $P$ und $g$} \\
d = \sqrt{3}
\end{gather*}
\subsection{Abstandsbestimmung als Optimierungsaufgabe}
\begin{gather*}
\text{HB: } f = \vv{XP} = min. \qquad\text{(Koordinante von $P$, Parameter $r$, ...)} \\
\text{NB: } g \colon \vv{x} = \begin{pmatrix}1 + r \\ 2 - r \\ 3\end{pmatrix} \qquad P(0|1|4) \\
\text{ZF: } f(r) = |\vv{XP}| = (-1 - r)^2 + (-1 + r)^2 + 1^2 = 2r^2 + 3 \\
f'(r) = 4r \qquad f''(r) = 4 \\\\
\text{n. B.: } f'(r) = 0 \quad\Rightarrow\quad r = 0 \\
\text{h. B.: } f''(0) = 4 > 0 \quad\Rightarrow\quad TP \\\\
\text{setze $r = 0$ in $g$ ein} \\
S(1|2|3)
\end{gather*}
\begin{exercise}{359/1}
\item [b]
\begin{gather*}
R(-2|-6|1) \qquad g \colon \vv{x} = \begin{pmatrix}5 \\ 9 \\ 1\end{pmatrix} + t \cdot \begin{pmatrix}3 \\ 2 \\ 2\end{pmatrix} \\
E \colon \left(\vv{x} - \begin{pmatrix}-2 \\ -6 \\ 1\end{pmatrix}\right) \cdot \begin{pmatrix}3 \\ 2 \\ 2\end{pmatrix} = 0 \qquad 3x_1 + 2x_2 + 2x_3 = -16 \\
3(5 + 3t) + 2(9 + 2t) + 2(1 + 2t) = -16 \quad\Rightarrow\quad t = -3 \\
S(-4|3|-5) \\
|\vv{SR}| = \left|\begin{pmatrix}2 \\ -9 \\ 6\end{pmatrix}\right| = 11
\end{gather*}
\end{exercise}
\begin{exercise}{359/2}
\item [a]
\begin{gather*}
A(1|1|1) \qquad B(7|4|7) \qquad C(5|6|-1) \\
\vv{AB} = \begin{pmatrix}6 \\ 3 \\ 6\end{pmatrix} \qquad \vv{AC} = \begin{pmatrix}4 \\ 5 \\ -2\end{pmatrix} \\
A = \frac{1}{2} \cdot |\vv{AB} \times \vv{AC}| = \frac{1}{2} \cdot \left|\begin{pmatrix}-36 \\ 36 \\ 18\end{pmatrix}\right| = 27
\end{gather*}
\end{exercise}
\newpage
\begin{exercise}{359/3}
\item [a]
\begin{gather*}
\vv{x} = \begin{pmatrix}-5 \\ 6 \\ 8\end{pmatrix} + t \cdot \begin{pmatrix}1 \\ 0 \\ -2\end{pmatrix} \qquad \vv{x} = \begin{pmatrix}6 \\ 4 \\ 1\end{pmatrix} + t \cdot \begin{pmatrix}-1 \\ 0 \\ 2\end{pmatrix} \\
E \colon \left(\vv{x} - \begin{pmatrix}-5 \\ 6 \\ 8\end{pmatrix}\right) \cdot \begin{pmatrix}-1 \\ 0 \\ 2\end{pmatrix} = 0 \qquad -x_1 + 2x_3 = 21 \\
-(6 - t) + 2(1 + 2t) = 21 \quad\Rightarrow\quad t = 5 \\
S(1|4|11) \\
P(-5|6|8) \qquad |\vv{SP}| = \left|\begin{pmatrix}-6 \\ 2 \\ -3\end{pmatrix}\right| \approx 7
\end{gather*}
\end{exercise}
\begin{exercise}{zu 359/1}
Spiegelpunkt $R'$ bei Spiegelung an der Geraden $g$
\item [b]
\begin{gather*}
\vv{OS} = \begin{pmatrix}-4 \\ 3 \\ -5\end{pmatrix} \qquad \vv{SR} = \begin{pmatrix}2 \\ -9 \\ 6\end{pmatrix} \\
\vv{OR'} = \vv{OS} - \vv{SR} = \begin{pmatrix}-4 - 2 \\ 3 - (-9) \\ -5 - 6\end{pmatrix} = \begin{pmatrix}-6 \\ 12 \\ -11\end{pmatrix} \\
R'(-6|12|-11)
\end{gather*}
\end{exercise}
\begin{exercise}{zu 356/1}
Spiegelpunkt $A'$ bei Spiegelung an der Ebene $E$
\item [a]
\begin{gather*}
E \colon 2x_1 - 10x_2 + 11x_3 = 0 \qquad A(1|1|-2) \\
\vv{n} = \begin{pmatrix}2 \\ -10 \\ 11\end{pmatrix} \qquad |\vv{n}| = 15 \qquad \vv{n_0} = \frac{1}{15} \cdot \begin{pmatrix}2 \\ -10 \\ 11\end{pmatrix} \\
d(A, E) = \left|\frac{1}{15} \cdot (2 \cdot 1 + (-10) \cdot 1 + 11 \cdot (-2))\right| = \left|\frac{1}{15} \cdot (-30)\right| = 2 \\
\vv{OA'} = \vv{OA} + 2 \cdot 2 \cdot \vv{n_0} = \begin{pmatrix}1 \\ 1 \\ -2\end{pmatrix} + \frac{4}{15} \cdot \begin{pmatrix}2 \\ -10 \\ 11\end{pmatrix} = \begin{pmatrix}1.5\overline{3} \\ -1.\overline{6} \\ 0.9\overline{3}\end{pmatrix} \\
A'(1.5\overline{3}|-1.\overline{6}|0.9\overline{3})
\end{gather*}
\end{exercise}
\begin{exercise}{360/11}
\item [a]
\begin{gather*}
A(2|11|-5) \\
d(A, x_1\text{-Achse}) = \sqrt{11^2 + (-5)^2} = 12.0830 \\
d(A, x_2\text{-Achse}) = \sqrt{2^2 + (-5)^2} = 5.3852 \\
d(A, x_3\text{-Achse}) = \sqrt{2^2 + 11^2} = 11.1803
\end{gather*}
\item [b]
\begin{gather*}
d(P, x_1\text{-Achse}) = \sqrt{x_2^2 + x_3^2} \qquad \text{(andere Achsen analog)}
\end{gather*}
\end{exercise}
\begin{exercise}{360/12}
\begin{gather*}
A(5|7|9) \qquad \vv{u} = \begin{pmatrix}12 \\ 4 \\ 3\end{pmatrix}
\end{gather*}
\item [a]
\begin{gather*}
R(-7|-3|14) \\
\vv{AF} = r \cdot \vv{u} = \begin{pmatrix}12r \\ 4r \\ 3r\end{pmatrix} \qquad \vv{OF} = \vv{OA} + \vv{AF} = \begin{pmatrix}5 + 12r \\ 7 + 4r \\ 9 + 3r\end{pmatrix} \\
\vv{FR} = \begin{pmatrix}-7 - (5 + 12r) \\ -3 - (7 + 4r) \\ 14 - (9 + 3r)\end{pmatrix} = \begin{pmatrix}-12 + 12r \\ -10 + 4r \\ 5 + 3r\end{pmatrix} \\\\
\vv{AF} \cdot \vv{FR} = 0 \\
12r \cdot (-12 + 12r) + 4r \cdot (-10 + 4r) + 3r \cdot (5 + 3r) = 169r^2 - 169r = 0 \\
(r_0 = 0) \qquad r_1 = 1 \\\\
\vv{OF} = \begin{pmatrix}5 + 12 \\ 7 + 4 \\ 9 + 3\end{pmatrix} = \begin{pmatrix}17 \\ 11 \\ 12\end{pmatrix} \qquad F(17|11|12) \\\\
A_{Dreieck} = \frac{1}{2} \cdot |\vv{AF}| \cdot |\vv{FR}| = \frac{1}{2} \cdot \left|\begin{pmatrix}12 \\ 4 \\ 3\end{pmatrix}\right| \cdot \left|\begin{pmatrix}0 \\ -6 \\ 8\end{pmatrix}\right| = 65
\end{gather*}
\item [b]
\begin{gather*}
V_{Kegel} = \frac{1}{3} \cdot \pi \cdot |\vv{FR}|^2 \cdot |\vv{AF}| = \frac{1}{3} \cdot \pi \cdot 10^2 \cdot 13 = 1361.3568
\end{gather*}
\end{exercise}
\begin{exercise}{360/9}
\begin{gather*}
A(1.5|-1.5|0) \qquad B(1.5|1.5|0) \qquad C(-1.5|1.5|0) \qquad D(-1.5|-1.5|0) \\
S(0|0|4) \\\\
P(1.5|0.5|0) \quad \text{(Schnittpunkt von $g$ mit Kante $\overline{AB}$)} \\
g \colon \vv{x} = \begin{pmatrix}1.5 \\ 0.5 \\ 0\end{pmatrix} + r \cdot \begin{pmatrix}-1 \\ 1 \\ 0\end{pmatrix} \\\\
E \colon \left(\vv{x} - \begin{pmatrix}0 \\ 0 \\ 4\end{pmatrix}\right) \cdot \begin{pmatrix}-1 \\ 1 \\ 0\end{pmatrix} = 0 \qquad -x_1 + x_2 = 0 \\
-(1.5 - r) + (0.5 + r) = 0 \quad\Rightarrow\quad r = 0.5 \\\\
d(P, g) = \left|\begin{pmatrix}0 \\ 0 \\ 4\end{pmatrix} - \begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix}\right| = \sqrt{18} \approx 4.2426 \qquad [d] = cm
\end{gather*}
\end{exercise}
\section{Abstand windschiefer Geraden}
Beispiel
\begin{gather*}
g \colon \vv{x} = \begin{pmatrix}7 \\ 7 \\ 4\end{pmatrix} + r \cdot \begin{pmatrix}1 \\ -2 \\ 6\end{pmatrix} \qquad h \colon \vv{x} = \begin{pmatrix}-3 \\ 0 \\ 5\end{pmatrix} + s \cdot \begin{pmatrix}1 \\ 0 \\ -3\end{pmatrix} \qquad g \leftrightarrow h \text{ windschief} \\\\
\text{Hilfsebene } E \colon \vv{x} = \begin{pmatrix}7 \\ 7 \\ 4\end{pmatrix} + r \cdot \begin{pmatrix}1 \\ -2 \\ 6\end{pmatrix} + s \cdot \begin{pmatrix}1 \\ 0 \\ -3\end{pmatrix} \\
\text{Der gesuchte Abstand $d(g, h)$ ist der Abstand $d((-3|0|5), E)$} \\\\
E \colon 6x_1 + 9x_2 + 2x_3 = 113 \qquad |\vv{n}| = \left|\begin{pmatrix}6 \\ 9 \\ 2\end{pmatrix}\right| = 11 \\
d((-3|0|5), E) = \left|\frac{1}{11} \cdot (6 \cdot (-3) + 9 \cdot 0 + 2 \cdot 5 - 113)\right| = 11
\end{gather*}
\begin{exercise}{363/6}
\begin{gather*}
A(-9|3|-3) \qquad B(-3|-6|0) \qquad C(-7|5|5) \qquad D(4|8|0) \\\\
g_{AC} \colon \vv{x} = \vv{OA} + r \cdot \vv{AC} = \begin{pmatrix}-9 \\ 3 \\ -3\end{pmatrix} + r \cdot \begin{pmatrix}2 \\ 2 \\ 8\end{pmatrix} \\
g_{BD} \colon \vv{x} = \vv{OB} + s \cdot \vv{BD} = \begin{pmatrix}-3 \\ -6 \\ 0\end{pmatrix} + s \cdot \begin{pmatrix}7 \\ 14 \\ 0\end{pmatrix} \\
E \colon \vv{x} = \begin{pmatrix}-9 \\ 3 \\ -3\end{pmatrix} + r \cdot \begin{pmatrix}2 \\ 2 \\ 8\end{pmatrix} + s \cdot \begin{pmatrix}7 \\ 14 \\ 0\end{pmatrix} \qquad -8x_1 + 4x_2 + x_3 = 81 \qquad |\vv{n}| = 9 \\
d(g_{AC}, g_{BD}) = d(B, E) = \left|\frac{1}{9} \cdot (-8 \cdot (-3) + 4 \cdot (-6) + 1 \cdot 0 - 81)\right| = 9 \\\\
\end{gather*}
\begin{gather*}
\vv{OT} = \vv{OA} + \frac{1}{2} \cdot \vv{AD} = \begin{pmatrix}-2.5 \\ 5.5 \\ -1.5\end{pmatrix} \qquad \vv{OU} = \vv{OA} + \frac{1}{2} \cdot \vv{AC} = \begin{pmatrix}-8 \\ 4 \\ 1\end{pmatrix} \\
g_{TU} \colon \vv{x} = \vv{OU} + r \cdot \vv{TU} = \begin{pmatrix}-8 \\ 4 \\ 1\end{pmatrix} + r \cdot \begin{pmatrix}-5.5 \\ -1.5 \\ 2.5\end{pmatrix} \\
\vv{OR} = \vv{OC} + \frac{1}{2} \cdot \vv{CD} = \begin{pmatrix}-1.5 \\ 6.5 \\ 2.5\end{pmatrix} \qquad \vv{OS} = \vv{OB} + \frac{1}{2} \cdot \vv{BD} = \begin{pmatrix}0.5 \\ 1 \\ 0\end{pmatrix} \\
g_{RS} \colon \vv{x} = \vv{OS} + s \cdot \vv{RS} = \begin{pmatrix}0.5 \\ 1 \\ 0\end{pmatrix} + s \cdot \begin{pmatrix}2 \\ -5.5 \\ -2.5\end{pmatrix} \\
E \colon \vv{x} = \begin{pmatrix}-8 \\ 4 \\ 1\end{pmatrix} + r \cdot \begin{pmatrix}-5.5 \\ -1.5 \\ 2.5\end{pmatrix} + s \cdot \begin{pmatrix}2 \\ -5.5 \\ -2.5\end{pmatrix} \\
E \colon 17.5x_1 - 8.75x_2 + 33.25x_3 = -141.75 \qquad |\vv{n}| = \sqrt{1488.375} \\
d(g_{TU}, g_{RS}) = d(R, E) = \left|\frac{1}{\sqrt{1488.375}} \cdot (17.5 \cdot 0.5 - 8.75 + 141.75)\right|
\end{gather*}
\end{exercise}
\begin{exercise}{364/12}
\begin{gather*}
A(5|0|0) \qquad B(5|6|0) \qquad D(0|3|6) \\
\vv{OA} = \begin{pmatrix}5 \\ 0 \\ 0\end{pmatrix} \qquad g \colon \vv{x} = \begin{pmatrix}0 \\ 0 \\ 0\end{pmatrix} + s \cdot \begin{pmatrix}5 \\ 0 \\ 0\end{pmatrix} \qquad G_s(5s|0|0) \\
\vv{BD} = \begin{pmatrix}-5 \\ -3 \\ 6\end{pmatrix} \qquad h \colon \vv{x} = \begin{pmatrix}5 \\ 6 \\ 0\end{pmatrix} + t \cdot \begin{pmatrix}-5 \\ -3 \\ 6\end{pmatrix} \qquad H_t(5 - 5t|6 - 3t|6t) \\\\
\vv{G_sH_t} = \begin{pmatrix}5 - 5t - 5s \\ 6 - 3t \\ 6t\end{pmatrix} \qquad \vv{G_sH_t} \cdot \begin{pmatrix}5 \\ 0 \\ 0\end{pmatrix} = 0 \qquad \vv{G_sH_t} \cdot \begin{pmatrix}-5 \\ -3 \\ 6\end{pmatrix} = 0 \\
5 \cdot (5 - 5t - 5s) = 25 - 25t - 25s = 0 \\
-5 \cdot (5 - 5t - 5s) - 3 \cdot (6 - 3t) + 6 \cdot 6t = -43 + 70t + 25s = 0 \\
\Rightarrow\quad s = 0.6 \quad t = 0.4 \\
G_3(3|0|0) \qquad H_{-2}(3|4.8|2.4) \qquad |\vv{G_3H_{-2}}| = \left|\begin{pmatrix}0 \\ 4.8 \\ 2.4\end{pmatrix}\right| = \sqrt{28.8} \approx 5.3666
\end{gather*}
\end{exercise}
\begin{exercise}{364/10}
\begin{gather*}
A(1|-2|-7) \qquad B(-8|-2|5) \qquad C(17|-2|5) \qquad D(1|6|-7)
\end{gather*}
\item [a]
\begin{gather*}
\vv{AB} = \begin{pmatrix}-9 \\ 0 \\ 12\end{pmatrix} \qquad \vv{AC} = \begin{pmatrix}16 \\ 0 \\ 12\end{pmatrix} \qquad \vv{AD} = \begin{pmatrix}0 \\ 8 \\ 0\end{pmatrix} \\
\vv{AB} \cdot \vv{AC} = 0 \qquad \vv{AB} \cdot \vv{AD} = 0 \qquad \vv{AC} \cdot \vv{AD} = 0 \\
\Rightarrow\quad \text{alle rechtwinklig zueinander}
\end{gather*}
\item [b]
\begin{gather*}
E_{ABC} \colon \vv{x} = \vv{OA} + r \cdot \vv{AB} + s \cdot \vv{AC} = \begin{pmatrix}1 \\ -2 \\ -7\end{pmatrix} + r \cdot \begin{pmatrix}-9 \\ 0 \\ 12\end{pmatrix} + s \cdot \begin{pmatrix}16 \\ 0 \\ 12\end{pmatrix} \\
d(D, E_{ABC}) = |\vv{AD}| = \sqrt{64} = 8
\end{gather*}
\item [c]
\begin{gather*}
G = \frac{1}{2} \cdot |\vv{AB}| \cdot |\vv{AC}| = \frac{1}{2} \cdot 15 \cdot 20 = 150 \\
V = \frac{1}{3} \cdot G \cdot |\vv{AD}| = \frac{1}{3} \cdot 150 \cdot 8 = 400
\end{gather*}
\item [d]
\begin{gather*}
P(-3.5|-2|-1) \qquad Q(4.5|-2|5) \qquad S(-3.5|2|-1) \qquad T(1|2|-7) \\
\vv{PQ} = \begin{pmatrix}8 \\ 0 \\ 6\end{pmatrix} \qquad \vv{ST} = \begin{pmatrix}4.5 \\ 0 \\ -6\end{pmatrix} \\
g \colon \vv{x} = \begin{pmatrix}-3.5 \\ -2 \\ -1\end{pmatrix} + s \cdot \begin{pmatrix}8 \\ 0 \\ 6\end{pmatrix} \qquad G_s(-3.5 + 8s|-2|-1 + 6s) \\
h \colon \vv{x} = \begin{pmatrix}-3.5 \\ 2 \\ -1\end{pmatrix} + t \cdot \begin{pmatrix}4.5 \\ 0 \\ -6\end{pmatrix} \qquad H_t(-3.5 + 4.5t|2|-1 - 6t) \\\\
\vv{G_sH_t} = \begin{pmatrix}-3.5 + 4.5t + 3.5 - 8s \\ 2 + 2 \\ -1 - 6t + 1 - 6s\end{pmatrix} = \begin{pmatrix}4.5t - 8s \\ 4 \\ -6t - 6s\end{pmatrix}
\end{gather*}
\begin{gather*}
\vv{G_sH_t} \cdot \begin{pmatrix}8 \\ 0 \\ 6\end{pmatrix} = 0 \qquad \vv{G_sH_t} \cdot \begin{pmatrix}4.5 \\ 0 \\ -6\end{pmatrix} = 0 \\
8 \cdot (4.5t - 8s) + 6 \cdot (-6t - 6s) = -100s = 0 \\
4.5 \cdot (4.5t - 8s) - 6 \cdot (-6t - 6s) = 56.25t = 0 \\
\Rightarrow\quad s = 0 \quad t = 0 \\\\
G_0(-3.5|-2|-1) \qquad H_0(-3.5|2|-1) \qquad |\vv{G_0H_0}| = 4 \qquad (= \frac{1}{2} \cdot |\vv{AD}|)
\end{gather*}
\end{exercise}
\section{Kreise und Kugeln}
\begin{gather*}
f(x) = y = \sqrt{16 - x^2} \\\\
\text{Definitionsbereich:}\quad D = \left[-4;4\right] \\
\text{Ableitung:}\quad f'(x) = \frac{1}{2} \cdot (16 - x^2)^{-\frac{1}{2}} \cdot (-2x) = -\frac{x}{\sqrt{16 - x^2}} \\
\text{Extrema:}\quad f'(x) = 0 \qquad L = \{0\} \qquad P(0|4) \\
\text{Steigung am Rand von $D$:}\quad \lim\limits_{x \to -4} f'(x) = \infty \qquad \lim\limits_{x \to 4} f'(x) = -\infty
\end{gather*}
\begin{gather*}
\begin{tikzpicture}
\begin{axis}[
axis lines=middle,
ymin=-1,
ymax=5,
]
\addplot[
domain=-4:4,
samples=100
]{sqrt(16 - x^2)};
\end{axis}
\end{tikzpicture}
\end{gather*}
\begin{gather*}
y = \sqrt{16 - (x - 2)} + 1 \equ -1 \\
y - 1 = \sqrt{16 - (x - 2)^2} \equ ()^2 \\
(y - 1)^2 = 16 - (x - 2)^2 \equ + (x - 2)^2 \\
(x - 2)^2 + (y - 1)^2 = 16 \\\\
\left(\begin{pmatrix}x \\ y\end{pmatrix} - \begin{pmatrix}mx \\ my\end{pmatrix}\right)^2 = r^2 \qquad \text{(Kreisgleichung in $\mathbb{R}^2$)} \\
\left(\begin{pmatrix}x \\ y \\ z\end{pmatrix} - \begin{pmatrix}mx \\ my \\ mz\end{pmatrix}\right)^2 = r^2 \qquad \text{(Kugelgleichung in $\mathbb{R}^3$)} \\\\
(\vv{x} - \vv{m})^2 = r^2 \\\\
\text{z. B. } \left(\vv{x} - \begin{pmatrix}1 \\ 2 \\ 3\end{pmatrix}\right)^2 = 25 \\
\text{Kugel mit Mittelpunkt $M(1|2|3)$ und Radius $r = 5$}
\end{gather*}
\begin{exercise}{376/3}
\item [a]
\begin{gather*}
A(4|1|3) \qquad B(3|0|10) \qquad C(-1|1|1) \qquad M(1|1|7) \qquad r = 5 \\\\
|\vv{AM}| = \left|\begin{pmatrix}-3 \\ 0 \\ 4\end{pmatrix}\right| = 5 = r \quad\Rightarrow\quad\text{auf der Kugel} \\
|\vv{BM}| = \left|\begin{pmatrix}-2 \\ 1 \\ -3\end{pmatrix}\right| = \sqrt{14} < r \quad\Rightarrow\quad\text{innerhalb der Kugel} \\
|\vv{CM}| = \left|\begin{pmatrix}2 \\ 0 \\ 6\end{pmatrix}\right| = \sqrt{40} > r \quad\Rightarrow\quad\text{außerhalb der Kugel}
\end{gather*}
\end{exercise}
\newpage
\begin{exercise}{376/4}
\item [a]
\begin{gather*}
x_1^2 + x_2^2 + x_3^2 + 4x_1 - 8x_2 + 6x_3 + 4 = 0 \\
x_1^2 + 4x_1 + 4 + x_2^2 - 8x_2 + 16 + x_3^2 + 6x_3 + 9 = -4 + 4 + 16 + 9 \\
(x_1 + 2)^2 + (x_2 - 4)^2 + (x_3 + 3)^2 = 25 \\
M(-2|4|-3) \qquad r = 5
\end{gather*}
\item [b]
\begin{gather*}
x_1^2 + x_2^2 + x_3^2 - 2x_1 + 10x_3 + 31 = 0 \\
x_1^2 - 2x_1 + 1 + x_2^2 + x_3^2 + 10x_3 + 25 = -31 + 1 + 25 \\
(x_1 - 1)^2 + x_2^2 + (x_3^2 + 5)^2 = -5 \\
\Rightarrow \text{keine Kugel}
\end{gather*}
\end{exercise}
\subsection{Kugeln, Geraden, Ebenen, Abstände}
\begin{gather*}
K_a \colon (\vv{x} - \vv{m_a})^2 = r_a^2 \\
K_b \colon (\vv{x} - \vv{m_b})^2 = r_b^2 \\\\
\text{Berührpunkt:} \\
|\vv{m_a} - \vv{m_b}| = r_a + r_b \\
\text{Schnitt:} \\
|\vv{m_a} - \vv{m_b}| < r_a + r_b \qquad \text{wenn } |\vv{m_a} - \vv{m_b}| > r_a \text{ und } > r_b \\
\qquad \text{(Mittelpunkte liegen außerhalb der jeweils anderen Kugel)} \\
|\vv{m_a} - \vv{m_b}| > |r_a - r_b| \qquad \text{wenn } |\vv{m_a} - \vv{m_b}| < r_a \text{ oder } < r_b \\
\qquad \text{(mindestens ein Mittelpunkt liegt innerhalb der anderen Kugel)}
\end{gather*}
\begin{exercise}{377/7}
\item [a]
\begin{gather*}
K_1 \colon x_1^2 + x_2^2 + 6x_1 - 4x_2 = 12 \qquad K_2 \colon x_1^2 + x_2^2 + 6x_1 - 18x_2 + 86 = 0 \\\\
K_1 \colon (x_1 + 3)^2 + (x_2 - 2)^2 = 25 \qquad M_1(-3|2) \quad r_1 = 5 \\
K_2 \colon (x_1 + 3)^2 + (x_2 - 9)^2 = 4 \qquad M_2(-3|9) \quad r_2 = 2 \\
|\vv{M_1M_2}| = r_1 + r_2 = 7 \\
\Rightarrow\quad \text{Berührpunkt bei } (-3|7)
\end{gather*}
\item [b]
\begin{gather*}
K_1 \colon x_1^2 + x_2^2 - 6x_1 + 8x_2 = 0 \qquad K_2 \colon x_1^2 + x_2^2 - 4x_1 + 6x_2 = -9 \\\\
K_1 \colon (x_1 - 3)^2 + (x_2 + 4)^2 = 25 \qquad M_1(3|-4) \quad r_1 = 5 \\
K_2 \colon (x_1 - 2)^2 + (x_2 + 3)^2 = 4 \qquad M_2(2|-3) \quad r_2 = 2 \\
|\vv{M_1M_2}| = \sqrt{2} < r_1 \text{ und } < r_2 \\
|\vv{M_1M_2}| = \sqrt{2} < |r_1 - r_2| = 3 \\
\Rightarrow\quad \text{$K_2$ liegt vollständig innerhalb von $K_1$}
\end{gather*}
\item [c]
\begin{gather*}
K_1 \colon x_1^2 + x_2^2 + 2x_1 = 19 \qquad K_2 \colon x_1^2 - 6x_1 + x_2^2 - 8x_2 = -21 \\\\
K_1 \colon (x_1 + 1)^2 + x_2^2 = 20 \qquad M_1(-1|0) \quad r_1 = \sqrt{20} \\
K_2 \colon (x_1 - 3)^2 + (x_2 - 4)^2 = 4 \qquad M_2(3|4) \quad r_2 = 2 \\
|\vv{M_1M_2}| = \sqrt{32} > r_1 \text{ und } > r_2 \\
|\vv{M_1M_2}| = \sqrt{32} < r_1 + r_2 = \sqrt{20} + 2 \\
\Rightarrow\quad \text{Schnitt}
\end{gather*}
\end{exercise}
\begin{exercise}{377/10}
\item [a]
\begin{gather*}
M(0|8|4) \qquad E \colon \begin{pmatrix}6 \\ -3 \\ 2\end{pmatrix} \cdot \vv{x} - 5 = 0 \qquad |\vv{n}| = 7 \\
r = d(M, E) = \left|\frac{1}{7} \cdot (6 \cdot 0 - 3 \cdot 8 + 2 \cdot 4 - 5)\right| = 3
\end{gather*}
\end{exercise}
\begin{exercise}{377/11}
\begin{gather*}
A(-8|5|7) \qquad B(-12|8|10) \\
g_{AB} \colon \vv{OA} + s \cdot \vv{AB} = \begin{pmatrix}-8 \\ 5 \\ 7\end{pmatrix} + s \cdot \begin{pmatrix}-4 \\ 3 \\ 3\end{pmatrix} \\
\end{gather*}
\item [a]
\begin{gather*}
K \colon \left(\vv{x} - \begin{pmatrix}-8 \\ 5 \\ 7\end{pmatrix} + s \cdot \begin{pmatrix}-4 \\ 3 \\ 3\end{pmatrix}\right)^2 - r^2 = 0
\end{gather*}
\item [b]
\begin{gather*}
K \colon \left(-\begin{pmatrix}-8 \\ 5 \\ 7\end{pmatrix} + s \cdot \begin{pmatrix}-4 \\ 3 \\ 3\end{pmatrix}\right)^2 - 36 = 0 \\\\
(8 - 4s)^2 + (-5 + 3s)^2 + (-7 + 3s)^2 - 36 = 34s^2 - 136s + 102 = 0 \\\\
s_{1/2} = \frac{136 \pm \sqrt{(-136)^2 - 4 \cdot 34 \cdot 102}}{2 \cdot 34} \qquad s_1 = 1 \quad s_2 = 3 \\
K_1 \colon \left(\vv{x} - \begin{pmatrix}-4 \\ 2 \\ 4\end{pmatrix}\right)^2 - 36 = 0 \qquad K_2 \colon \left(\vv{x} - \begin{pmatrix}4 \\ -4 \\ -2\end{pmatrix}\right)^2 - 36 = 0 \\
\vv{m_1} = \begin{pmatrix}-4 \\ 2 \\ 4\end{pmatrix} \qquad \vv{m_2} = \begin{pmatrix}4 \\ -4 \\ -2\end{pmatrix} \\\\
|\vv{m_1} - \vv{m_2}| = 2 \cdot \sqrt{34} > r_1 = r_2 = 6 \\
|\vv{m_1} - \vv{m_2}| = 2 \cdot \sqrt{34} < r_1 + r_2 = 12
\end{gather*}
\end{exercise}
\subsubsection{Kugel $\leftrightarrow$ Gerade}
\begin{gather*}
K \colon \left(\vv{x} - \begin{pmatrix}2 \\ -1 \\ 5\end{pmatrix}\right)^2 = 36 \qquad g \colon \vv{x} = \begin{pmatrix}3 \\ -9 \\ 10\end{pmatrix} + r \cdot \begin{pmatrix}1 \\ 4 \\ -1\end{pmatrix} \\\\
\text{setze $g$ in $K$ ein} \\
\begin{pmatrix}3 + r - 2 \\ -9 + 4r + 1 \\ 10 - r - 5\end{pmatrix}^2 = 36 \\
(r + 1)^2 + (4r - 8)^2 + (-r + 5)^2 - 36 = 0 \\
r^2 - 4r + 3 = 0 \\
r_{1/2} = \frac{4 \pm \sqrt{16 - 12}}{2} \qquad r_1 = 3 \quad r_2 = 1 \\
Q(6|3|7) \qquad R(4|-1|9) \quad\Rightarrow\text{2 Schnittpunkte}
\end{gather*}
\subsubsection{Kugel $\leftrightarrow$ Ebene}
\begin{gather*}
K \colon \left(\vv{x} - \begin{pmatrix}2 \\ -1 \\ 3\end{pmatrix}\right)^2 = 64 \qquad E \colon -2x_1 + x_2 + 2x_3 = 19 \\\\
\text{Abstand $M \leftrightarrow E$} \\
|\vv{n}| = \sqrt{(-2)^2 + 1^2 + 2^2} = 3 \\
d(M, E) = \frac{1}{3} \cdot \left|(-2 \cdot 2 - 1 + 2 \cdot 3 - 19)\right| = 6 \\\\
d = 6 < r = 8 \quad\Rightarrow\text{Schnittkreis} \\\\
\text{Radius des Schnittkreises $r'$} \\
r' = \sqrt{r^2 - d^2} = \sqrt{8^2 - 6^2} = \sqrt{28} \approx 5.2915 \\\\
\text{Mittelpunkt des Schnittkreises $M'$} \\
\;\text{= Fußlotpunkt des Mittelpunkts $M$ auf der Ebene $E$}
\end{gather*}
\subsection{Kugel $\leftrightarrow$ Kugel, Tangentialebene}
\begin{gather*}
K_1 \colon \left(\vv{x} - \begin{pmatrix}1 \\ 3 \\ 9\end{pmatrix}\right)^2 = 49 \qquad K_2 \colon \left(\vv{x} - \begin{pmatrix}2 \\ -1 \\ 5\end{pmatrix}\right) \\
|r_1 - r_2| = |7 - 4| < |\vv{M_1M_2}| = \sqrt{33} < r_1 + r_2 = 7 + 4 \quad\Rightarrow\text{Schnitt} \\\\
K_1 \colon x_1^2 - 2x_1 + 1 + x_2^2 - 6x_2 + 9 + x_3^2 - 18x_3 + 81 = 49 \\
K_2 \colon x_1^2 - 4x_1 + 4 + x_2^2 + 2x_2 + 1 + x_3^2 - 10x_3 + 25 = 16 \\
K_1 - K_2 \colon 2x_1 - 3 - 8x_2 + 8 - 8x_3 + 56 = 33 \\\\
\text{Schnittebene } E \colon 2x_1 - 8x_2 - 8x_3 = -28 \\
\text{Schnittkreismittelpunkt } M^*(2|-1|5) \\
\text{Schnittkreisradius } r^* = 4
\end{gather*}
\subsubsection{spezielle Darstellung einer Tangentialebene an die Kugel $K$ im Berührpunkt $B$}
\begin{gather*}
K \colon (\vv{x} - \vv{m})^2 = (\vv{x} - \vv{m}) \cdot (\vv{x} - \vv{m}) = r^2 \\
\text{Tangentialebene in } B \colon (\vv{x} - \vv{m}) \cdot (\vv{b} - \vv{m}) = r^2
\end{gather*}
\begin{exercise}{386/22}
\item [a]
\begin{gather*}
P(5|2|1) \qquad Q(6|2|-1) \qquad K \colon \left(\vv{x} - \begin{pmatrix}1 \\ 2 \\ 0\end{pmatrix}\right)^2 = 9 \\\\
\left(\begin{pmatrix}5 \\ 2 \\ 1\end{pmatrix} - \begin{pmatrix}1 \\ 2 \\ 0\end{pmatrix}\right) \cdot \left(\begin{pmatrix}b_1 \\ b_2 \\ b_3\end{pmatrix} - \begin{pmatrix}1 \\ 2 \\ 0\end{pmatrix}\right) = 4b_1 - 4 + b_3 = 9 \\
\left(\begin{pmatrix}6 \\ 2 \\ -1\end{pmatrix} - \begin{pmatrix}1 \\ 2 \\ 0\end{pmatrix}\right) \cdot \left(\begin{pmatrix}b_1 \\ b_2 \\ b_3\end{pmatrix} - \begin{pmatrix}1 \\ 2 \\ 0\end{pmatrix}\right) = 5b_1 - 5 - b_3 = 9 \\
\left(\begin{pmatrix}b_1 \\ b_2 \\ b_3\end{pmatrix} - \begin{pmatrix}1 \\ 2 \\ 0\end{pmatrix}\right)^2 = b_1^2 - 2b_1 + 1 + b_2^2 - 4b_2 + 4 + b_3^2 = 9
\end{gather*}
\begin{gather*}
L = \{(3, 0, 1), (3, 4, 1)\} \qquad B_1(3|0|1) \quad B_2(3|4|1) \\\\
E_1 \colon \left(\vv{x} - \vv{OP}\right) \cdot \vv{MB_1} = \left(\vv{x} - \begin{pmatrix}5 \\ 2 \\ 1\end{pmatrix}\right) \cdot \begin{pmatrix}2 \\ -2 \\ 1\end{pmatrix} = 0 \\
E_2 \colon \left(\vv{x} - \vv{OP}\right) \cdot \vv{MB_2} = \left(\vv{x} - \begin{pmatrix}5 \\ 2 \\ 1\end{pmatrix}\right) \cdot \begin{pmatrix}2 \\ 2 \\ 1\end{pmatrix} = 0
\end{gather*}
\end{exercise}
\begin{exercise}{386/20}
\item [b]
\begin{gather*}
K_1 \colon \left(\vv{x} - \begin{pmatrix}7 \\ -2 \\ 2\end{pmatrix}\right)^2 = 625 \qquad K_2 \colon \left(\vv{x} - \begin{pmatrix}-5 \\ 4 \\ -2\end{pmatrix}\right)^2 = 625 \\\\
K_1 \colon x_1^2 - 14x_1 + 49 + x_2^2 + 4x_2 + 4 + x_3^2 - 4x_3 + 4 = 625 \\
K_2 \colon x_1^2 + 10x_1 + 25 + x_2^2 - 8x_2 + 16 + x_3^2 + 4x_3 + 4 = 625 \\
K_1 - K_2 \colon -24x_1 + 12x_2 - 8x_3 + 12 = 0 \\
E \colon -6x_1 + 3x_2 - 2x_3 + 3 = 0 \\\\
g \colon \vv{x} = \begin{pmatrix}7 \\ -2 \\ 2\end{pmatrix} + r \cdot \begin{pmatrix}-6 \\ 3 \\ -2\end{pmatrix} \\
-6 \cdot (7 - 6r) + 3 \cdot (-2 + 3r) - 2 \cdot (2 - 2r) + 3 = 49r - 49 = 0 \\
\Rightarrow r = 1 \\\\
\vv{OM'} = \begin{pmatrix}7 \\ -2 \\ 2\end{pmatrix} + \begin{pmatrix}-6 \\ 3 \\ -2\end{pmatrix} = \begin{pmatrix}1 \\ 1 \\ 0\end{pmatrix} \\\\
|\vv{n}| = \sqrt{(-6)^2 + 3^2 + (-2)^2} = \sqrt{49} = 7 \\
d(M_1, E) = \frac{1}{7} \cdot |-6 \cdot 7 + 3 \cdot (-2) - 2 \cdot 2 + 3| = 7 \\
r' = \sqrt{625 - 7^2} = 24
\end{gather*}
\end{exercise}