-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMathe_12_1.tex
2132 lines (2130 loc) · 105 KB
/
Mathe_12_1.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\part{12/1}
\section{Stammfunktion bilden, integrieren}
\begin{gather*}
\int_a^b x^7 \cdot dx = \left[\frac{1}{8}x^8\right]_a^b \\\\
\int \frac{1}{(x + 4)^3} \cdot dx = -\frac{1}{2} \cdot (x + 4)^{-2} + c \\\\
\int \frac{5}{(3x - 2)^5} \cdot dx = -\frac{5}{4 \cdot 3} \cdot (3x - 2)^{-4} + c \\\\
\int \frac{1}{5} \cdot e^{2x} \cdot dx = \frac{1}{5 \cdot 2} \cdot e^{2x} + c
\end{gather*}
\section{bestimmtes Integral, Integralfunktion, unbestimmtes Integral}
\begin{gather*}
\int_a^b \frac{1}{x} \cdot dx = \left[ln(|x|)\right]_a^b \\\\
\text{sofern } a, b > 0 \text{ oder } a, b < 0 \text{ kein Problem} \\
\text{wenn eines größer und eines kleiner $0$ ist, dann muss man genauer untersuchen (Polstelle!)} \\\\
a = -1 \qquad b = 2 \\
\int_a^b \frac{1}{2x - 5} \cdot dx = \left[\frac{1}{2} \cdot ln(|2x - 5|)\right]_a^b
\end{gather*}
\begin{exercise}{171/3}
\item [a]
\begin{gather*}
\int_0^2 (2 + x)^3 \cdot dx = \left[\frac{1}{4} \cdot (2 + x)^4\right]_0^2 = \frac{1}{4} \cdot ((2 + 2)^4 - (2 + 0)^4) = 60
\end{gather*}
\item [b]
\begin{gather*}
\int_2^3 (1 + \frac{1}{x^2}) \cdot dx = \left[x - \frac{1}{x}\right]_2^3 = (3 - \frac{1}{3}) - (2 - \frac{1}{2}) = \frac{7}{6}
\end{gather*}
\item [c]
\begin{gather*}
\int_0^2 \frac{1}{(x + 1)^2} \cdot dx = \left[-(x + 1)^{-1}\right]_0^2 = -(2 + 1)^{-1} + (0 + 1)^{-1} = \frac{2}{3}
\end{gather*}
\item [d]
\begin{gather*}
\int_0^9 \frac{2}{5} \cdot \sqrt{x} \cdot dx = [\frac{4}{15} \cdot x^{\frac{3}{2}}]_0^9 = \frac{4}{15} \cdot 9^{\frac{3}{2}} - \frac{4}{15} \cdot 0^{\frac{3}{2}} = 7.2
\end{gather*}
\item [e]
\begin{gather*}
\int_{-0.5}^0 e^{2x + 1} \cdot dx = \left[\frac{1}{2}e^{2x + 1}\right]_{-0.5}^0 = \frac{1}{2}e^{2 \cdot 0 + 1} - \frac{1}{2}e^{2 \cdot (-0.5) + 1} \approx 0.8591
\end{gather*}
\item [f]
\begin{gather*}
\int_0^\pi sin(3x - \pi) \cdot dx = \left[-\frac{1}{3} \cdot cos(3x - \pi)\right]_0^\pi = \\ -\frac{1}{3} \cdot cos(3\pi - \pi) + \frac{1}{3} \cdot cos(3 \cdot 0 - \pi) = -\frac{2}{3}
\end{gather*}
\item [g]
\begin{gather*}
\int_{-1}^1 \frac{1}{5} \cdot e^{\frac{1}{2}x} \cdot dx = \left[\frac{2}{5}e^{\frac{1}{2}x}\right]_{-1}^1 = \frac{2}{5}e^{\frac{1}{2} \cdot 1} - \frac{2}{5}e^{\frac{1}{2} \cdot (-1)} = \frac{2e - 2}{5 \cdot \sqrt{e}} \approx 0.4169
\end{gather*}
\item [h]
\begin{gather*}
\int_{-\pi}^\pi cos(3x) \cdot dx = \left[\frac{1}{3} \cdot sin(3x)\right]_{-\pi}^\pi = \frac{1}{3} \cdot sin(3\pi) - \frac{1}{3} \cdot sin(3 \cdot (-\pi)) = 0
\end{gather*}
\end{exercise}
\begin{exercise}{171/4}
\item [c]
\begin{gather*}
\int_3^4 \frac{1}{2(x + 1)} \cdot dx = \left[\frac{ln(x + 1)}{2}\right]_3^4 = \frac{ln(4 + 1)}{2} - \frac{ln(3 + 1)}{2} \approx 0.1116
\end{gather*}
\end{exercise}
\subsection{Integralfunktion}
\begin{gather*}
\qquad\qquad \int_a^b f(x) \cdot dx = \left[F(x)\right]_a^b = F(b) - F(a) = J \\
J_a(x) = \int_a^x f(x) \cdot dx = \left[F(x)\right]_a^x = F(x) - F(a)
\end{gather*}
Integralfunktion zur unteren (linken) Grenze $a$. Sie gibt zu jedem später eingesetzten Wert $x$ ($= b$) den bestimmten Integralwert an.
\begin{gather*}
\int f(x) \cdot dx = \left[F(x)\right]^x = F(x) + c
\end{gather*}
unbestimmtes Integral
\begin{exercise}{175/2}
\begin{gather*}
f(x) = \frac{1}{2}x \qquad J_a(x) = \int_a^x \frac{1}{2}t \cdot dt
\end{gather*} \\
\begin{tabular}{l|cccccc}
$x$ & $-4$ & $-2$ & $0$ & $2$ & $4$ & $6$ \\
$J_{-4}(x)$ & $0$ & $-3$ & $-4$ & $-3$ & $0$ & $5$
\end{tabular} \\\\\\
\begin{tabular}{l|cccccc}
$x$ & $-4$ & $-2$ & $0$ & $2$ & $4$ & $6$ \\
$J_0(x)$ & $4$ & $1$ & $0$ & $1$ & $4$ & $9$
\end{tabular} \\\\\\
\begin{tabular}{l|cccccc}
$x$ & $-4$ & $-2$ & $0$ & $2$ & $4$ & $6$ \\
$J_2(x)$ & $3$ & $0$ & $-1$ & $0$ & $3$ & $8$
\end{tabular}
\end{exercise}
\section{Rechenregeln für Integrale}
\begin{gather*}
\int_a^a f(x) \cdot dx = 0 \\
\int_a^b c \cdot f(x) \cdot dx = c \cdot \int_a^b f(x) \cdot dx \\
\int_a^b f(x) \cdot dx + \int_b^c f(x) \cdot dx = \int_a^c f(x) \cdot dx \\
\int_a^b f(x) \cdot dx = -\int_b^a f(x) \cdot dx \\
\int_a^b f(x) \cdot dx \pm \int_a^b g(x) \cdot dx = \int_a^b (f(x) \pm g(x)) \cdot dx \\
\end{gather*}
\begin{exercise}{172/15}
\item [a]
\begin{gather*}
\int_{-1}^{3.3} 5x^2 \cdot dx - 10 \cdot \int_{-1}^{3.3} \frac{1}{2}x^2 \cdot dx = 0
\end{gather*}
\item [b]
\begin{gather*}
\int_0^1 (x - 2\sqrt{x^2 + 4}) \cdot dx + 2 \cdot \int_0^1 \sqrt{x^2 + 4} \cdot dx = \int_0^1 x \cdot dx = 0.5
\end{gather*}
\item [c]
\begin{gather*}
\int_3^{3.7} \frac{1}{x} \cdot dx + \int_{3.7}^{4} \frac{1}{x} \cdot dx = \int_3^4 \frac{1}{x} \cdot dx = ln(4) - ln(3) \approx 0.2877
\end{gather*}
\end{exercise}
\begin{exercise}{176/10}
\begin{gather*}
f(t) = 50t^4 \cdot e^{-t}
\end{gather*}
\item [a]
Die Integralfunktion gibt die Anzahl der Telefonanrufe bis zum Zeitpunkt $x$ an.
\begin{gather*}
J_0(x) = \int_0^x f(t) \cdot dt \\
J_0(4) = \int_0^4 f(t) \approx 445
\end{gather*}
\item [b]
\begin{gather*}
J_4(8) = J_0(8) - J_0(4) \approx 1080 - 445 = 635
\end{gather*}
Die Anzahl der Anrufer in der Warteschleife ist zu dem Zeitpunkt am höchsten, an dem die Anrufer pro Minute wieder unter $200$ sinken (bei $t \approx 5$).
\end{exercise}
\begin{exercise}{176/9}
\begin{gather*}
f(t) = cos(\frac{2\pi}{24}(t - 12)) \\
g(t) = cos(\frac{2\pi}{24}(t - 6))
\end{gather*}
\item [a]
Zunahme ($f(t) > 0$) zwischen $6$ und $18$ Uhr \\
Abnahme ($f(t) < 0$) zwischen $18$ und $6$ Uhr \\\\
Zunahme ($g(t) > 0$) zwischen $0$ und $12$ Uhr \\
Abnahme ($g(t) < 0$) zwischen $12$ und $24$ Uhr
\item [b]
Am schnellsten um $12$ Uhr (Hochpunkt) \\
Am langsamsten um $0$/$24$ Uhr (Tiefpunkt) \\\\
Am schnellsten um $6$ Uhr (Hochpunkt) \\
Am langsamsten um $18$ Uhr (Tiefpunkt)
\item [c]
Maximal um $18$ Uhr (Rechts-Links-Wendepunkt) \\
Minimal um $6$ Uhr (Links-Rechts-Wendepunkt) \\\\
Maximal um $12$ Uhr (Rechts-Links-Wendepunkt) \\
Minimal um $0/24$ Uhr (Links-Rechts-Wendepunkt)
\item [d]
\begin{gather*}
F(t) = -\frac{12}{\pi} \cdot sin(\frac{\pi}{12}t) + c \\
c = 20 - F_{c=0}(12) = 20 \\
F(18) \approx 23.82 \qquad F(6) \approx 16.18 \\\\
G(t) = -\frac{12}{\pi} \cdot cos(\frac{\pi}{12}t) + c \\
c = 20 - G_{c=0}(12) \approx 16.1803 \\
G(12) = 20 \qquad G(0) = G(24) \approx 12.36
\end{gather*}
\end{exercise}
\section{Ableitung der Umkehrfunktion}
\begin{gather*}
\begin{tikzpicture}
\begin{axis}[
axis lines=middle,
axis equal,
xtick=\empty,
ytick=\empty
]
\addplot[
domain=0:7,
samples=20,
dashed
]{x};
\node[label={180:{$P$}},circle,fill,inner sep=2pt] at (axis cs:4,2) {};
\node[label={270:{$\overline{P}$}},circle,fill,inner sep=2pt] at (axis cs:2,4) {};
\draw[color=red] (axis cs:4,2) -- node[right]{$m=2$} (axis cs:4.5,3);
\draw[color=red] (axis cs:2,4) -- node[above,xshift=16pt]{$m=\frac{1}{2}$} (axis cs:3,4.5);
\draw[color=blue] (axis cs:4,2) -- node[below]{$m=-\frac{1}{3}$} (axis cs:5,1.67);
\draw[color=blue] (axis cs:2,4) -- node[above,yshift=10pt]{$m=-3$} (axis cs:1.67,5);
\end{axis}
\end{tikzpicture}
\end{gather*}
\begin{gather*}
f(x) = y = x^2 \Leftrightarrow \overline{f(y)} = x = \sqrt{y} \\
\overline{f'(y)} = \frac{1}{f'(x)} \\\\
\textbf{Beispiele} \\\\
f(x) = y = x^2 \Leftrightarrow \overline{f(y)} = x = y^{\frac{1}{3}} \\
\overline{f'(y)} = \frac{1}{3x^2} = \frac{1}{3(y^\frac{1}{3})^2} = \frac{1}{3}y^{-\frac{1}{3}} \\
\text{umbenennen} \\
\overline{f'(x)} = \frac{1}{3}x^{-\frac{1}{3}} \\\\
f(x) = y = e^x \Leftrightarrow \overline{f(y)} = x = ln(y) \\
\overline{f'(y)} = \frac{1}{e^x} = \frac{1}{e^{ln(x)}} = \frac{1}{y} \\
\text{umbenennen} \\
\overline{f'(x)} = \frac{1}{x}
\end{gather*}
\begin{gather*}
f(x) = y = sin(x) \Leftrightarrow \overline{f(y)} = x = asin(y) \\
\overline{f'(y)} = \frac{1}{cos(x)} = \frac{1}{cos(asin(y))} \\
\;= \frac{1}{\sqrt{1 - sin^2(x)}} = \frac{1}{\sqrt{1 - sin^2(asin(y))}} = \frac{1}{\sqrt{1 - y^2}} \\
\text{umbenennen} \\
\overline{f'(x)} = \frac{1}{\sqrt{1 - x^2}}
\end{gather*}
\begin{gather*}
f(x) = y = cos(x) \Leftrightarrow f(y) = x = acos(y) \\
\overline{f'(y)} = \frac{1}{-sin(x)} = \frac{1}{-sin(acos(y))} \\
\;= -\frac{1}{\sqrt{1 - cos^2(x)}} = -\frac{1}{\sqrt{1 - cos^2(acos(y))}} = -\frac{1}{\sqrt{1 - y^2}} \\
\text{umbenennen} \\
\overline{f'(x)} = -\frac{1}{\sqrt{1 - x^2}} \\\\
f(x) = y = tan(x) \Leftrightarrow f(y) = x = atan(y) \\
\overline{f'(y)} = cos^2(x) = cos^2(atan(y)) \\
\;= 1 - sin^2(x) = 1 - sin^2(atan(y)) = 1 - \frac{y^2}{y^2 + 1} = \frac{1}{y^2 + 1} \\
\text{umbenennen} \\
\overline{f'(x)} = \frac{1}{x^2 + 1}
\end{gather*}
\section{Integral und Flächeninhalt}
\begin{figure}[H]
\centering
\includegraphics[width=0.8\textwidth]{/fakepath/integral_flaecheninhalt_1.png}
\end{figure}
\begin{gather*}
A = A_1 + A_2 \\
A \neq \int_a^b f(x) \cdot dx = I \\
A = |\int_a^c f(x) \cdot dx| + |\int_c^b f(x) \cdot dx|
\end{gather*}
\begin{figure}[H]
\centering
\includegraphics[width=0.8\textwidth]{/fakepath/integral_flaecheninhalt_2.png}
\end{figure}
\begin{gather*}
A = A_1 + A_2 \\
\text{1. Berechne die Schnittstellen $a$, $b$, $c$} \\
\text{2. } A = |\int_a^b (g(x) - f(x)) \cdot dx| + |\int_b^c (g(x) - f(x)) \cdot dx|
\end{gather*}
Wie die Flächen zur $x$-Achse liegen ist unwichtig, weil ich gedanklich beide Graphen gemeinsam soweit nach oben schieben kann dass die Flächen komplett oberhalb der $x$-Achse liegen.
\begin{gather*}
f(x) \quad\longrightarrow\quad f(x) + d \\
g(x) \quad\longrightarrow\quad g(x) + d
\end{gather*}
Durch Differenzialbildung fallen die gedanklich eingeführten Verschiebungen wieder weg.
\begin{gather*}
\int_a^b ((f(x) + d) - (g(x) + d)) \cdot dx = \int_a^b (f(x) - g(x)) \cdot dx
\end{gather*}
\begin{exercise}{179/2}
\item [a]
\begin{gather*}
f(x) = -0.5x^2 + 0.5 \qquad g(x) = -1.5 \\
F(x) = -\frac{1}{6}x^3 + 0.5x \qquad G(x) = -1.5x
\end{gather*}
\begin{enumerate}[I]
\item $A_2 + A_3$
\begin{gather*}
A = |\int_{-1}^1 f(x) \cdot dx| \\
\;= |F(1) - F(-1)| = \frac{2}{3}FE
\end{gather*}
\item $A_2 + A_3 + A_4 + A_5$
\begin{gather*}
A = |\int_{-2}^2 (f(x) - g(x)) \cdot dx| \\
\;= |(F(2) - F(-2)) - (G(2) - G(-2))| = 5\frac{1}{3}FE
\end{gather*}
\item $A_3$
\begin{gather*}
A = |\int_0^1 f(x) \cdot dx| \\
\;= |F(1) - F(0)| = \frac{1}{3}FE
\end{gather*}
\item $A_1$
\begin{gather*}
A = |\int_{-2}^{-1} f(x) \cdot dx| \\
\;= |F(-1) - F(-2)| = \frac{2}{3}FE
\end{gather*}
\end{enumerate}
\end{exercise}
\begin{exercise}{180/5}
\item [a]
\begin{gather*}
f(x) = x^2 \qquad g(x) = -x^2 + 4x \\
f(x) = g(x) \qquad L = \{0; 2\} \\
f(x) - g(x) = 2x^2 - 4x \\
A = |\int_0^2 (2x^2 - 4x) \cdot dx| = |[\frac{2}{3}x^3 - 2x^2]_0^2| = 2\frac{2}{3}FE
\end{gather*}
\item [b]
\begin{gather*}
f(x) = -\frac{1}{x^2} \qquad g(x) = 2.5x - 5.25 \\
f(x) = g(x) \qquad L = \{2; \sim -0.4; \sim 0.5\} \\
f(x) - g(x) = -2.5x + 5.25 - \frac{1}{x^2} \\
A \approx |\int_{0.5}^2 (-2.5x + 5.25 - \frac{1}{x^2}) \cdot dx| \\
\;= |[-1.25x^2 + 5.25x + \frac{1}{x}]_{0.5}^2| \approx 1.7FE
\end{gather*}
\end{exercise}
\subsection{Flächeninhalt, uneigentliche Integrale}
\begin{exercise}{180/8}
\begin{gather*}
f_t(x) = \frac{t}{x^2} \qquad \left[1; 2\right] \\
F_t(x) = -\frac{t}{x} \\
A(t) = \int_1^2 -\frac{t}{x} \cdot dx = \frac{t}{2} \\
A(16) = 8
\end{gather*}
\end{exercise}
\begin{exercise}{180/10}
\begin{gather*}
f_a(x) = a \cdot sin(x) \qquad g_a(x) = -\frac{1}{a} \cdot sin(x) \qquad x \in \left[0; \pi\right] \\
f_a(x) - g_a(x) = sin(x) \cdot (a + \frac{1}{a}) \\
A(a) = \int_0^\pi sin(x) \cdot (a + \frac{1}{a}) \cdot dx = (a + \frac{1}{a}) \cdot \left[-cos(x)\right]_0^\pi = (a + \frac{1}{a}) \cdot 2 \\\\
A'(a) = -\frac{2}{a^2} + 2 \\
A''(a) = \frac{4}{a^3} \\
A'(a) = 0 \qquad L = \{\pm1\} \\
A''(1) = 4 > 0 \quad\Rightarrow\quad TP \\
\text{Minimaler Flächeninhalt} \colon A(1) = 4FE
\end{gather*}
\end{exercise}
\begin{gather*}
\text{Beispiel } f(x) = \frac{1}{x^2} \qquad \left[3; \infty\right[ \\
A = \lim\limits_{z \to \infty} \int_3^z \frac{1}{x^2} \cdot dx = \lim\limits_{z \to \infty} \left[-x^{-1}\right]_3^z \\
\;= \lim\limits_{z \to \infty} (-\frac{1}{z} + \frac{1}{3}) = \frac{1}{3}FE
\end{gather*}
\begin{exercise}{183/1}
\item [Fig. 1]
\begin{gather*}
y = \frac{1}{(x + 1)^2} \qquad \left[1; z\right] \\
A(z) = \int_1^z \frac{1}{(x + 1)^2} \cdot dx = \left[-\frac{1}{x + 1}\right]_1^z = -\frac{1}{z + 1} + \frac{1}{2} \\
A = \lim\limits_{z \to \infty} A(z) = \frac{1}{2}
\end{gather*}
\item [Fig. 2]
\begin{gather*}
y = e^{-\frac{1}{2}x} \qquad \left[2; z\right] \\
A(z) = \int_2^z e^{-\frac{1}{2}x} \cdot dx = \left[-2 \cdot e^{-\frac{1}{2}x}\right]_2^z = -2 \cdot e^{-\frac{1}{2}z} + \frac{2}{e} \\
A = \lim\limits_{z \to \infty} A(z) = \frac{2}{e} \approx 0.736
\end{gather*}
\item [Fig. 3]
\begin{gather*}
y = \frac{2}{x^3} \qquad \left[z; 1\right] \\
A(z) = \int_z^1 \frac{2}{x^3} \cdot dx = \left[-\frac{1}{x^2}\right] = -1 + \frac{1}{z^2} \\
A = \lim\limits_{z \to 0} A(z) = \infty
\end{gather*}
\item [Fig. 4]
\begin{gather*}
y = \frac{4}{\sqrt{x}} \qquad \left[z; 4\right] \\
A(z) = \int_z^4 \frac{4}{\sqrt{x}} \cdot dx = \left[8 \cdot \sqrt{x}\right] = 16 - 8 \cdot \sqrt{z} \\
A = \lim\limits_{z \to 0} A(z) = 16
\end{gather*}
\end{exercise}
\begin{exercise}{183/7}
\begin{gather*}
W = \int_{h_1}^{h_2} F(s) \cdot ds \\
F(s) = \gamma \frac{m \cdot M}{s^2} \\
c = \gamma \cdot m \cdot M \approx 3.982 \cdot 10^{17} \cdot \frac{m \cdot kg}{s^2} \\
F(s) = c \cdot s^{-2} \\
W = \int_{h_1}^{h_2} c \cdot s^{-2} \cdot ds = \left[-c \cdot s^{-1}\right]_{h_1}^{h_2}
\end{gather*}
\item [a]
\begin{gather*}
h_1 = 6.37 \cdot 10^6m \qquad h_2 = 4.22 \cdot 10^7m \\
W = \left[-c \cdot s^{-1}\right]_{6.37 \cdot 10^6m}^{4.22 \cdot 10^7m} \approx 1.333 \cdot 10^{-7} \cdot c \approx 5.308 \cdot 10^{10}Nm
\end{gather*}
\item [b]
\begin{gather*}
h_1 = 6.37 \cdot 10^6m \qquad h_2 \rightarrow \infty \\
W = \lim\limits_{h_2 \to \infty} \left[-c \cdot s^{-1}\right]_{6.37 \cdot 10^6m}^{h_2} \approx 1.570 \cdot 10^{-7} \cdot c \approx 6.252 \cdot 10^{10}Nm
\end{gather*}
\end{exercise}
\newpage
\begin{exercise}{183/5}
\begin{enumerate}[I]
\item $f(x) = \frac{1}{x^3} \qquad F(x) = -\frac{1}{2 \cdot x^2}$
\item $f(x) = \frac{1}{x^2} \qquad F(x) = -\frac{1}{x}$
\item $f(x) = \frac{1}{\sqrt{x}} \qquad F(x) = 2 \cdot \sqrt{x}$
\end{enumerate}
\item [a]
\begin{gather*}
\lim\limits_{z \to \infty} \int_1^z f(x) \cdot dx = \left[F(x)\right]_1^z
\end{gather*}
\begin{enumerate}[I]
\item $= \frac{1}{2}$
\item $= 1$
\item $= \infty$
\end{enumerate}
\item [b]
\begin{gather*}
\lim\limits_{z \to 1} \int_z^0 f(x) \cdot dx = \left[F(x)\right]_z^1
\end{gather*}
\begin{enumerate}[I]
\item $= \infty$
\item $= \infty$
\item $= 2$
\end{enumerate}
\end{exercise}
\begin{exercise}{180/11}
\begin{gather*}
f(x) = x^2 \\
t(x) = m \cdot x + b \\
f'(x) = 2x \quad\Rightarrow\quad m = f'(a) = 2a \\
f(a) = a^2 \quad\Rightarrow\quad b = a^2 - 2a \cdot a = -a^2 \\
\Rightarrow t(x) = 2a \cdot x - a^2 \\\\
\int_0^a (f(x) - t(x)) \cdot dx = \int_0^a (x^2 - 2ax + a^2) \cdot dx = \left[\frac{1}{3}x^3 - ax^2 + a^2x\right]_0^a \\
\;= \frac{1}{3}a^3
\end{gather*}
\end{exercise}
\section{Integration von Produkten: partielle Integration}
Ableitungs-Produktregel: $(u \cdot v)' = u' \cdot v + u \cdot v'$
\begin{gather*}
(u \cdot v)' = u' \cdot v + u \cdot v' \equ - u \cdot v' \\
u' \cdot v = (u \cdot v)' - u \cdot v' \equ \int \\
\int u' \cdot v = \int (u \cdot v)' - \int u \cdot v' \\
\int u' \cdot v = u \cdot v - \int u \cdot v' \\\\
\textbf{Beispiel} \\
\int sin(x) \cdot x \cdot dx = -cos(x) \cdot x - \int -cos(x) \cdot 1 \cdot dx \\
\;= -cos(x) \cdot x + sin(x) + c \\
(-cos(x)) \cdot x + sin(x))' = sin(x) \cdot x
\end{gather*}
\begin{gather*}
\int e^{2x} \cdot x^2 \cdot dx = \frac{1}{2}e^{2x} \cdot x^2 - \int \frac{1}{2}e^{2x} \cdot 2x \cdot dx \\
\;= \frac{1}{2}e^{2x} \cdot x^2 - (\frac{1}{2}e^{2x} \cdot x - \int \frac{1}{2}e^{2x} \cdot 1 \cdot dx) \\
\;= \frac{1}{2}e^{2x} \cdot x^2 - \frac{1}{2}e^{2x} \cdot x + \int \frac{1}{2}e^{2x} \cdot dx \\
\;= \frac{1}{2}e^{2x} \cdot x^2 - \frac{1}{2}e^{2x} \cdot x + \frac{1}{4}e^{2x} \\
\;= e^{2x} \cdot (\frac{1}{2}x^2 - \frac{1}{2}x + \frac{1}{4})
\end{gather*}
Spezialfälle
\begin{gather*}
\int 1 \cdot ln(x) \cdot dx = x \cdot ln(x) - \int x \cdot \frac{1}{x} \cdot dx \\
\;= x \cdot ln(x) - x \\
\text{(Stammfunktion von $ln(x)$)}
\end{gather*}
\begin{gather*}
\int sin(x) \cdot cos(x) \cdot dx = -cos(x) \cdot cos(x) - \int cos(x) \cdot (-sin(x)) \cdot dx \\
\;= -cos^2(x) - \int sin(x) \cdot cos(x) \cdot dx \equ + \int sin(x) \cdot cos(x) \cdot dx \\
2 \cdot \int sin(x) \cdot cos(x) \cdot dx = -cos^2(x) \equ \div 2 \\
\int sin(x) \cdot cos(x) \cdot dx = -\frac{cos^2(x)}{2}
\end{gather*}
\begin{exercise}{188/1}
\item [a]
\begin{gather*}
\int_{-1}^{1} e^x \cdot x \cdot dx = \left[e^x \cdot x\right]_{-1}^{1} - \int e^x \cdot 1 \cdot dx = \left[e^x \cdot x - e^x\right]_{-1}^{1} = \frac{2}{e}
\end{gather*}
\item [d]
\begin{gather*}
\int_{0}^{0.5} e^{2x + 2} \cdot 4x \cdot dx = \left[\frac{1}{2}e^{2x + 2} \cdot 4x\right]_{0}^{0.5} - \int \frac{1}{2}e^{2x + 2} \cdot 4 \cdot dx \\
\;= \left[2e^{2x + 2} \cdot x - e^{2x + 2}\right]_{0}^{0.5} = e^2
\end{gather*}
\end{exercise}
\begin{exercise}{188/2}
\item [b]
\begin{gather*}
\int_0^\pi cos(x) \cdot x \cdot dx = \left[sin(x) \cdot x\right]_0^\pi - \int sin(x) \cdot 1 \cdot dx \\
\;= \left[sin(x) \cdot x + cos(x)\right]_0^\pi = -2
\end{gather*}
\item [d]
\begin{gather*}
\int_0^{2\pi} sin(0.5x) \cdot 2x \cdot dx = \left[-2cos(0.5x) \cdot 2x\right]_0^{2\pi} - \int -2cos(0.5x) \cdot 2 \cdot dx \\
\;= \left[-2cos(0.5x) \cdot 2x + 8sin(0.5x)\right]_0^{2\pi} = 8\pi
\end{gather*}
\end{exercise}
\newpage
\begin{exercise}{188/8}
\item [a]
\begin{gather*}
\int_0^\pi (sin(x))^2 \cdot dx = \left[-cos(x) \cdot sin(x)\right]_0^\pi - \int -cos(x) \cdot cos(x) \cdot dx \\
\;= \left[-cos(x) \cdot sin(x)\right]_0^\pi - \int (-sin^2(x) - 1) \cdot dx \\
\;= \left[-cos(x) \cdot sin(x) + x\right]_0^\pi - \int sin^2(x) \cdot dx \equ + \int_0^\pi sin^2(x) \cdot dx; \quad \div 2 \\
\;= \left[\frac{-cos(x) \cdot sin(x) + x}{2}\right]_0^\pi = \frac{\pi}{2}
\end{gather*}
\item [c]
\begin{gather*}
\int_{-2}^2 e^x \cdot cos(x) \cdot dx = \left[sin(x) \cdot e^x\right]_{-2}^2 - \int sin(x) \cdot e^x \cdot dx \\
\;= \left[sin(x) \cdot e^x\right]_{-2}^2 - (\left[-cos(x) \cdot e^x\right]_{-2}^2 - \int -cos(x) \cdot e^x \cdot dx) \\
\;= \left[sin(x) \cdot e^x + cos(x) \cdot e^x\right]_{-2}^2 - \int cos(x) \cdot e^x \cdot dx \\
\;= \left[\frac{(sin(x) + cos(x)) \cdot e^x}{2}\right]_{-2}^2 \approx 1.912
\end{gather*}
\item [d]
\begin{gather*}
\int_0^2 sin(\pi x) \cdot e^{2x} \cdot dx = \left[\frac{1}{2}e^{2x} \cdot sin(\pi x)\right]_0^2 - \int \frac{1}{2}e^{2x} \cdot \pi \cdot cos(\pi x) \cdot dx \\
\;= \left[\frac{1}{2}e^{2x} \cdot sin(\pi x)\right]_0^2 - (\left[\frac{1}{4}e^{2x} \cdot \pi \cdot cos(\pi x)\right]_0^2 - \int -\frac{1}{4}e^{2x} \cdot \pi^2 \cdot sin(\pi x) \cdot dx) \\
\;= \left[\frac{1}{2}e^{2x} \cdot sin(\pi x)\right]_0^2 - (\left[\frac{1}{4}e^{2x} \cdot \pi \cdot cos(\pi x) + \frac{1}{4}\pi^2\right]_0^2 - \int e^{2x} \cdot sin(\pi x) \cdot dx) \\
\;= \left[\frac{2e^{2x} \cdot sin(\pi x) - \pi \cdot e^{2x} \cdot cos(\pi x)}{\pi^2 + 4}\right]_0^2 = \frac{\pi}{\pi^2 + 4} - \frac{e^4 \cdot \pi}{\pi^2 + 4} \approx -12.140
\end{gather*}
\end{exercise}
\section{Integration durch Substitution}
Kettenregel: $(f(g(x)))' = f'(g(x)) \cdot g'(x)$ \\
\begin{gather*}
\int f'(g(x)) \cdot g'(x) \cdot dx = \int (f(g(x)))' \cdot dx \\
\;= f(g(x)) \qquad \text{Dabei ist $f$ die Stammfunktion von $f'$} \\
\Rightarrow \text{ Benenne um $f' \rightarrow f \qquad f \rightarrow F$} \\\\
\int f(g(x)) \cdot g'(x) \cdot dx = F(g(x)) \\\\
\text{Substitution 1} \\
\int_a^b f(g(x)) \cdot g'(x) \cdot dx \qquad \text{ersetze $z = g(x) \qquad \frac{dz}{dx} = g'(x) \Rightarrow dz = g'(x) \cdot dx$} \\
\;= \int_{g(a)}^{g(b)} f(z) \cdot dz = \left[F(z)\right]_{g(a)}^{g(b)} \\
\text{Resubstitution} \\
\;= \left[F(g(x))\right]_a^b
\end{gather*}
Beispiel
\begin{gather*}
\int_1^2 \frac{5x}{\sqrt{1 + 3x^2}} \cdot dx \\\\
\text{subst. } z = 1 + 3x^2 \qquad \frac{dz}{dx} = (1 + 3x^2)' = 6x \qquad dz = 6x \cdot dx \\
\;= {\color{red}\frac{5}{6}} \int_1^2 \frac{{\color{red}6}x}{\sqrt{1 + 3x^2}} \cdot dx = \frac{5}{6} \int_4^{13} z^{-\frac{1}{2}} \cdot dz \\
\;= \frac{5}{6} \left[2z^\frac{1}{2}\right]_4^{13} = \frac{5}{6} \left[2 \cdot (1 + 3x^2)^\frac{1}{2}\right]_1^2 \approx 2.676
\end{gather*}
\newpage
\begin{exercise}{191/1}
\item [a]
\begin{gather*}
\int_0^2 \frac{4x}{\sqrt{1 + 2x^2}} \cdot dx; \qquad g(x) = 1 + 2x^2 \\
\text{subst. } z = g(x) \qquad dz = g'(x) \cdot dx \\
\;= \int_{g(0)}^{g(2)} \frac{1}{\sqrt{z}} \cdot dz = \left[2 \cdot \sqrt{z}\right]_1^9 = 4
\end{gather*}
\item [b]
\begin{gather*}
\int_{-1}^1 \frac{-2x}{(4 - 3x^2)^2} \cdot dx; \qquad g(x) = 4 - 3x^2 \\
\text{subst. } z = g(x) \qquad dz = g'(x) \cdot dx \\
\;= \int_{g(-1)}^{g(1)} \frac{1}{3z^2} \cdot dz = \left[-\frac{1}{3z}\right]_1^1 = 0
\end{gather*}
\end{exercise}
\begin{exercise}{191/3}
\item [e]
\begin{gather*}
\int_0^3 \frac{2x}{1 + x^2} \cdot dx \\
\text{subst. } z = 1 + x^2 \qquad dz = 2x \cdot dx \\
\;= \int_1^{10} \frac{1}{z} \cdot dz = \left[ln(z)\right]_1^{10} \\
\text{resubst.} \\
\;= \left[ln(1 + x^2)\right]_0^3 = ln(10) \approx 2.3026
\end{gather*}
\item [f]
\begin{gather*}
\int_{-1}^2 \frac{e^x}{2 + e^x} \cdot dx \\
\text{subst. } z = 2 + e^x \qquad dz = e^x \cdot dx \\
\;= \int_{2 + e^{-1}}^{2 + e^2} \frac{1}{z} \cdot dz = \left[ln(z)\right]_{2 + e^{-1}}^{2 + e^2} \\
\text{resubst.} \\
\;= \left[ln(2 + e^x)\right]_{-1}^2 \approx 1.3775
\end{gather*}
\item [g]
\begin{gather*}
\int_e^{e^2} \frac{4}{x \cdot ln(x)} \cdot dx \\
\text{subst. } z = ln(x) \qquad dz = \frac{1}{x} \cdot dx \\
\;= \int_1^2 \frac{4}{z} \cdot dz = \left[4 \cdot ln(z)\right]_1^2 \\
\text{resubst.} \\
\;= \left[4 \cdot ln(ln(x))\right]_e^{e^2} = 4 \cdot ln(2) \approx 2.7726
\end{gather*}
\item [h]
\begin{gather*}
\int_\frac{1}{3}^\frac{1}{2} \frac{\pi \cdot cos(\pi x)}{sin(\pi x)} \cdot dx \\
\text{subst. } z = sin(\pi x) \qquad dz = \pi \cdot cos(\pi x) \cdot dx \\
\;= \int_{sin(\frac{\pi}{3})}^{sin(\frac{\pi}{2})} \frac{1}{z} \cdot dz = \left[ln(z)\right]_{sin(\frac{\pi}{3})}^{sin(\frac{\pi}{2})} \\
\text{resubst.} \\
\;= \left[ln(sin(\pi x))\right]_\frac{1}{3}^\frac{1}{2} \approx 0.1438
\end{gather*}
\end{exercise}
\begin{exercise}{191/8}
\item [a]
\begin{gather*}
\int_0^{ln(2)} \frac{e^{2x}}{e^{2x} + 3} \cdot dx \qquad\qquad t = e^{2x} + 3 \qquad t' = \frac{dt}{dx} = 2e^{2x} \qquad dx = \frac{1}{2 \cdot e^{2x}} \cdot dt \\
\;= \int_{t(0)}^{t(ln(2))} \frac{e^{4x}}{t} \cdot \frac{1}{2 \cdot e^{2x}} \cdot dt = \int_{t(0)}^{t(ln(2))} \frac{e^{2x}}{2t} \cdot dt = \int_{t(0)}^{t(ln(2))} \frac{t - 3}{2t} \cdot dt \\
\;= \left[\frac{t}{2} - \frac{3}{2} \cdot ln(t)\right]_4^7 \approx 0.6606
\end{gather*}
\item [b]
\begin{gather*}
\int_1^2 \frac{2x + 3}{(x + 2)^2} \cdot dx \qquad\qquad t = x + 2 \qquad t' = \frac{dt}{dx} = 1 \qquad dx = dt \\
\;= \int_{t(1)}^{t(2)} \frac{2x + 3}{t^2} \cdot dt = \int_{t(1)}^{t(2)} \frac{2t - 1}{t^2} \cdot dt = \int_{t(1)}^{t(2)} (\frac{2}{t} - \frac{1}{t^2}) \cdot dt \\
\;= \left[2 \cdot ln(t) + \frac{1}{t}\right]_3^4 \approx 0.4920
\end{gather*}
\item [c]
\begin{gather*}
\int_{0.5}^7 \frac{x}{\sqrt{4x - 1}} \cdot dx \qquad\qquad t = 4x - 1 \qquad t' = \frac{dt}{dx} = 4 \qquad dx = \frac{dt}{4} \\
\;= \int_{t(0.5)}^{t(7)} \frac{x}{\sqrt{t}} \cdot \frac{1}{4} \cdot dt = \int_{t(0.5)}^{t(7)} \frac{\frac{1}{4}t + \frac{1}{4}}{4 \cdot \sqrt{t}} \cdot dt = \int_{t(0.5)}^{t(7)} \frac{t + 1}{16 \cdot \sqrt{t}} \cdot dt \\
\;= \left[(\frac{1}{16}t + \frac{1}{16}) \cdot 2 \cdot \sqrt{t}\right]_{t(0.5)}^{t(7)} - \int_{t(0.5)}^{t(7)} \frac{1}{8} \cdot \sqrt{t} \cdot dt \\
\;= \left[(\frac{1}{8}t + \frac{1}{8}) \cdot \sqrt{t}\right]_{t(0.5)}^{t(7)} - \left[\frac{1}{8} \cdot \frac{2}{3} \cdot \sqrt{t^3}\right]_{t(0.5)}^{t(7)} \\
\;= \left[\frac{1}{8} \cdot (t \cdot \sqrt{t} + \sqrt{t} - \frac{2}{3} \cdot \sqrt{t^3})\right]_1^{27} \approx 6.3285
\end{gather*}
\item [d]
\begin{gather*}
\int_0^4 \frac{4}{1 + 2 \cdot \sqrt{x}} \cdot dx \qquad\qquad t = 1 + 2 \cdot \sqrt{x} \qquad t' = \frac{dt}{dx} = \frac{1}{\sqrt{x}} \qquad dx = \sqrt{x} \cdot dt \\
\;= \int_{t(0)}^{t(4)} \frac{4}{t} \cdot \sqrt{x} \cdot dt = \int_{t(0)}^{t(4)} \frac{4}{t} \cdot \frac{t - 1}{2} \cdot dt = \int_{t(0)}^{t(4)} \frac{4t - 4}{2t} \cdot dt \\
\;= \left[\frac{1}{2t} \cdot (2t^2 - 4t)\right]_{t(0)}^{t(4)} - \int_{t(0)}^{t(4)} - \frac{1}{2t^2} \cdot (2t^2 - 4t) \cdot dt \\
\;= \left[t - 2\right]_{t(0)}^{t(4)} - \int_{t(0)}^{t(4)} (\frac{2}{t} - 1) \cdot dt \\
\;= \left[t - 2 - (2 \cdot ln(t) - t)\right]_{t(0)}^{t(4)} = \left[2 \cdot (t - 1 - ln(t))\right]_1^5 \approx 4.7811
\end{gather*}
\end{exercise}
\begin{gather*}
\text{Substitution 2} \\
\int_a^b f(x) \cdot dx \qquad \text{ersetze } x = g(z) \\
\;= \int_a^b f(g(z)) \cdot dx = \int_{\overline{g}(a)}^{\overline{g}(b)} f(g(z)) \cdot g'(z) \cdot dz \\\\
\qquad x = g(z) \qquad z = \overline{g}(x) \\
\qquad \frac{dx}{dz} = g'(z) \qquad dx = g'(z) \cdot dz \\\\
\;= \left[F(g(z))\right]_{\overline{g}(a)}^{\overline{g}(b)} = \left[F(x)\right]_a^b
\end{gather*}
Beispiel
\begin{gather*}
\int_0^\frac{1}{2} \frac{1}{\sqrt{1 - x^2}} \cdot dx \qquad x = sin(z) \qquad dx = cos(z) \cdot dz \\
\;= \int_0^\frac{\pi}{6} \frac{cos(z)}{\sqrt{1 - sin^2(z)}} \cdot dz = \int_0^\frac{\pi}{6} 1 \cdot dz = \left[z\right]_0^\frac{\pi}{6} = \frac{\pi}{6} \approx 0.524
\end{gather*}
\begin{exercise}{AB/23}
\item [a]
\begin{gather*}
\int_0^1 e^x \cdot \sqrt{e^x + 1} \cdot dx \\
x(t) = ln(t) \qquad t = e^x \qquad dx = \frac{1}{t} \cdot dt \\
\;= \int_{e^0}^{e^1} e^{ln(t)} \cdot \sqrt{e^{ln(t)} + 1} \cdot \frac{1}{t} \cdot dz = \int_1^e \sqrt{t + 1} \cdot dz \\
\;= \left[\frac{2}{3} \cdot \sqrt{(t + 1)^3}\right]_1^e \approx 2.8943
\end{gather*}
\item [c]
\begin{gather*}
\int_1^3 \frac{1}{x} \cdot ln(x^2) \cdot dx \\
x(t) = e^t \qquad t = ln(x) \qquad dx = e^t \cdot dt \\
\;= \int_{ln(1)}^{ln(3)} \frac{1}{e^t} \cdot ln(e^{t^2}) \cdot e^t \cdot dt = \int_0^{ln(3)} ln(e^{2t}) \cdot dt = \int_0^{ln(3)} 2t \cdot dt \\
\;= \left[t^2\right]_0^{ln(3)} = (ln(3))^2 \approx 1.2069
\end{gather*}
\end{exercise}
\subsection{Wiederholung}
\begin{enumerate}
\item Ersetze $g(x)$ durch $z$
\begin{gather*}
\int_a^b = f(g(x)) \cdot g'(x) \cdot dx = \int_{g(a)}^{g(b)} f(z) \cdot dz \\
\;= \left[F(z)\right]_{g(a)}^{g(b)} = \left[F(g(x))\right]_a^b \\
z = g(x) \\\\
\frac{dz}{dx} = g'(x) \\
dz = g'(x) \cdot dx
\end{gather*}
\item Ersetze $x$ durch $g(z)$
\begin{gather*}
\int_a^b f(x) \cdot dx = \int_{\overline{g}(a)}^{\overline{g}(b)} f(g(z)) \cdot g'(z) \cdot dz \\
\;= \left[F(g(z))\right]_{\overline{g}(a)}^{\overline{g}(b)} = \left[F(x)\right]_a^b \\\\
x = g(z) \quad\Leftrightarrow\quad z = \overline{g}(x) \\
\frac{dx}{dz} = g'(z) \\
dx = g'(z) \cdot dz
\end{gather*}
\end{enumerate}
\begin{exercise}{AB/23}
\item [d]
\begin{gather*}
\int_1^2 \frac{1 + ln(x)}{x \cdot (1 - ln(x))} \cdot dx \\
x(t) = e^t \qquad t = ln(x) \qquad dx = e^t \cdot dt \\\\
\;= \int_{ln(1)}^{ln(2)} \frac{1 + ln(e^t)}{e^t \cdot (1 - ln(e^t))} \cdot e^t \cdot dt = \int_0^{ln(2)} \frac{1 + t}{1 - t} \cdot dt \\
z = 1 - t \qquad \frac{dz}{dt} = -1 \qquad dz = -dt \\\\
\;= -\int_{1 - 0}^{1 - ln(2)} \frac{2 - z}{z} \cdot dz = -\int_{1 - 0}^{1 - ln(2)} (\frac{2}{z} - 1) \cdot dz \\
\;= -\left[2 \cdot ln(z) - z\right]_1^{1 - ln(2)} \approx 1.6696
\end{gather*}
\item [g]
\begin{gather*}
\int_0^1 \frac{1}{\sqrt{4 - x^2}} \cdot dx \\
x(t) = 2 \cdot sin(t) \qquad t = asin(\frac{x}{2}) \qquad dx = 2 \cdot cos(t) \cdot dt \\\\
\;= \int_{asin(\frac{0}{2})}^{asin(\frac{1}{2})} \frac{2 \cdot cos(t)}{\sqrt{4 - (2 \cdot sin(t))^2}} \cdot dt = \int_0^{asin(\frac{1}{2})} \frac{2 \cdot cos(t)}{2 \cdot \sqrt{1 - (sin(t))^2}} \cdot dt \\
\;= \int_0^{asin(\frac{1}{2})} \frac{2 \cdot cos(t)}{2 \cdot \sqrt{(cos(t))^2}} \cdot dt = \int_0^{asin(\frac{1}{2})} 1 \cdot dt = \left[t\right]_0^{asin(\frac{1}{2})} = \frac{\pi}{6}
\end{gather*}
\end{exercise}
\section{Rotationskörper}
Rotationssymetrische Körper, die man sich dadurch entstanden vorstellen kann, dass eine Fläche um eine Achse ($x$-Achse) rotiert.
\subsection{Bestimmung des Volumens von Rotationskörpern}
\begin{gather*}
f(x) = \frac{1}{2}x^2 + 1
\end{gather*}
\begin{figure}[H]
\centering
\includegraphics[width=1.1\textwidth]{/fakepath/rotationskoerper.png}
\end{figure}
\begin{gather*}
A = \int_a^b f(x) \cdot dx \\
\;= \int_1^2 (\frac{1}{2}x^2 + 1) \cdot dx = \left[\frac{1}{6}x^3 + x\right]_1^2 = \frac{13}{6} FE \approx 2.17FE \\
V = \int_a^b \pi \cdot (f(x))^2 \cdot dx \\
\;= \pi \cdot \int_1^2 (\frac{1}{2}x^2 + 1)^2 \cdot dx = \pi \cdot \left[\frac{1}{20}x^5 + \frac{1}{3}x^3 + x\right]_1^2 = \frac{293\pi}{60}VE \approx 15.34VE
\end{gather*}
\newpage
\begin{exercise}{196/1}
\item [a]
\begin{gather*}
y = \sqrt{x + 1} \\
V = \pi \cdot \int_{-1}^2 (\sqrt{x + 1})^2 \cdot dx = \pi \cdot \int_{-1}^2 (x + 1) \cdot dx \\
\;= \pi \cdot \left[\frac{1}{2}x^2 + x\right]_{-1}^2 = \pi \cdot 4.5VE \approx 14.1372VE
\end{gather*}
\item [b]
\begin{gather*}
y = \frac{1}{x} \\
V = \pi \cdot \int_1^3 (\frac{1}{x})^2 \cdot dx = \pi \cdot \int_1^3 x^{-2} \cdot dx \\
\;= \pi \cdot \left[-x^{-1}\right]_1^3 = \pi \cdot \frac{2}{3}VE \approx 2.0944VE
\end{gather*}
\item [c]
\begin{gather*}
y = x^2 - 6x + 8 \\
y = 0 \qquad L = \{2; 4\} \\
V = \pi \cdot \int_2^4 (x^2 - 6x + 8)^2 \cdot dx = \pi \cdot \int_2^4 (x^4 - 12x^3 + 52x^2 - 96x + 64) \cdot dx \\
\;= \pi \cdot \left[\frac{1}{5}x^5 - 3x^4 + \frac{52}{3}x^3 - 48x^2 + 64x\right]_2^4 = \pi \cdot \frac{16}{15}VE \approx 3.3510VE
\end{gather*}
\end{exercise}
\begin{exercise}{197/8}
\begin{gather*}
f(x) = 0.5x + 1 \qquad g(x) = 1.5 \cdot \sqrt{x - 1} \qquad \left[0; 4\right]
\end{gather*}
\item [a]
\begin{gather*}
V_W = \pi \cdot \int_1^4 (1.5 \cdot \sqrt{x - 1})^2 \cdot dx = \pi \cdot \int_1^4 (2.25x - 2.25) \cdot dx \\
\;= \pi \cdot \left[1.125x^2 - 2.25x\right]_1^4 = 10.125\pi \approx 31.8086 \\
[V_W] = cm^3
\end{gather*}
\item [b]
\begin{gather*}
V = \pi \cdot \int_0^4 (0.5x + 1)^2 \cdot dx = \pi \cdot \int_0^4 (0.25x^2 + x + 1) \cdot dx \\
\;= \pi \cdot \left[\frac{1}{12}x^3 + \frac{1}{2}x^2 + x\right]_0^4 = \frac{52\pi}{3} \approx 54.4543 \\
V_G = V - V_W = 10.125\pi - \frac{52\pi}{3} = 22.6456 \\
[V] = [V_G] = cm^3
\end{gather*}
\end{exercise}
\begin{exercise}{197/9}
\item [b]
\begin{gather*}
f(x) = 3x^2 - x^3 \qquad g(x) = x^2 \\
f(x) = g(x) \qquad L = \{0; 2\} \\\\
V = \pi \cdot ((3x^2 - x^3)^2 - (x^2)^2) \cdot dx = \pi \cdot (9x^4 - 6x^5 + x^6 - x^4) \cdot dx \\
\;= \pi \left[\frac{8}{5}x^5 - x^6 + \frac{1}{7}x^7\right]_0^2 = \frac{192\pi}{35} \approx 17.2339
\end{gather*}
\end{exercise}
\begin{exercise}{188/4}
\item [b]
\begin{gather*}
f(x) = 2x \cdot sin(x) \\
\int f(x) \cdot dx = -cos(x) \cdot 2x - \int -cos(x) \cdot 2 \cdot dx = -cos(x) \cdot 2x + sin(x) \cdot 2
\end{gather*}
\end{exercise}
\begin{exercise}{188/9}
\item [b]
\begin{gather*}
\int_1^e x \cdot ln(2x) \cdot dx \\
\;= \left[\frac{1}{2}x^2 \cdot ln(2x)\right]_1^e - \int_1^e \frac{1}{2}x^2 \cdot \frac{1}{x} \cdot dx = \left[\frac{1}{2}x^2 \cdot ln(2x)\right]_1^e - \int_1^e \frac{1}{2}x \cdot dx \\
\;= \left[\frac{1}{2}x^2 \cdot ln(2x) - \frac{1}{4}x^2\right]_1^e \approx 4.3115
\end{gather*}
\item [c]
\begin{gather*}
\int_1^{e^2} x^2 \cdot ln(x) \cdot dx \\
\;= \left[\frac{1}{3}x^3 \cdot ln(x)\right]_1^{e^2} - \int_1^{e^2} \frac{1}{3}x^3 \cdot \frac{1}{x} \cdot dx \\
\;= \left[\frac{1}{3}x^3 \cdot ln(x) - \frac{1}{9}x^3\right]_1^{e^2} \approx 224.2382
\end{gather*}
\end{exercise}
\chapter{Analytische Geometrie}
\section{Punkte und Vektoren}
Jeder Punkt im Raum $\mathbb{R}^3$ ist durch 3 Koordinaten $(x|y|z)$ oder $(x_1|x_2|x_3)$ festgelegt, sofern zuvor der Ursprung $O$ des Koordinatensystems festgelegt wird. \\
Den Vektor, der vom Ursprung $O$ zum Punkt $A(x|y|z)$ führt, nennt man Ortsvektor von $A$ und notiert man \\
$\vv{OA} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ \\
Ein Vektor ist eine Stecke (mit Länge) mit Orientierung (Pfeil).
\begin{gather*}
\begin{tikzpicture}[scale=0.5]
\draw[|->] (0,0) -- (5,1);
\node[below left] at (0,0) {$O$};
\node[above right] at (5,1) {$A$};
\node at (2.5,1.3) {$\vv{OA}$};
\end{tikzpicture}
\end{gather*}
\subsection{Darstellung im 3-dimensionalen Koordinatensystem}
$A(2|3|4) \qquad B(-3|1|-2) \qquad C(3|0|2)$ \\
Alle Punkte mit $(-2|1|z)$ liegen auf einer Geraden parallel zur $z$-Achse.
\begin{gather*}
\begin{tikzpicture}[scale=0.5,tdplot_main_coords]
\coordinate (O) at (0,0,0);
\draw[thick,->] (O) -- (5,0,0) node[anchor=north east]{$x$};
\draw[thick,->] (O) -- (0,5,0) node[anchor=north west]{$y$};
\draw[thick,->] (O) -- (0,0,5) node[anchor=south]{$z$};
\foreach \coo in {1,...,4}
{
\draw (\coo,0,0.1pt) -- (\coo,0,-0.1pt) node[above=4pt] {\coo};
\draw (0,\coo,0.1pt) -- (0,\coo,-0.1pt) node[below] {\coo};
\draw (0.08pt,-0.08pt,\coo) -- (-0.08pt,0.08pt,\coo) node[right=-1pt] {\coo};
}
\coordinate[fill,circle,inner sep=1.5pt,label=above right:$A$] (A) at (2,3,4);
\coordinate[fill,circle,inner sep=1.5pt,label=above right:$B$] (B) at (-3,1,-2);
\coordinate[fill,circle,inner sep=1.5pt,label=above right:$C$] (C) at (3,0,2);
\draw[color=red] (-2,1,-3) -- (-2,1,5);
\end{tikzpicture}
\end{gather*}
\begin{exercise}{275/2}
\item [a+c]
\begin{gather*}
\begin{tikzpicture}[scale=2,tdplot_main_coords]
\draw[thick,->] (-3,0,0) -- (2,0,0) node[anchor=north east]{$x_1$};
\draw[thick,->] (0,-2,0) -- (0,1,0) node[anchor=north west]{$x_2$};
\draw[thick,->] (0,0,-1) -- (0,0,4.5) node[anchor=south]{$x_3$};
\foreach \coo in {-2,-1,1}
{
\draw (\coo,0,0.1pt) -- (\coo,0,-0.1pt);
}
\foreach \coo in {-1,0}
{
\draw (0,\coo,0.1pt) -- (0,\coo,-0.1pt);
}
\foreach \coo in {1,2,3}
{
\draw (0.08pt,-0.08pt,\coo) -- (-0.08pt,0.08pt,\coo);
}
\coordinate[label=below right:$A$] (A) at (-2,0,0);
\coordinate[label=below right:$B$] (B) at (1,0,0);
\coordinate[label=below left:$C$] (C) at (1,-1,0);
\coordinate[label=above:$G$] (G) at (1,-1,3);
\coordinate[label=above right:$D$] (D) at (-2,-1,0);
\coordinate[label=above right:$E$] (E) at (-2,0,3);
\coordinate[label=above:$F$] (F) at (1,0,3);
\coordinate[label=above right:$H$] (H) at (-2,-1,3);
\draw[color=blue] (A) -- (B) -- (F) -- (E) -- (A);
\draw[color=blue] (B) -- (C) -- (G) -- (F) -- (B);
\draw[color=blue] (E) -- (F) -- (G) -- (H) -- (E);
\draw[dashed,color=blue] (C) -- (D) -- (A);
\draw[dashed,color=blue] (H) -- (D);
\draw[color=red] (-1,-0.5,0) -- (-1,-0.5,3);
\end{tikzpicture}
\end{gather*}
\item [b]
\begin{gather*}
D(-2|-1|0) \qquad E(-2|0|3) \qquad F(1|0|3) \qquad H(-2|-1|3)
\end{gather*}
\end{exercise}
\begin{exercise}{276/3}
\begin{gather*}
P(2|3|0) \qquad Q(4|4|0) \\
R(0|3|1) \qquad S(0|-2|-1) \\
T(2|0|2) \qquad U(3|0|-1)
\end{gather*}
\end{exercise}
\begin{exercise}{276/10}
\begin{gather*}
A(2|0|0) \qquad B(-1|2|-1) \qquad C(-2|3|4) \qquad D(3|4|-2)
\end{gather*}
\item [a]
\begin{gather*}
A'(2|0|0) \qquad B'(-1|2|{\color{red}1}) \qquad C'(-2|3|{\color{red}-4}) \qquad D'(3|4|{\color{red}2})
\end{gather*}
\item [b]
\begin{gather*}
A'({\color{red}-2}|0|0) \qquad B'({\color{red}1}|2|-1) \qquad C'({\color{red}2}|3|4) \qquad D'({\color{red}-3}|4|-2)
\end{gather*}
\item [c]
\begin{gather*}
A'(2|0|0) \qquad B'(-1|{\color{red}-2}|-1) \qquad C'(-2|{\color{red}-3}|4) \qquad D'(3|{\color{red}-4}|-2)
\end{gather*}
\end{exercise}
\section{Ortsvektoren und Verschiebungsvektoren}
$\vv{OA}$ ist der Ortsvektor des Punktes $A$. Der Vektor führt vom Ursprung $O$ zum Punkt $A$. $\vv{BC}$ ist ein Verschiebungsvektor, der Punkt $B$ auf Punkt $C$ verschiebt, bzw. $B$ mit $C$ verbindet und auf $C$ zeigt. Mit Hilfe des Vektors $\vv{BC}$ lassen sich auch andere Punkte in gleicher Weise verschieben wie Punkt $B$ auf Punkt $C$.
\begin{gather*}
\vv{BC} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad P(0|1) \quad Q(4|3) \quad R(1.5|0.5) \\
\vv{OP} + \vv{BC} = \vv{OP'} \qquad \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}
\end{gather*}
\begin{tikzpicture}
\coordinate[label=below left:$P$] (P) at (0,1);
\coordinate[label=below left:$Q$] (Q) at (4,3);
\coordinate[label=below left:$R$] (R) at (1.5,0.5);
\draw[->] (P) -- node[anchor=south east]{$\vv{PP'}$} (3,3);
\draw[->] (Q) -- node[anchor=south east]{$\vv{QQ'}$} (7,5);
\draw[->] (R) -- node[anchor=south east]{$\vv{RR'}$} (4.5,2.5);
\end{tikzpicture}
\subsection{Addition, Subtraktion und Multiplikation mit einer Zahl}
\begin{gather*}
\vv{a} = \begin{pmatrix}1 \\ 0 \\ 5\end{pmatrix} \qquad \vv{b} = \begin{pmatrix}2 \\ -3 \\ 1\end{pmatrix} \qquad \vv{c} = \begin{pmatrix}4 \\ 0 \\ -1\end{pmatrix}
\end{gather*}
\begin{itemize}
\item
\begin{gather*}
\vv{d} = \vv{a} + \vv{b} + \vv{c} \\
\vv{d} = \begin{pmatrix}1 \\ 0 \\ 5\end{pmatrix} + \begin{pmatrix}2 \\ -3 \\ 1\end{pmatrix} + \begin{pmatrix}4 \\ 0 \\ -1\end{pmatrix} = \begin{pmatrix}7 \\ -3 \\ 5\end{pmatrix}
\end{gather*}
\begin{gather*}
\begin{tikzpicture}[scale=0.5]
\fill (0,0,0) circle[radius=3pt];
\draw[->,very thick] (0,0,0) -- (1,0,5);
\draw[->,very thick] (1,0,5) -- (3,-3,6);
\draw[->,very thick] (3,-3,6) -- (7,-3,5);
\draw[->,very thick,color=red] (0,0,0) -- (7,-3,5);
\end{tikzpicture}
\end{gather*}
\item
\begin{gather*}
\vv{e} = \vv{a} - \vv{b} = \vv{a} + (-\vv{b}) \text{ (Gegenvektor von $\vv{b}$)} \\
\vv{e} = \begin{pmatrix}1 \\ 0 \\ 5\end{pmatrix} - \begin{pmatrix}2 \\ -3 \\ 1\end{pmatrix} = \begin{pmatrix}1 \\ 0 \\ 5\end{pmatrix} + \begin{pmatrix}-2 \\ 3 \\ -1\end{pmatrix} = \begin{pmatrix}-1 \\ 3 \\ 4\end{pmatrix}
\end{gather*}
\begin{gather*}
\begin{tikzpicture}[scale=0.5]
\fill (0,0,0) circle[radius=3pt];
\draw[->,very thick] (0,0,0) -- (1,0,5);
\draw[->,very thick] (1,0,5) -- (-1,3,4);
\draw[->,very thick,color=red] (0,0,0) -- (-1,3,4);
\end{tikzpicture}
\end{gather*}
\item
\begin{gather*}
\vv{f} = 3 \cdot \vv{a} \\
\vv{f} = 3 \cdot \begin{pmatrix}1 \\ 0 \\ 5\end{pmatrix} = \begin{pmatrix}3 \\ 0 \\ 15\end{pmatrix}
\end{gather*}
\end{itemize}
\subsubsection{Darstellung eines Vektors durch andere Vektoren (Bsp. Verbindungsvektor)}
\begin{gather*}
\vv{a} = \vv{OA} = \begin{pmatrix}4 \\ 4 \\ 1\end{pmatrix} \qquad \vv{b} = \vv{OB} = \begin{pmatrix}-1 \\ 0 \\ 3\end{pmatrix} \\
\vv{AB} = -\vv{a} + \vv{b} = -\vv{OA} + \vv{OB} = \vv{OB} - \vv{OA} = \begin{pmatrix}-1 \\ 0 \\ 3\end{pmatrix} - \begin{pmatrix}4 \\ 4 \\ 1\end{pmatrix} = \begin{pmatrix}-5 \\ -4 \\ 2\end{pmatrix}
\end{gather*}
\begin{exercise}{279/6}
\item [a]
\begin{gather*}
A(-2|2|3) \qquad B(5|5|5) \qquad C(9|6|5) \qquad D(2|3|3) \\
\vv{AB} = \begin{pmatrix}7 \\ 3 \\ 2\end{pmatrix} \qquad \vv{DC} = \begin{pmatrix}7 \\ 3 \\ 2\end{pmatrix} \\
\vv{AB} = \vv{DC} \quad\Rightarrow\quad \text{Parallelogramm}
\end{gather*}
\item [b]
\begin{gather*}
A(2|0|3) \qquad B(4|4|4) \qquad C(11|7|9) \qquad D(9|3|8) \\
\vv{AB} = \begin{pmatrix}2 \\ 4 \\ 1\end{pmatrix} \qquad \vv{DC} = \begin{pmatrix}2 \\ 4 \\ 1\end{pmatrix} \\
\vv{AB} = \vv{DC} \quad\Rightarrow\quad \text{Parallelogramm}
\end{gather*}
\item [c]
\begin{gather*}
A(2|-2|7) \qquad B(6|5|1) \qquad C(1|-1|1) \qquad D(8|0|8) \\
\vv{AB} = \begin{pmatrix}4 \\ 7 \\ -6\end{pmatrix} \qquad \vv{DC} = \begin{pmatrix}-7 \\ -1 \\ -7\end{pmatrix} \\
\vv{AB} \neq \vv{DC} \quad\Rightarrow\quad \text{kein Parallelogramm}
\end{gather*}
\end{exercise}
\newpage
\begin{exercise}{279/7}
\item [a]
\begin{gather*}
A(21|-11|43) \qquad B(3|7|-8) \qquad C(0|4|5) \\
\vv{AB} = \begin{pmatrix}-18 \\ 18 \\ -51\end{pmatrix} \qquad \vv{BC} = \begin{pmatrix}-3 \\ -3 \\ 13\end{pmatrix} \\
\vv{OD_1} = \vv{OA} + \vv{BC} = \begin{pmatrix}18 \\ -14 \\ 56\end{pmatrix} \\
\vv{OD_2} = \vv{OC} + \vv{AB} = \begin{pmatrix}-18 \\ 22 \\ -46\end{pmatrix} \\
\vv{OD_3} = \vv{OA} - \vv{BC} = \begin{pmatrix}24 \\ -8 \\ 30\end{pmatrix}
\end{gather*}
\begin{gather*}
\begin{tikzpicture}[scale=0.13]
\coordinate (A) at (21,-11,43);
\coordinate (B) at (3,7,-8);
\coordinate (C) at (0,4,5);
\coordinate (D1) at (18,-14,56);
\coordinate (D2) at (-18,22,-46);
\coordinate (D3) at (24,-8,30);
\node[below right] at (A) {$A$};
\node[above right] at (B) {$B$};
\node[left] at (C) {$C$};
\node[below] at (D1) {$D_1$};
\node[above] at (D2) {$D_2$};
\node[right] at (D3) {$D_3$};
\draw[very thick] (A) -- (B) -- (C) -- (A);
\draw (A) -- (D1) -- (C);
\draw (B) -- (D2) -- (C);
\draw (A) -- (D3) -- (B);
\end{tikzpicture}
\end{gather*}
\item [b]
\begin{gather*}
A(-75|199|-67) \qquad B(35|0|-81) \qquad C(1|2|3) \\
\vv{AB} = \begin{pmatrix}110 \\ -199 \\ 14\end{pmatrix} \qquad \vv{BC} = \begin{pmatrix}-34 \\ 2 \\ 84\end{pmatrix} \\
\vv{OD_1} = \vv{OA} + \vv{BC} = \begin{pmatrix}-109 \\ 201 \\ 17\end{pmatrix} \\
\vv{OD_2} = \vv{OC} + \vv{AB} = \begin{pmatrix}111 \\ -197 \\ 17\end{pmatrix} \\
\vv{OD_3} = \vv{OA} - \vv{BC} = \begin{pmatrix}-41 \\ 197 \\ -151\end{pmatrix}
\end{gather*}
\begin{gather*}
\begin{tikzpicture}[scale=0.024]
\coordinate (A) at (-75,199,-67);
\coordinate (B) at (35,0,-81);
\coordinate (C) at (1,2,3);
\coordinate (D1) at (-109,201,17);
\coordinate (D2) at (111,-197,17);
\coordinate (D3) at (-41,197,-151);
\node[above left] at (A) {$A$};
\node[right] at (B) {$B$};
\node[below left] at (C) {$C$};
\node[left] at (D1) {$D_1$};
\node[below right] at (D2) {$D_2$};
\node[above right] at (D3) {$D_3$};
\draw[very thick] (A) -- (B) -- (C) -- (A);
\draw (A) -- (D1) -- (C);
\draw (B) -- (D2) -- (C);
\draw (A) -- (D3) -- (B);
\end{tikzpicture}
\end{gather*}
\end{exercise}
\subsection{Vektorzüge und Linearkombinationen}
(zu 279/6) \\\\
$M_1$ ... Mittelpunkt von $\overline{AB}$ \\
$M_2$ ... Mittelpunkt des Parallelogramms (mit $D_1$)
\begin{gather*}
\vv{OM_1} = \vv{OA} + \frac{1}{2} \cdot \vv{AB} = \vv{OB} - \frac{1}{2}\vv{AB} \\
\vv{OM_2} = \vv{OA} + \frac{1}{2} \cdot \vv{AC} = \vv{OC} - \frac{1}{2}\vv{AC}
\end{gather*}
\begin{itemize}
\item [zu 6a]
\begin{gather*}
\vv{OA} = \begin{pmatrix}-2 \\ 2 \\ 3\end{pmatrix} \qquad \vv{OB} = \begin{pmatrix}5 \\ 5 \\ 5\end{pmatrix} \qquad \vv{OC} = \begin{pmatrix}9 \\ 6 \\ 5\end{pmatrix} \\
\vv{OM_1} = \begin{pmatrix}-2 \\ 2 \\ 3\end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix}7 \\ 3 \\ 2\end{pmatrix} = \begin{pmatrix}1.5 \\ 3.5 \\ 4\end{pmatrix} \\
\vv{OM_2} = \begin{pmatrix}-2 \\ 2 \\ 3\end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix}11 \\ 4 \\ 2\end{pmatrix} = \begin{pmatrix}3.5 \\ 4 \\ 4\end{pmatrix}
\end{gather*}
\item [zu 6b]
\begin{gather*}
\vv{OA} = \begin{pmatrix}2 \\ 0 \\ 3\end{pmatrix} \qquad \vv{OB} = \begin{pmatrix}4 \\ 4 \\ 4\end{pmatrix} \qquad \vv{OC} = \begin{pmatrix}11 \\ 7 \\ 9\end{pmatrix} \\
\vv{OM_1} = \begin{pmatrix}2 \\ 0 \\ 3\end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix}2 \\ 4 \\ 1\end{pmatrix} = \begin{pmatrix}3 \\ 2 \\ 3.5\end{pmatrix} \\
\vv{OM_2} = \begin{pmatrix}2 \\ 0 \\ 3\end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix}9 \\ 7 \\ 6\end{pmatrix} = \begin{pmatrix}6.5 \\ 3.5 \\ 6\end{pmatrix}
\end{gather*}
\end{itemize}
Setze ich mehrere Vektorpfeile, mit Koeffizienten multipliziert, aneinander, so nennt man das einen Vektorzug. Die rechnerische Summe solcher Vektoren heißt Linearkombination.
\newpage
\begin{exercise}{283/5}
\item [a]
\begin{gather*}
2 \cdot \begin{pmatrix}1 \\ 2\end{pmatrix} + 3 \cdot \begin{pmatrix}2 \\ 0\end{pmatrix} = \begin{pmatrix}8 \\ 4\end{pmatrix}
\end{gather*}
\begin{gather*}
\begin{tikzpicture}
\draw[->] (0,0) -- (1,2);
\draw[->] (1,2) -- (2,4);
\draw[->] (2,4) -- (4,4);
\draw[->] (4,4) -- (6,4);
\draw[->] (6,4) -- (8,4);
\draw[->] (0,0) -- (2,0);
\draw[->] (2,0) -- (4,0);
\draw[->] (4,0) -- (6,0);
\draw[->] (6,0) -- (7,2);
\draw[->] (7,2) -- (8,4);
\draw[->,color=red] (0,0) -- (8,4);
\end{tikzpicture}
\end{gather*}
\item [b]
\begin{gather*}