|
| 1 | +# Helper function for changing initial value and time type of the following DDEs |
| 2 | + |
| 3 | +""" |
| 4 | + remake_dde_constant_u0_tType(prob::DDEProblem, u₀, tType) |
| 5 | +
|
| 6 | +Create a new delay differential problem by replacing the initial state of problem `prob` |
| 7 | +with `u0` and setting the type of time `t` to `tType`. |
| 8 | +
|
| 9 | +This function makes special assumptions about the structure of `prob` and is intended to be |
| 10 | +used for all problems of name `prob_dde_constant_*` in `DDEProblemLibrary`. The functions of |
| 11 | +these delay differential equation problems with constant delays are purposefully |
| 12 | +implemented such that they work for arbitrary types of state `u` and time `t`, and hence in |
| 13 | +particular for number types with units. The element type of `u` is saved as parameter `p` to |
| 14 | +ensure that the return type of the history functions is correct (which are functions of `p` |
| 15 | +but not of `u`). |
| 16 | +""" |
| 17 | +function remake_dde_constant_u0_tType(prob::DDEProblem, u₀, tType) |
| 18 | + remake(prob; u0 = u₀, tspan = tType.(prob.tspan), p = eltype(u₀), |
| 19 | + constant_lags = tType.(prob.constant_lags)) |
| 20 | +end |
| 21 | + |
| 22 | +# Single constant delay |
| 23 | + |
| 24 | +## Short time span |
| 25 | + |
| 26 | +### In-place function |
| 27 | + |
| 28 | +@doc raw""" |
| 29 | + prob_dde_constant_1delay_ip |
| 30 | +
|
| 31 | +Delay differential equation |
| 32 | +
|
| 33 | +```math |
| 34 | +u'(t) = -u(t - 1) |
| 35 | +``` |
| 36 | +
|
| 37 | +for ``t \in [0, 1]`` with history function ``\phi(t) = 0`` if ``t < 0`` and ``\phi(0) = 1``. |
| 38 | +
|
| 39 | +# Solution |
| 40 | +
|
| 41 | +The analytical solution for ``t \in [0, 10]`` can be obtained by the method of steps and |
| 42 | +is provided in this implementation. |
| 43 | +""" |
| 44 | +const prob_dde_constant_1delay_ip = let |
| 45 | + function f(du, u, h, p, t) |
| 46 | + e = oneunit(t) |
| 47 | + du[1] = - h(p, t - e; idxs = 1) * inv(e) |
| 48 | + |
| 49 | + nothing |
| 50 | + end |
| 51 | + |
| 52 | + # history function of the first component |
| 53 | + function h(p, t; idxs = 1) |
| 54 | + idxs == 1 || error("history function is only implemented for the first component") |
| 55 | + t ≤ zero(t) || error("history function is only implemented for t ≤ 0") |
| 56 | + |
| 57 | + p === nothing ? zero(t) : zero(p) |
| 58 | + end |
| 59 | + |
| 60 | + # only valid for specific history function |
| 61 | + function f_analytic(u₀, p, t) |
| 62 | + z = t * inv(oneunit(t)) |
| 63 | + 0 ≤ z ≤ 10 || error("analytical solution is only implemented for t ∈ [0, 10]") |
| 64 | + |
| 65 | + if z < 1 |
| 66 | + copy(u₀) |
| 67 | + else |
| 68 | + if z < 2 |
| 69 | + c = @evalpoly(z, 2, -1) |
| 70 | + elseif z < 3 |
| 71 | + c = @evalpoly(z, 4, -3, 1//2) |
| 72 | + elseif z < 4 |
| 73 | + c = @evalpoly(z, 17//2, -15//2, 2, -1//6) |
| 74 | + elseif z < 5 |
| 75 | + c = @evalpoly(z, 115//6, -109//6, 6, -5//6, 1//24) |
| 76 | + elseif z < 6 |
| 77 | + c = @evalpoly(z, 1085//24, -1061//24, 197//12, -35//12, 1//4, -1//120) |
| 78 | + elseif z < 7 |
| 79 | + c = @evalpoly(z, 13201//120, -13081//120, 521//12, -107//12, 1, -7//120, 1//720) |
| 80 | + elseif z < 8 |
| 81 | + c = @evalpoly(z, 39371//144, -39227//144, 27227//240, -3685//144, 487//144, |
| 82 | + -21//80, 1//90, -1//5040) |
| 83 | + elseif z < 9 |
| 84 | + c = @evalpoly(z, 1158379//1680, -1156699//1680, 212753//720, -51193//720, |
| 85 | + 1511//144, -701//720, 1//18, -1//560, 1//40320) |
| 86 | + else |
| 87 | + c = @evalpoly(z, 23615939//13440, -23602499//13440, 7761511//10080, |
| 88 | + -279533//1440, 89269//2880, -1873//576, 323//1440, -11//1120, |
| 89 | + 1//4032, -1//362880) |
| 90 | + end |
| 91 | + |
| 92 | + c .* u₀ |
| 93 | + end |
| 94 | + end |
| 95 | + |
| 96 | + DDEProblem(DDEFunction(f, analytic=f_analytic), [1.0], h, (0.0, 10.0), typeof(1.0); |
| 97 | + constant_lags = [1]) |
| 98 | +end |
| 99 | + |
| 100 | +### Out-of-place function |
| 101 | + |
| 102 | +""" |
| 103 | + prob_dde_constant_1delay_oop |
| 104 | +
|
| 105 | +Same delay differential equation as [`prob_dde_constant_1delay_ip`](@ref), but purposefully |
| 106 | +implemented with an out-of-place function. |
| 107 | +""" |
| 108 | +const prob_dde_constant_1delay_oop = let |
| 109 | + function f(u, h, p, t) |
| 110 | + e = oneunit(t) |
| 111 | + .- h(p, t - e) .* inv(e) |
| 112 | + end |
| 113 | + |
| 114 | + # vectorized history function |
| 115 | + function h(p, t) |
| 116 | + t ≤ zero(t) || error("history function is only implemented for t ≤ 0") |
| 117 | + |
| 118 | + p === nothing ? [zero(t)] : [zero(p)] |
| 119 | + end |
| 120 | + |
| 121 | + DDEProblem(DDEFunction(f, analytic=prob_dde_constant_1delay_ip.f.analytic), [1.0], h, |
| 122 | + (0.0, 10.0), typeof(1.0); constant_lags = [1]) |
| 123 | +end |
| 124 | + |
| 125 | +### Scalar function |
| 126 | + |
| 127 | +""" |
| 128 | + prob_dde_constant_1delay_scalar |
| 129 | +
|
| 130 | +Same delay differential equation as [`prob_dde_constant_1delay_ip`](@ref), but purposefully |
| 131 | +implemented with a scalar function. |
| 132 | +""" |
| 133 | +const prob_dde_constant_1delay_scalar = let |
| 134 | + # scalar history function |
| 135 | + function h(p, t) |
| 136 | + t ≤ zero(t) || error("history function is only implemented for t ≤ 0") |
| 137 | + |
| 138 | + p === nothing ? zero(t) : zero(p) |
| 139 | + end |
| 140 | + |
| 141 | + DDEProblem(prob_dde_constant_1delay_oop.f, 1.0, h, (0.0, 10.0), typeof(1.0); |
| 142 | + constant_lags = [1]) |
| 143 | +end |
| 144 | + |
| 145 | +## Long time span |
| 146 | + |
| 147 | +### In-place function |
| 148 | + |
| 149 | +@doc raw""" |
| 150 | + prob_dde_constant_1delay_long_ip |
| 151 | +
|
| 152 | +Delay differential equation |
| 153 | +
|
| 154 | +```math |
| 155 | +u'(t) = u(t) - u(t - 1/5) |
| 156 | +``` |
| 157 | +
|
| 158 | +for ``t \in [0, 100]`` with history function ``\phi(t) = 0`` if ``t < 0`` and |
| 159 | +``\phi(0) = 1``. |
| 160 | +""" |
| 161 | +const prob_dde_constant_1delay_long_ip = let |
| 162 | + function f(du, u, h, p, t) |
| 163 | + T = typeof(t) |
| 164 | + du[1] = (u[1] - h(p, t - T(1/5); idxs = 1)) * inv(oneunit(t)) |
| 165 | + |
| 166 | + nothing |
| 167 | + end |
| 168 | + |
| 169 | + DDEProblem(f, [1.0], prob_dde_constant_1delay_ip.h, (0.0, 100.0), typeof(1.0); |
| 170 | + constant_lags = [1/5]) |
| 171 | +end |
| 172 | + |
| 173 | +### Out-of-place function |
| 174 | + |
| 175 | +""" |
| 176 | + prob_dde_constant_1delay_long_oop |
| 177 | +
|
| 178 | +Same delay differential equation as [`prob_dde_constant_1delay_long_ip`](@ref), but |
| 179 | +purposefully implemented with an out-of-place function. |
| 180 | +""" |
| 181 | +const prob_dde_constant_1delay_long_oop = let |
| 182 | + function f(u, h, p, t) |
| 183 | + T = typeof(t) |
| 184 | + (u .- h(p, t - T(1/5))) .* inv(oneunit(t)) |
| 185 | + end |
| 186 | + |
| 187 | + DDEProblem(f, [1.0], prob_dde_constant_1delay_oop.h, (0.0, 100.0), typeof(1.0); |
| 188 | + constant_lags = [1/5]) |
| 189 | +end |
| 190 | + |
| 191 | +### Scalar function |
| 192 | + |
| 193 | +""" |
| 194 | + prob_dde_constant_1delay_long_scalar |
| 195 | +
|
| 196 | +Same delay differential equation as [`prob_dde_constant_1delay_long_ip`](@ref), but |
| 197 | +purposefully implemented with a scalar function. |
| 198 | +""" |
| 199 | +const prob_dde_constant_1delay_long_scalar = |
| 200 | + DDEProblem(prob_dde_constant_1delay_long_oop.f, 1.0, prob_dde_constant_1delay_scalar.h, |
| 201 | + (0.0, 100.0), typeof(1.0); constant_lags = [1/5]) |
| 202 | + |
| 203 | +# Two constant delays |
| 204 | + |
| 205 | +## Short time span |
| 206 | + |
| 207 | +### In-place function |
| 208 | + |
| 209 | +@doc raw""" |
| 210 | + prob_dde_constant_2delays_ip |
| 211 | +
|
| 212 | +Delay differential equation |
| 213 | +
|
| 214 | +```math |
| 215 | +u'(t) = -u(t - 1/3) - u(t - 1/5) |
| 216 | +``` |
| 217 | +
|
| 218 | +for ``t \in [0, 1]`` with history function ``\phi(t) = 0`` if ``t < 0`` and ``\phi(0) = 1``. |
| 219 | +
|
| 220 | +# Solution |
| 221 | +
|
| 222 | +The analytical solution for ``t \in [0, 10]`` can be obtained by the method of steps and |
| 223 | +is provided in this implementation. |
| 224 | +""" |
| 225 | +const prob_dde_constant_2delays_ip = let |
| 226 | + function f(du, u, h, p, t) |
| 227 | + T = typeof(t) |
| 228 | + du[1] = - (h(p, t - T(1/3); idxs = 1) + h(p, t - T(1/5); idxs = 1)) * inv(oneunit(t)) |
| 229 | + |
| 230 | + nothing |
| 231 | + end |
| 232 | + |
| 233 | + # only valid for specific history function |
| 234 | + function f_analytic(u₀, p, t) |
| 235 | + z = t * inv(oneunit(t)) |
| 236 | + 0 ≤ z ≤ 1 || error("analytical solution is only implemented for t ∈ [0, 1]") |
| 237 | + |
| 238 | + if z < 1/5 |
| 239 | + copy(u₀) |
| 240 | + else |
| 241 | + if z < 1/3 |
| 242 | + c = @evalpoly(z, 6//5, -1) |
| 243 | + elseif z < 2/5 |
| 244 | + c = @evalpoly(z, 23//15, -2) |
| 245 | + elseif z < 8/15 |
| 246 | + c = @evalpoly(z, 121//75, -12//5, 1//2) |
| 247 | + elseif z < 3/5 |
| 248 | + c = @evalpoly(z, 427//225, -52//15, 3//2) |
| 249 | + elseif z < 2/3 |
| 250 | + c = @evalpoly(z, 4351//2250, -547//150, 9//5, -1//6) |
| 251 | + elseif z < 11/15 |
| 252 | + c = @evalpoly(z, 539//250, -647//150, 23//10, -1//6) |
| 253 | + elseif z < 4/5 |
| 254 | + c = @evalpoly(z, 7942//3375, -128//25, 17//5, -2//3) |
| 255 | + elseif z < 13/15 |
| 256 | + c = @evalpoly(z, 39998//16875, -1952//375, 89//25, -4//5, 1//24) |
| 257 | + elseif z < 14/15 |
| 258 | + c = @evalpoly(z, 10109//3750, -1583//250, 243//50, -13//10, 1//24) |
| 259 | + else |
| 260 | + c = @evalpoly(z, 171449//60750, -139199//20250, 2579//450, -173//90, 5//24) |
| 261 | + end |
| 262 | + |
| 263 | + c .* u₀ |
| 264 | + end |
| 265 | + end |
| 266 | + |
| 267 | + DDEProblem(DDEFunction(f, analytic = f_analytic), [1.0], prob_dde_constant_1delay_ip.h, |
| 268 | + (0.0, 1.0), typeof(1.0); constant_lags = [1/3, 1/5]) |
| 269 | +end |
| 270 | + |
| 271 | +### Out-of-place function |
| 272 | + |
| 273 | +""" |
| 274 | + prob_dde_constant_2delays_oop |
| 275 | +
|
| 276 | +Same delay differential equation as [`prob_dde_constant_2delays_ip`](@ref), but purposefully |
| 277 | +implemented with an out-of-place function. |
| 278 | +""" |
| 279 | +const prob_dde_constant_2delays_oop = let |
| 280 | + function f(u, h, p, t) |
| 281 | + T = typeof(t) |
| 282 | + .- (h(p, t - T(1/3)) .+ h(p, t - T(1/5))) .* inv(oneunit(t)) |
| 283 | + end |
| 284 | + |
| 285 | + DDEProblem(DDEFunction(f, analytic = prob_dde_constant_2delays_ip.f.analytic), [1.0], |
| 286 | + prob_dde_constant_1delay_oop.h, (0.0, 1.0), typeof(1.0); |
| 287 | + constant_lags = [1/3, 1/5]) |
| 288 | +end |
| 289 | + |
| 290 | +### Scalar function |
| 291 | + |
| 292 | +""" |
| 293 | + prob_dde_constant_2delays_scalar |
| 294 | +
|
| 295 | +Same delay differential equation as [`prob_dde_constant_2delays_ip`](@ref), but purposefully |
| 296 | +implemented with a scalar function. |
| 297 | +""" |
| 298 | +const prob_dde_constant_2delays_scalar = |
| 299 | + DDEProblem(prob_dde_constant_2delays_oop.f, 1.0, prob_dde_constant_1delay_scalar.h, |
| 300 | + (0.0, 1.0), typeof(1.0); constant_lags = [1/3, 1/5]) |
| 301 | + |
| 302 | +## Long time span |
| 303 | + |
| 304 | +### In-place function |
| 305 | + |
| 306 | +@doc raw""" |
| 307 | + prob_dde_constant_2delays_long_ip |
| 308 | +
|
| 309 | +Delay differential equation |
| 310 | +
|
| 311 | +```math |
| 312 | +u'(t) = - u(t - 1/3) - u(t - 1/5) |
| 313 | +``` |
| 314 | +
|
| 315 | +for ``t \in [0, 100]`` with history function ``\phi(t) = 0`` if ``t < 0`` and |
| 316 | +``\phi(0) = 1``. |
| 317 | +""" |
| 318 | +const prob_dde_constant_2delays_long_ip = let |
| 319 | + function f(du, u, h, p, t) |
| 320 | + T = typeof(t) |
| 321 | + du[1] = - (h(p, t - T(1/3); idxs = 1) + h(p, t - T(1/5); idxs = 1)) * inv(oneunit(t)) |
| 322 | + |
| 323 | + nothing |
| 324 | + end |
| 325 | + |
| 326 | + DDEProblem(f, [1.0], prob_dde_constant_1delay_ip.h, (0.0, 100.0), typeof(1.0); |
| 327 | + constant_lags = [1/3, 1/5]) |
| 328 | +end |
| 329 | + |
| 330 | +### Not in-place function |
| 331 | + |
| 332 | +""" |
| 333 | + prob_dde_constant_2delays_long_oop |
| 334 | +
|
| 335 | +Same delay differential equation as [`prob_dde_constant_2delays_long_ip`](@ref), but |
| 336 | +purposefully implemented with an out-of-place function. |
| 337 | +""" |
| 338 | +const prob_dde_constant_2delays_long_oop = let |
| 339 | + function f(u, h, p, t) |
| 340 | + T = typeof(t) |
| 341 | + .- (h(p, t - T(1/3)) .+ h(p, t - T(1/5))) .* inv(oneunit(t)) |
| 342 | + end |
| 343 | + |
| 344 | + DDEProblem(f, [1.0], prob_dde_constant_1delay_oop.h, (0.0, 100.0), typeof(1.0); |
| 345 | + constant_lags = [1/3, 1/5]) |
| 346 | +end |
| 347 | + |
| 348 | +#### Scalar function |
| 349 | + |
| 350 | +""" |
| 351 | + prob_dde_constant_2delays_long_scalar |
| 352 | +
|
| 353 | +Same delay differential equation as [`prob_dde_constant_2delays_long_ip`](@ref), but |
| 354 | +purposefully implemented with a scalar function. |
| 355 | +""" |
| 356 | +const prob_dde_constant_2delays_long_scalar = |
| 357 | + DDEProblem(prob_dde_constant_2delays_long_oop.f, 1.0, prob_dde_constant_1delay_scalar.h, |
| 358 | + (0.0, 100.0), typeof(1.0); constant_lags = [1/3, 1/5]) |
0 commit comments