-
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgeilo_workshop.lyx
564 lines (415 loc) · 9.67 KB
/
geilo_workshop.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section
Differentiation of Loss Functions Containing ODE Definitions
\end_layout
\begin_layout Standard
Why do we need to caculate the derivative of the simulator?
\end_layout
\begin_layout Standard
Let's assume that
\begin_inset Formula $S(p)$
\end_inset
is the solution to the simulator given parameters
\begin_inset Formula $p.$
\end_inset
And let's assume that we are solving the inverse problem by minimizing
a cost function
\begin_inset Formula $C(p)=\Vert S(p)-d\Vert$
\end_inset
.
Question: what is
\begin_inset Formula $\frac{dC}{dp}$
\end_inset
?
\end_layout
\begin_layout Standard
\begin_inset Formula $C(p)=\sum_{i=1}^{n}(S(p)_{i}-d_{i})^{2}$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $\frac{dC}{dp}=\sum_{i=1}^{n}2(S(p)_{i}-d_{i})\frac{dS_{i}}{dp}$
\end_inset
\end_layout
\begin_layout Standard
where
\begin_inset Formula $\frac{dS}{dp}$
\end_inset
is the change in the simulation output when changing your parameters.
\end_layout
\begin_layout Section
Forward Sensitivity Analysis
\end_layout
\begin_layout Subsection
Forward Sensitivity Analysis of an ODE
\end_layout
\begin_layout Standard
\begin_inset Formula $\frac{du(t,p)}{dt}=f(u(t,p),p,t)$
\end_inset
\end_layout
\begin_layout Standard
Differentiate both sides by
\begin_inset Formula $p$
\end_inset
:
\end_layout
\begin_layout Standard
\begin_inset Formula $\frac{d}{dt}\frac{du}{dp}=\frac{d}{dp}\frac{du(t,p)}{dt}=\frac{d}{dp}f(u(t,p),p,t)=\frac{\partial f}{\partial u}\frac{du}{dp}+\frac{\partial f}{\partial p}$
\end_inset
\end_layout
\begin_layout Standard
Now let's let
\begin_inset Formula $s=sensitivty=\frac{du(t,p)}{dp}$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $\frac{ds}{dt}=s'=\frac{\partial f(u(t,p),p,t)}{\partial u}s+\frac{\partial f(u(t,p),p,t)}{\partial p}$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
u' & =f(u,p,t)\\
s' & =\frac{\partial f}{\partial u}s+\frac{\partial f}{\partial p}
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
System of differential equations known as the forward sensitivity equation.
\end_layout
\begin_layout Standard
For this to be an ODE, you need
\begin_inset Formula $s(0)$
\end_inset
.
What is
\begin_inset Formula $s(0)$
\end_inset
?
\end_layout
\begin_layout Standard
\begin_inset Formula $s(0)=\frac{du(0,p)}{dp}=$
\end_inset
the derivative of the initial conditions w.r.t.
the parameters.
\end_layout
\begin_layout Standard
\begin_inset Formula $\frac{d}{dt}\frac{dx}{d\alpha}=\frac{\partial f_{1}}{\partial x}\frac{dx}{d\alpha}+\frac{\partial f_{1}}{\partial\alpha}$
\end_inset
\end_layout
\begin_layout Standard
Take an ODE system of size
\begin_inset Formula $n$
\end_inset
with
\begin_inset Formula $p$
\end_inset
parameters, and turn it into a new ODE of size
\begin_inset Formula $(n+1)p$
\end_inset
, what you get is a time series
\begin_inset Formula $\frac{du(t)}{dp}$
\end_inset
.
\end_layout
\begin_layout Standard
Downsides? Cost
\begin_inset Formula $\mathcal{O}(np)$
\end_inset
\end_layout
\begin_layout Standard
Question: can you do this in
\begin_inset Formula $\mathcal{O}(n+p)$
\end_inset
?
\end_layout
\begin_layout Subsection
Forward Sensitivity Analysis of Nonlinear Solving
\end_layout
\begin_layout Standard
So assume you have a nonlinear system:
\end_layout
\begin_layout Standard
Solve for
\begin_inset Formula $u^{\ast}(p)$
\end_inset
s.t.
\begin_inset Formula $f(u^{\ast}(p),p)=0$
\end_inset
.
So by definition:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
f(u^{\ast}(p),p) & =0\\
\frac{d}{dp} & f(u^{\ast}(p),p)=0\\
\frac{\partial f}{\partial u} & \frac{du^{\ast}}{dp}+\frac{\partial f}{\partial p}=0\\
Ax & =b
\end{align*}
\end_inset
where
\begin_inset Formula $b=-\frac{\partial f}{\partial p}$
\end_inset
,
\begin_inset Formula $A=\frac{\partial f}{\partial u}$
\end_inset
\end_layout
\begin_layout Standard
so then
\begin_inset Formula $\frac{du^{\ast}}{dp}=-\frac{\partial f}{\partial u}^{-1}\vert_{u^{\ast}}\frac{\partial f}{\partial p}$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $A(p)x=b$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $\frac{dx}{dp}$
\end_inset
\end_layout
\begin_layout Standard
Let
\begin_inset Formula $S(p)$
\end_inset
be the solution to solving an optimization problem with parameters
\begin_inset Formula $p$
\end_inset
.
What is
\begin_inset Formula $\frac{dS}{dp}$
\end_inset
?
\end_layout
\begin_layout Section
What is Forward-Mode Automatic Differentiation?
\end_layout
\begin_layout Standard
So forward mode automatic differentiation is a scheme for computing derivatives
via dual number arithmatic.
(Some formulations of forward mode AD do not use dual numbers, though this
is equivalent to forms via computational graphs).
\end_layout
\begin_layout Standard
Definition: a dual number is a number
\begin_inset Formula $d=x+y\epsilon$
\end_inset
(where
\begin_inset Formula $\epsilon$
\end_inset
is a dimensional signifier,
\begin_inset Formula $(x,y)$
\end_inset
,
\begin_inset Formula $x$
\end_inset
is known as the primal and
\begin_inset Formula $y$
\end_inset
is the partial) which satisfies the algebra defined by:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
f(d) & =f(x)+yf'(x)\epsilon\\
\epsilon^{2} & =0
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
Think of
\begin_inset Formula $x$
\end_inset
as
\begin_inset Quotes eld
\end_inset
carrying forward the original value
\begin_inset Quotes erd
\end_inset
, and
\begin_inset Formula $y$
\end_inset
as
\begin_inset Quotes eld
\end_inset
the derivative of the program w.r.t.
\begin_inset Formula $x$
\end_inset
\begin_inset Quotes erd
\end_inset
.
\end_layout
\begin_layout Standard
Let's check:
\end_layout
\begin_layout Standard
\begin_inset Formula $f(x+1\epsilon)=f(x)+f'(x)\epsilon$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
(x+y\epsilon)+(v+w\epsilon) & =(x+v)+(y+w)\epsilon\\
(x+y\epsilon)(v+w\epsilon) & =xv+(yv+wx)\epsilon
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $g(f(d))=g(f(x)+yf'(x)\epsilon)=g(f(x))+g'(f(x))f'(x)y\epsilon$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $\Vert d\Vert=\Vert x\Vert$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $\Vert d\Vert=\Vert x\Vert+\Vert y\Vert$
\end_inset
\end_layout
\begin_layout Subsection
What does automatic differentiation do to complex codes, like a solver for
an ordinary differential equation?
\end_layout
\begin_layout Standard
Let's figure out why the freaky magic works by using Euler's method:
\end_layout
\begin_layout Standard
\begin_inset Formula $u'=f(u)$
\end_inset
\end_layout
\begin_layout Standard
We solve this via the iteration:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
u_{n+1} & =u_{n}+hf(u_{n})\\
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
Now let
\begin_inset Formula $u_{n}=x_{n}+y_{n}\epsilon$
\end_inset
.
Plug it in:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
x_{n+1}+y_{n+1}\epsilon & =x_{n}+y_{n}\epsilon+hf(x_{n}+y_{n}\epsilon,)\\
x_{n+1}+y_{n+1}\epsilon & =x_{n}+y_{n}\epsilon+h(f(x_{n})+y_{n}f'(x_{n})\epsilon)
\end{align*}
\end_inset
now I split by taking the terms with and without epsilon:
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
x_{n+1} & =x_{n}+hf(x_{n})\\
y_{n+1} & =y_{n}+hy_{n}f'(x_{n})
\end{align*}
\end_inset
now let
\begin_inset Formula $h\rightarrow0$
\end_inset
, then this is Euler's method for solving what ODE?
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
x' & =f(x)\\
y' & =f'(x)y
\end{align*}
\end_inset
Let's change notation:
\begin_inset Formula $x=u$
\end_inset
,
\begin_inset Formula $y=s$
\end_inset
then...
\end_layout
\begin_layout Standard
\begin_inset Formula
\begin{align*}
u' & =f(u)\\
s' & =\frac{\partial f}{\partial u}s
\end{align*}
\end_inset
\end_layout
\end_body
\end_document