|
| 1 | +#= |
| 2 | +This file implements and tests a typical workflow for state estimation with disturbance models |
| 3 | +The primary subject of the tests is the analysis-point features and the |
| 4 | +analysis-point specific method for `generate_control_function`. |
| 5 | +=# |
| 6 | +using ModelingToolkit, OrdinaryDiffEq, LinearAlgebra, Test |
| 7 | +using ModelingToolkitStandardLibrary.Mechanical.Rotational |
| 8 | +using ModelingToolkitStandardLibrary.Blocks |
| 9 | +using ModelingToolkit: connect |
| 10 | +# using Plots |
| 11 | + |
| 12 | +using ModelingToolkit: t_nounits as t, D_nounits as D |
| 13 | + |
| 14 | +indexof(sym, syms) = findfirst(isequal(sym), syms) |
| 15 | + |
| 16 | +## Build the system model ====================================================== |
| 17 | +@mtkmodel SystemModel begin |
| 18 | + @parameters begin |
| 19 | + m1 = 1 |
| 20 | + m2 = 1 |
| 21 | + k = 10 # Spring stiffness |
| 22 | + c = 3 # Damping coefficient |
| 23 | + end |
| 24 | + @components begin |
| 25 | + inertia1 = Inertia(; J = m1, phi = 0, w = 0) |
| 26 | + inertia2 = Inertia(; J = m2, phi = 0, w = 0) |
| 27 | + spring = Spring(; c = k) |
| 28 | + damper = Damper(; d = c) |
| 29 | + torque = Torque(use_support = false) |
| 30 | + end |
| 31 | + @equations begin |
| 32 | + connect(torque.flange, inertia1.flange_a) |
| 33 | + connect(inertia1.flange_b, spring.flange_a, damper.flange_a) |
| 34 | + connect(inertia2.flange_a, spring.flange_b, damper.flange_b) |
| 35 | + end |
| 36 | +end |
| 37 | + |
| 38 | +@mtkmodel ModelWithInputs begin |
| 39 | + @components begin |
| 40 | + input_signal = Blocks.Sine(frequency = 1, amplitude = 1) |
| 41 | + disturbance_signal1 = Blocks.Constant(k = 0) |
| 42 | + disturbance_signal2 = Blocks.Constant(k = 0) |
| 43 | + disturbance_torque1 = Torque(use_support = false) |
| 44 | + disturbance_torque2 = Torque(use_support = false) |
| 45 | + system_model = SystemModel() |
| 46 | + end |
| 47 | + @equations begin |
| 48 | + connect(input_signal.output, :u, system_model.torque.tau) |
| 49 | + connect(disturbance_signal1.output, :d1, disturbance_torque1.tau) |
| 50 | + connect(disturbance_signal2.output, :d2, disturbance_torque2.tau) |
| 51 | + connect(disturbance_torque1.flange, system_model.inertia1.flange_b) |
| 52 | + connect(disturbance_torque2.flange, system_model.inertia2.flange_b) |
| 53 | + end |
| 54 | +end |
| 55 | + |
| 56 | +@named model = ModelWithInputs() # Model with load disturbance |
| 57 | +ssys = structural_simplify(model) |
| 58 | +prob = ODEProblem(ssys, [], (0.0, 10.0)) |
| 59 | +sol = solve(prob, Tsit5()) |
| 60 | +# plot(sol) |
| 61 | + |
| 62 | +## |
| 63 | +using ControlSystemsBase, ControlSystemsMTK |
| 64 | +cmodel = complete(model) |
| 65 | +P = cmodel.system_model |
| 66 | +lsys = named_ss( |
| 67 | + model, [:u, :d1], [P.inertia1.phi, P.inertia2.phi, P.inertia1.w, P.inertia2.w]) |
| 68 | + |
| 69 | +## |
| 70 | +# If we now want to add a disturbance model, we cannot do that since we have already connected a constant to the disturbance input. We have also already used the name `d` for an analysis point, but that might not be an issue since we create an outer model and get a new namespace. |
| 71 | + |
| 72 | +s = tf("s") |
| 73 | +dist(; name) = ODESystem(1 / s; name) |
| 74 | + |
| 75 | +@mtkmodel SystemModelWithDisturbanceModel begin |
| 76 | + @components begin |
| 77 | + input_signal = Blocks.Sine(frequency = 1, amplitude = 1) |
| 78 | + disturbance_signal1 = Blocks.Constant(k = 0) |
| 79 | + disturbance_signal2 = Blocks.Constant(k = 0) |
| 80 | + disturbance_torque1 = Torque(use_support = false) |
| 81 | + disturbance_torque2 = Torque(use_support = false) |
| 82 | + disturbance_model = dist() |
| 83 | + system_model = SystemModel() |
| 84 | + end |
| 85 | + @equations begin |
| 86 | + connect(input_signal.output, :u, system_model.torque.tau) |
| 87 | + connect(disturbance_signal1.output, :d1, disturbance_model.input) |
| 88 | + connect(disturbance_model.output, disturbance_torque1.tau) |
| 89 | + connect(disturbance_signal2.output, :d2, disturbance_torque2.tau) |
| 90 | + connect(disturbance_torque1.flange, system_model.inertia1.flange_b) |
| 91 | + connect(disturbance_torque2.flange, system_model.inertia2.flange_b) |
| 92 | + end |
| 93 | +end |
| 94 | + |
| 95 | +@named model_with_disturbance = SystemModelWithDisturbanceModel() |
| 96 | +# ssys = structural_simplify(open_loop(model_with_disturbance, :d)) # Open loop worked, but it's a bit awkward that we have to use it here |
| 97 | +# lsys2 = named_ss(model_with_disturbance, [:u, :d1], |
| 98 | +# [P.inertia1.phi, P.inertia2.phi, P.inertia1.w, P.inertia2.w]) |
| 99 | +ssys = structural_simplify(model_with_disturbance) |
| 100 | +prob = ODEProblem(ssys, [], (0.0, 10.0)) |
| 101 | +sol = solve(prob, Tsit5()) |
| 102 | +@test SciMLBase.successful_retcode(sol) |
| 103 | +# plot(sol) |
| 104 | + |
| 105 | +## |
| 106 | +# Now we only have an integrating disturbance affecting inertia1, what if we want both integrating and direct Gaussian? We'd need a "PI controller" disturbancemodel. If we add the disturbance model (s+1)/s we get the integrating and non-integrating noises being correlated which is fine, it reduces the dimensions of the sigma point by 1. |
| 107 | + |
| 108 | +dist3(; name) = ODESystem(ss(1 + 10 / s, balance = false); name) |
| 109 | + |
| 110 | +@mtkmodel SystemModelWithDisturbanceModel begin |
| 111 | + @components begin |
| 112 | + input_signal = Blocks.Sine(frequency = 1, amplitude = 1) |
| 113 | + disturbance_signal1 = Blocks.Constant(k = 0) |
| 114 | + disturbance_signal2 = Blocks.Constant(k = 0) |
| 115 | + disturbance_torque1 = Torque(use_support = false) |
| 116 | + disturbance_torque2 = Torque(use_support = false) |
| 117 | + disturbance_model = dist3() |
| 118 | + system_model = SystemModel() |
| 119 | + |
| 120 | + y = Blocks.Add() |
| 121 | + angle_sensor = AngleSensor() |
| 122 | + output_disturbance = Blocks.Constant(k = 0) |
| 123 | + end |
| 124 | + @equations begin |
| 125 | + connect(input_signal.output, :u, system_model.torque.tau) |
| 126 | + connect(disturbance_signal1.output, :d1, disturbance_model.input) |
| 127 | + connect(disturbance_model.output, disturbance_torque1.tau) |
| 128 | + connect(disturbance_signal2.output, :d2, disturbance_torque2.tau) |
| 129 | + connect(disturbance_torque1.flange, system_model.inertia1.flange_b) |
| 130 | + connect(disturbance_torque2.flange, system_model.inertia2.flange_b) |
| 131 | + |
| 132 | + connect(system_model.inertia1.flange_b, angle_sensor.flange) |
| 133 | + connect(angle_sensor.phi, y.input1) |
| 134 | + connect(output_disturbance.output, :dy, y.input2) |
| 135 | + end |
| 136 | +end |
| 137 | + |
| 138 | +@named model_with_disturbance = SystemModelWithDisturbanceModel() |
| 139 | +# ssys = structural_simplify(open_loop(model_with_disturbance, :d)) # Open loop worked, but it's a bit awkward that we have to use it here |
| 140 | +# lsys3 = named_ss(model_with_disturbance, [:u, :d1], |
| 141 | +# [P.inertia1.phi, P.inertia2.phi, P.inertia1.w, P.inertia2.w]) |
| 142 | +ssys = structural_simplify(model_with_disturbance) |
| 143 | +prob = ODEProblem(ssys, [], (0.0, 10.0)) |
| 144 | +sol = solve(prob, Tsit5()) |
| 145 | +@test SciMLBase.successful_retcode(sol) |
| 146 | +# plot(sol) |
| 147 | + |
| 148 | +## Generate function for an augmented Unscented Kalman Filter ===================== |
| 149 | +# temp = open_loop(model_with_disturbance, :d) |
| 150 | +outputs = [P.inertia1.phi, P.inertia2.phi, P.inertia1.w, P.inertia2.w] |
| 151 | +(f_oop1, f_ip), x_sym, p_sym, io_sys = ModelingToolkit.generate_control_function( |
| 152 | + model_with_disturbance, [:u], [:d1, :d2, :dy], split = false) |
| 153 | + |
| 154 | +(f_oop2, f_ip2), x_sym, p_sym, io_sys = ModelingToolkit.generate_control_function( |
| 155 | + model_with_disturbance, [:u], [:d1, :d2, :dy], |
| 156 | + disturbance_argument = true, split = false) |
| 157 | + |
| 158 | +measurement = ModelingToolkit.build_explicit_observed_function( |
| 159 | + io_sys, outputs, inputs = ModelingToolkit.inputs(io_sys)[1:1]) |
| 160 | +measurement2 = ModelingToolkit.build_explicit_observed_function( |
| 161 | + io_sys, [io_sys.y.output.u], inputs = ModelingToolkit.inputs(io_sys)[1:1], |
| 162 | + disturbance_inputs = ModelingToolkit.inputs(io_sys)[2:end], |
| 163 | + disturbance_argument = true) |
| 164 | + |
| 165 | +op = ModelingToolkit.inputs(io_sys) .=> 0 |
| 166 | +x0, p = ModelingToolkit.get_u0_p(io_sys, op, op) |
| 167 | +x = zeros(5) |
| 168 | +u = zeros(1) |
| 169 | +d = zeros(3) |
| 170 | +@test f_oop2(x, u, p, t, d) == zeros(5) |
| 171 | +@test measurement(x, u, p, 0.0) == [0, 0, 0, 0] |
| 172 | +@test measurement2(x, u, p, 0.0, d) == [0] |
| 173 | + |
| 174 | +# Add to the integrating disturbance input |
| 175 | +d = [1, 0, 0] |
| 176 | +@test sort(f_oop2(x, u, p, 0.0, d)) == [0, 0, 0, 1, 1] # Affects disturbance state and one velocity |
| 177 | +@test measurement2(x, u, p, 0.0, d) == [0] |
| 178 | + |
| 179 | +d = [0, 1, 0] |
| 180 | +@test sort(f_oop2(x, u, p, 0.0, d)) == [0, 0, 0, 0, 1] # Affects one velocity |
| 181 | +@test measurement(x, u, p, 0.0) == [0, 0, 0, 0] |
| 182 | +@test measurement2(x, u, p, 0.0, d) == [0] |
| 183 | + |
| 184 | +d = [0, 0, 1] |
| 185 | +@test sort(f_oop2(x, u, p, 0.0, d)) == [0, 0, 0, 0, 0] # Affects nothing |
| 186 | +@test measurement(x, u, p, 0.0) == [0, 0, 0, 0] |
| 187 | +@test measurement2(x, u, p, 0.0, d) == [1] # We have now disturbed the output |
| 188 | + |
| 189 | +## Further downstream tests that the functions generated above actually have the properties required to use for state estimation |
| 190 | +# |
| 191 | +# using LowLevelParticleFilters, SeeToDee |
| 192 | +# Ts = 0.001 |
| 193 | +# discrete_dynamics = SeeToDee.Rk4(f_oop2, Ts) |
| 194 | +# nx = length(x_sym) |
| 195 | +# nu = 1 |
| 196 | +# nw = 2 |
| 197 | +# ny = length(outputs) |
| 198 | +# R1 = Diagonal([1e-5, 1e-5]) |
| 199 | +# R2 = 0.1 * I(ny) |
| 200 | +# op = ModelingToolkit.inputs(io_sys) .=> 0 |
| 201 | +# x0, p = ModelingToolkit.get_u0_p(io_sys, op, op) |
| 202 | +# d0 = LowLevelParticleFilters.SimpleMvNormal(x0, 10.0I(nx)) |
| 203 | +# measurement_model = UKFMeasurementModel{Float64, false, false}(measurement, R2; nx, ny) |
| 204 | +# kf = UnscentedKalmanFilter{false, false, true, false}( |
| 205 | +# discrete_dynamics, measurement_model, R1, d0; nu, Ts, p) |
| 206 | + |
| 207 | +# tvec = 0:Ts:sol.t[end] |
| 208 | +# u = vcat.(Array(sol(tvec, idxs = P.torque.tau.u))) |
| 209 | +# y = collect.(eachcol(Array(sol(tvec, idxs = outputs)) .+ 1e-2 .* randn.())) |
| 210 | + |
| 211 | +# inds = 1:5805 |
| 212 | +# res = forward_trajectory(kf, u, y) |
| 213 | + |
| 214 | +# plot(res, size = (1000, 1000)); |
| 215 | +# plot!(sol, idxs = x_sym, sp = (1:nx)', l = :dash); |
0 commit comments