@@ -63,8 +63,7 @@ for ``t \\leq 0``. Hence the problem is discontinuous at ``t = 0`` for all ``u
63
63
64
64
An analytical solution of this problem is provided for ``t \\ in (-\\ infty,10]``.
65
65
"""
66
- prob_dde_1delay (u₀) = ConstantLagDDEProblem (f_1delay, t-> [0.0 ], [u₀], [1 ], (0.0 , 10.0 );
67
- iip= true )
66
+ prob_dde_1delay (u₀) = ConstantLagDDEProblem (f_1delay, t-> [0.0 ], [u₀], [1 ], (0.0 , 10.0 ))
68
67
69
68
# ## Not in-place function
70
69
@@ -84,7 +83,7 @@ Same as [`prob_dde_1delay`](@ref), but purposefully implemented with a not in-pl
84
83
function.
85
84
"""
86
85
prob_dde_1delay_notinplace (u₀) =
87
- ConstantLagDDEProblem (f_1delay_notinplace, t-> [0.0 ], [u₀], [1 ], (0.0 , 10.0 ); iip = false )
86
+ ConstantLagDDEProblem (f_1delay_notinplace, t-> [0.0 ], [u₀], [1 ], (0.0 , 10.0 ))
88
87
89
88
# ### Scalar history function
90
89
@@ -95,7 +94,7 @@ Same as [`prob_dde_1delay_notinplace`](@ref), but purposefully implemented with
95
94
history function.
96
95
"""
97
96
prob_dde_1delay_scalar_notinplace (u₀) =
98
- ConstantLagDDEProblem (f_1delay_notinplace, t-> 0.0 , u₀, [1 ], (0.0 , 10.0 ); iip = false )
97
+ ConstantLagDDEProblem (f_1delay_notinplace, t-> 0.0 , u₀, [1 ], (0.0 , 10.0 ))
99
98
100
99
# # Two constant delays
101
100
@@ -158,8 +157,7 @@ for ``t \\leq 0``. Hence the problem is discontinuous at ``t = 0`` for all ``u
158
157
159
158
An analytical solution of this problem is provided for ``t \\ in (-\\ infty,1]``.
160
159
"""
161
- prob_dde_2delays (u₀) = ConstantLagDDEProblem (f_2delays, t-> [0.0 ], [u₀], [1 // 3 , 1 // 5 ],
162
- (0.0 , 1.0 ); iip= true )
160
+ prob_dde_2delays (u₀) = ConstantLagDDEProblem (f_2delays, t-> [0.0 ], [u₀], [1 // 3 , 1 // 5 ],(0.0 , 1.0 ))
163
161
164
162
# ## Not in-place function
165
163
@@ -179,8 +177,7 @@ Same as [`prob_dde_2delays`](@ref), but purposefully implemented with a not in-p
179
177
function.
180
178
"""
181
179
prob_dde_2delays_notinplace (u₀) =
182
- ConstantLagDDEProblem (f_2delays_notinplace, t-> [0.0 ], [u₀], [1 // 3 , 1 // 5 ], (0.0 , 1.0 );
183
- iip= false )
180
+ ConstantLagDDEProblem (f_2delays_notinplace, t-> [0.0 ], [u₀], [1 // 3 , 1 // 5 ], (0.0 , 1.0 ))
184
181
185
182
# ### Scalar history function
186
183
@@ -191,8 +188,7 @@ Same as [`prob_dde_2delays_notinplace`](@ref), but purposefully implemented with
191
188
history function.
192
189
"""
193
190
prob_dde_2delays_scalar_notinplace (u₀) =
194
- ConstantLagDDEProblem (f_2delays_notinplace, t-> 0.0 , u₀, [1 // 3 , 1 // 5 ], (0.0 , 1.0 );
195
- iip= false )
191
+ ConstantLagDDEProblem (f_2delays_notinplace, t-> 0.0 , u₀, [1 // 3 , 1 // 5 ], (0.0 , 1.0 ))
196
192
197
193
# DDE examples without analytical solution
198
194
@@ -224,7 +220,7 @@ u(t) = \\begin{cases}
224
220
for ``t \\ leq 0``. Hence the problem is discontinuous at ``t = 0``.
225
221
"""
226
222
prob_dde_1delay_long = ConstantLagDDEProblem (f_1delay_long, t-> [0.0 ], [1.0 ], [0.2 ],
227
- (0.0 , 100.0 ); iip = true )
223
+ (0.0 , 100.0 ))
228
224
229
225
# ## Not in-place function
230
226
@@ -237,16 +233,14 @@ Same as [`prob_dde_1delay_long`](@ref), but purposefully implemented with a not
237
233
function.
238
234
"""
239
235
prob_dde_1delay_long_notinplace =
240
- ConstantLagDDEProblem (f_1delay_long_notinplace, t-> [0.0 ], [1.0 ], [0.2 ], (0.0 , 100.0 );
241
- iip= false )
236
+ ConstantLagDDEProblem (f_1delay_long_notinplace, t-> [0.0 ], [1.0 ], [0.2 ], (0.0 , 100.0 ))
242
237
243
238
"""
244
239
Same as [`prob_dde_1delay_long_notinplace`](@ref), but purposefully implemented with a
245
240
scalar history function.
246
241
"""
247
242
prob_dde_1delay_long_scalar_notinplace =
248
- ConstantLagDDEProblem (f_1delay_long_notinplace, t-> 0.0 , 1.0 , [0.2 ], (0.0 , 100.0 );
249
- iip= false )
243
+ ConstantLagDDEProblem (f_1delay_long_notinplace, t-> 0.0 , 1.0 , [0.2 ], (0.0 , 100.0 ))
250
244
251
245
# # Two constant delays
252
246
@@ -269,14 +263,14 @@ with history function
269
263
```math
270
264
u(t) = \\ begin{cases}
271
265
0 & \\ text{if } t < 0,\\
272
- 1 & \\ text{if } t = 0,
266
+ 1 & \\ text{if } t = 0,
273
267
\\ end{cases}
274
268
```
275
269
276
270
for ``t < 0``. Hence the problem is discontinuous at ``t = 0``.
277
271
"""
278
272
prob_dde_2delays_long = ConstantLagDDEProblem (f_2delays_long, t-> [0.0 ], [1.0 ], [1 // 3 , 1 // 5 ],
279
- (0.0 , 100.0 ); iip = true )
273
+ (0.0 , 100.0 ))
280
274
281
275
# ## Not in-place function
282
276
@@ -292,7 +286,7 @@ function.
292
286
"""
293
287
prob_dde_2delays_long_notinplace =
294
288
ConstantLagDDEProblem (f_2delays_long_notinplace, t-> [0.0 ], [1.0 ], [1 // 3 , 1 // 5 ],
295
- (0.0 , 100.0 ); iip = false )
289
+ (0.0 , 100.0 ))
296
290
297
291
# ### Scalar history function
298
292
@@ -302,4 +296,4 @@ history function.
302
296
"""
303
297
prob_dde_2delays_long_scalar_notinplace =
304
298
ConstantLagDDEProblem (f_2delays_long_notinplace, t-> 0.0 , 1.0 , [1 // 3 , 1 // 5 ],
305
- (0.0 , 100.0 ); iip = false )
299
+ (0.0 , 100.0 ))
0 commit comments