@@ -73,7 +73,7 @@ prob_jump_nonlinrxs = JumpProblemNetwork(rs, rates, tf, u0, prob, prob_data)
73
73
"""
74
74
Oscillatory system, uses a mixture of jump types.
75
75
"""
76
- rs = @reaction_network rnType begin
76
+ rs = @reaction_network rnoscType begin
77
77
0.01 , (X,Y,Z) --> 0
78
78
hill (X,3. ,100. ,- 4 ), 0 --> Y
79
79
hill (Y,3. ,100. ,- 4 ), 0 --> Z
@@ -141,3 +141,62 @@ tf = 100.
141
141
prob = DiscreteProblem (u0, (0. , tf), rates)
142
142
prob_jump_multistate = JumpProblemNetwork (rs, rates, tf, u0, prob,
143
143
Dict (" specs_to_sym_name" => specs_sym_to_name, " rates_sym_to_idx" => rates_sym_to_idx, " params" => params))
144
+
145
+
146
+ """
147
+ Twenty-gene model from McCollum et al,
148
+ "The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior"
149
+ Comp. Bio. and Chem., 30, pg. 39-49 (2006).
150
+ """
151
+ # generate the network
152
+ N = 10 # number of genes
153
+ genenetwork = " @reaction_network twentgtype begin\n "
154
+ for i in 1 : N
155
+ genenetwork *= " \t 10.0, G$(2 * i- 1 ) --> G$(2 * i- 1 ) + M$(2 * i- 1 ) \n "
156
+ genenetwork *= " \t 10.0, M$(2 * i- 1 ) --> M$(2 * i- 1 ) + P$(2 * i- 1 ) \n "
157
+ genenetwork *= " \t 1.0, M$(2 * i- 1 ) --> 0\n "
158
+ genenetwork *= " \t 1.0, P$(2 * i- 1 ) --> 0\n "
159
+
160
+ genenetwork *= " \t 5.0, G$(2 * i) --> G$(2 * i) + M$(2 * i) \n "
161
+ genenetwork *= " \t 5.0, M$(2 * i) --> M$(2 * i) + P$(2 * i) \n "
162
+ genenetwork *= " \t 1.0, M$(2 * i) --> 0\n "
163
+ genenetwork *= " \t 1.0, P$(2 * i) --> 0\n "
164
+
165
+ genenetwork *= " \t 0.0001, G$(2 * i) + P$(2 * i- 1 ) --> G$(2 * i) _ind \n "
166
+ genenetwork *= " \t 100., G$(2 * i) _ind --> G$(2 * i) _ind + M$(2 * i) \n "
167
+ end
168
+ genenetwork *= " end"
169
+ rs = eval ( parse (genenetwork) )
170
+ u0 = zeros (Int, length (rs. syms))
171
+ for i = 1 : (2 * N)
172
+ u0[findfirst (rs. syms, Symbol (" G$(i) " ))] = 1
173
+ end
174
+ tf = 2000.0
175
+ prob = DiscreteProblem (u0, (0.0 , tf))
176
+ prob_jump_twentygenes = JumpProblemNetwork (rs, nothing , tf, u0, prob, nothing )
177
+
178
+
179
+ """
180
+ Negative feedback autoregulatory gene expression model. Dimer is the repressor.
181
+ Taken from Marchetti, Priami and Thanh,
182
+ "Simulation Algorithms for Comptuational Systems Biology",
183
+ Springer (2017).
184
+ """
185
+ rn = @reaction_network gnrdtype begin
186
+ c1, G --> G + M
187
+ c2, M --> M + P
188
+ c3, M --> 0
189
+ c4, P --> 0
190
+ c5, 2 P --> P2
191
+ c6, P2 --> 2 P
192
+ c7, P2 + G --> P2G
193
+ c8, P2G --> P2 + G
194
+ end c1 c2 c3 c4 c5 c6 c7 c8
195
+ rnpar = [.09 , .05 , .001 , .0009 , .00001 , .0005 , .005 , .9 ]
196
+ varlabels = [" G" , " M" , " P" , " P2" ," P2G" ]
197
+ u0 = [1000 , 0 , 0 , 0 ,0 ]
198
+ tf = 4000.
199
+ prob = DiscreteProblem (u0, (0.0 , tf), rnpar)
200
+ prob_jump_dnadimer_repressor = JumpProblemNetwork (rn, rnpar, tf, u0, prob,
201
+ Dict (" specs_names" => varlabels))
202
+
0 commit comments