You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello,
I'm working on a Neural Network for the video game Celeste, and I'm using Numsharp to convert a code that a friend made, but he used python.
Currently, I'm calling a train function a huge number of time, and randomly, this error pops out :
One or more errors occurred.
-> at System.Threading.Tasks.Task.ThrowIfExceptional()
-> at System.Threading.Tasks.Task.Wait()
-> at System.Threading.Tasks.Task.Wait()
-> at System.Threading.Tasks.Parallel.ForWorker[TLocal]()
-> at System. Threading.Tasks. Parallel.For()
-> at NumSharp. Backends. DefaultEngine.ClipNDArray()
-> at NumSharp.np.maximum()
I've googled it but found nothing relevant.
I don't really know if I can do a proper reproductible exemple, but if you need more informations about this error, i would be pleased to send them.
publicclassFirstLayers{publicNDArrayweights;publicNDArraybiases;publicNDArrayinputs;publicNDArrayoutputNotActivated;publicNDArrayoutput;publicNDArrayoutputGradient;publicFirstLayers(NDArrayweights,NDArraybiases){this.weights=weights;this.biases=biases;}publicvoidForward(NDArrayinputs){this.inputs=inputs;this.outputNotActivated=np.dot(inputs,this.weights)+this.biases;//np.dotthis.output=np.maximum(0,this.outputNotActivated);}publicvoidFirstLayerBackward(NDArrayinputGradient,doublelearningRate){boolone=DerivRelu(this.outputNotActivated)==null;inputGradient=inputGradient*DerivRelu(this.outputNotActivated);this.outputGradient=np.dot(inputGradient,this.weights.T);this.weights-=np.dot(this.inputs.T,inputGradient)*learningRate/inputGradient.shape[0];this.biases-=np.mean(inputGradient,axis:0)*learningRate;}publicNDArrayDerivRelu(NDArrayx){NDArrayresult=np.zeros(x.Shape);for(inti=0;i<x.Shape[0];i++){for(intj=0;j<x.Shape[1];j++){result[i,j]=(x[i,j].Data<double>()[0]>0?1:0);}}returnresult;}}publicclassLastLayer{publicNDArrayweights;publicNDArraybiases;publicNDArrayinputs;publicNDArrayoutputGradient;publicNDArrayoutput;publicLastLayer(NDArrayweights,NDArraybiases){this.weights=weights;this.biases=biases;}publicvoidForward(NDArrayinputs){this.inputs=inputs;NDArrayoutputNotActivated=np.dot(inputs,this.weights)+this.biases;NDArrayexpValues=np.exp(outputNotActivated-np.max(outputNotActivated,axis:1,keepdims:true));this.output=expValues/np.sum(expValues.astype(NPTypeCode.Float),axis:1,keepdims:true);}publicvoidLastLayerBackward(NDArrayyPred,NDArrayyTrue,doublelearningRate){NDArrayinputGradient=yPred-yTrue;this.outputGradient=np.dot(inputGradient,this.weights.T);this.weights-=np.dot(this.inputs.T,inputGradient)*learningRate/inputGradient.shape[0];this.biases-=np.mean(inputGradient,axis:0)*learningRate;}}privatestaticTuple<List<FirstLayers>,LastLayer>nn;publicstaticvoidOpen(){varweights=newList<NDArray>();varbiases=newList<NDArray>();foreach(stringfileinDirectory.GetFiles("Mia/weights")){weights.Add(np.load(file));}foreach(stringfileinDirectory.GetFiles("Mia/biases")){biases.Add(np.load(file));}intn=weights.Count;nn=newTuple<List<FirstLayers>,LastLayer>(newList<FirstLayers>(),newLastLayer(weights[n-1],biases[n-1]));// I gave it a new value... We'll see.for(intj=0;j<n-1;j++){nn.Item1.Add(newFirstLayers(weights[j],biases[j]));}}publicstaticvoidTrain(doublelr,NDArrayallTiles,int[]keypress){NDArraytrueInputs=allTiles.reshape(1,400);NDArraylabels=newNDArray(keypress);NDArrayoutput=ForPropagation(trueInputs);BackPropagation(output,labels,lr);}publicstaticNDArrayForPropagation(NDArrayinput){nn.Item1[0].Forward(input);for(inti=1;i<nn.Item1.Count;i++)// Adding all the values inside of FirstLayer{nn.Item1[i].Forward(nn.Item1[i-1].output);}nn.Item2.Forward(nn.Item1[nn.Item1.Count-1].output);returnnn.Item2.output;}publicstaticvoidBackPropagation(NDArrayyPred,NDArrayyTrue,doublelr){// Your implementation for the BackPropagation functionnn.Item2.LastLayerBackward(yPred,yTrue,lr);nn.Item1[nn.Item1.Count-1].FirstLayerBackward(nn.Item2.outputGradient,lr);for(inti=nn.Item1.Count-3;i>=0;i--){nn.Item1[i].FirstLayerBackward(nn.Item1[i+1].outputGradient,lr);}}}}
The text was updated successfully, but these errors were encountered:
Hello,
I'm working on a Neural Network for the video game Celeste, and I'm using Numsharp to convert a code that a friend made, but he used python.
Currently, I'm calling a train function a huge number of time, and randomly, this error pops out :
I've googled it but found nothing relevant.
I don't really know if I can do a proper reproductible exemple, but if you need more informations about this error, i would be pleased to send them.
Here is some of the code :
The text was updated successfully, but these errors were encountered: