4
4
import wget
5
5
import pandas as pd
6
6
import os
7
- from quart import jsonify # Import jsonify to send JSON responses
8
-
9
7
10
8
class Model ():
11
9
def __new__ (cls , context ):
@@ -18,23 +16,13 @@ def __new__(cls, context):
18
16
19
17
async def inference (self , request : ModelRequest ):
20
18
# Modify this function according to model requirements such that inputs and output remains the same
21
- corpus_instruction = "Represent the document for retrieval:"
22
- query_instruction = 'Represent the question for retrieving supporting documents: '
19
+ corpus_instruction = "Represent the Wikipedia document for retrieval:"
20
+ query_instruction = 'Represent the Wikipedia question for retrieving supporting documents: '
23
21
query = request .query
24
- query_type = request .query_type
25
22
26
23
if (query != None ):
27
24
# print('Query Encoding Process :-')
28
- if query_type == 'retrieval' :
29
- query_embeddings = self .model .encode (
30
- [[corpus_instruction , query ]],
31
- show_progress_bar = False ,
32
- batch_size = 32 ,
33
- device = torch .device ("cuda" if torch .cuda .is_available () else "cpu" )
34
- )
35
-
36
- else :
37
- query_embeddings = self .model .encode (
25
+ query_embeddings = self .model .encode (
38
26
[[query_instruction , query ]],
39
27
show_progress_bar = False ,
40
28
batch_size = 32 ,
@@ -45,26 +33,15 @@ async def inference(self, request: ModelRequest):
45
33
if not request .df .empty :
46
34
# print('Text corpus Encoding Process :-')
47
35
data = request .df
48
- data = data .loc [~ pd .isnull (data ['content' ]),:]
49
- data ['content' ] = data ['content' ].astype (str )
50
-
51
- if data .empty or data ['content' ].isnull ().any ():
52
- return 'There are nonzero null rows'
53
-
54
- else :
55
- text_corpus = data .loc [:,'content' ].to_list ()
56
-
57
- if not text_corpus :
58
- corpus_embeddings = self .model .encode (
59
- [[corpus_instruction , text ] for text in text_corpus ],
60
- show_progress_bar = False ,
61
- batch_size = 32 ,
62
- device = torch .device ("cuda" if torch .cuda .is_available () else "cpu" )
63
- )
64
- data ['embeddings' ] = corpus_embeddings .tolist ()
65
- csv_string = data .to_csv (index = False )
66
- else :
67
- return 'There are nonzero null rows'
68
-
36
+
37
+ text_corpus = data .loc [:,'content' ].to_list ()
38
+ corpus_embeddings = self .model .encode (
39
+ [[corpus_instruction , text ] for text in text_corpus ],
40
+ show_progress_bar = False ,
41
+ batch_size = 32 ,
42
+ device = torch .device ("cuda" if torch .cuda .is_available () else "cpu" )
43
+ )
44
+ data ['embeddings' ] = corpus_embeddings .tolist ()
45
+ csv_string = data .to_csv (index = False )
69
46
70
47
return str (csv_string )
0 commit comments