-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfea_extract.py
861 lines (754 loc) · 29 KB
/
fea_extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
#for encoding peptides and proteins
from Bio import SeqIO
from Bio.SeqUtils.ProtParam import ProteinAnalysis as PA
from modlamp.descriptors import PeptideDescriptor, GlobalDescriptor
from sklearn.model_selection import train_test_split
import pandas as pd
import os, re, math, platform
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from numpy import linalg as la
import argparse
from itertools import *
SPLITSEED = 810
from sklearn.decomposition import KernelPCA as KPCA
_AALetter = ['A', 'C', 'D', 'E', 'F', 'G', 'H',
'I', 'K', 'L', 'M', 'N', 'P', 'Q',
'R', 'S', 'T', 'V', 'W', 'Y']
_ftypes = ["AAC", "DiAAC", "PHYCs"]
word2int1DDict = {'G': 1, 'A': 2, 'V': 3, 'L': 4, 'I': 5, 'P': 6,
'F': 7, 'Y': 8, 'W': 9, 'S': 10, 'T': 11, 'C': 12,
'M': 13, 'N': 14, 'Q': 15, 'D': 16, 'E': 17,
'K': 18, 'R': 19, 'H': 20, 'X': 21, 'B': 22,
'J': 23, 'O': 24, 'U': 25, 'Z': 26}
int1D2wordDict = {1: 'G',2: 'A',3: 'V',4: 'L', 5: 'I',6: 'P',7: 'F', 8: 'Y',
9: 'W', 10: 'S', 11: 'T', 12: 'C', 13: 'M', 14: 'N', 15: 'Q',
16: 'D', 17: 'E', 18: 'K', 19: 'R', 20: 'H', 21: 'X', 22: 'B',
23: 'J', 24: 'O', 25: 'U', 26: 'Z'}
#读取文件
def read_fasta(fname):
with open(fname, "rU") as f:
seq_dict = [(record.id, record.seq._data) for record in SeqIO.parse(f, "fasta")]
seq_df = pd.DataFrame(data=seq_dict, columns=["Id", "Sequence"])
return seq_df
#AAC
def insert_AAC(seq_df):
# Compute AAC for peptide in specific A.A
def get_aac(seq, aa):
return seq.count(aa) / len(seq) * 100
# processing data_frame
data_size = seq_df.size
for ll in _AALetter:
seq_df['AAC_{}'.format(ll)] = list(map(get_aac, seq_df['Sequence'], [ll] * data_size))
return seq_df
#AAI
def AAI_1(fastas):
encodings = []
fileAAindex1 = open(R'Features/pre/AAindex_1.txt')
fileAAindex2 = open(R'Features/pre/AAindex_2.txt')
records1 = fileAAindex1.readlines()[1:]
records2 = fileAAindex2.readlines()[1:]
AAindex1 = []
AAindex2 = []
for i in records1:
AAindex1.append(i.rstrip().split()[1:] if i.rstrip() != '' else None)
for i in records2:
AAindex2.append(i.rstrip().split()[1:] if i.rstrip() != '' else None)
index = {}
for i in range(len(_AALetter)):
index[_AALetter[i]] = i
fastas_len = len(fastas)
for i in range(len(AAindex1)):
total = 0
for j in range(fastas_len):
temp = AAindex1[i][index[fastas[j]]]
total = total + float(temp)
encodings.append(total / fastas_len)
for i in range(len(AAindex2)):
total = 0
for j in range(fastas_len):
temp = AAindex2[i][index[fastas[j]]]
total = total + float(temp)
encodings.append(total)
return encodings
def AAI(seqs):
encodings = []
header = []
for i in range(36):
header.append('AAI_' + str(i))
encodings.append(header)
for fastas in seqs:
fastas_NT5 = "%s" % fastas[:5]
fastas_CT5 = "%s" % fastas[-5:]
encodings_full = AAI_1(fastas)
encodings_CT5 = AAI_1(fastas_CT5)
encodings_NT5 = AAI_1(fastas_NT5)
encodings.append(encodings_full + encodings_NT5 + encodings_CT5)
return encodings
def insert_AAI(seq_df):
enconding = AAI(seq_df['Sequence'])
enconding = pd.DataFrame(enconding[1:], columns=enconding[0])
seq_df = pd.concat([seq_df, enconding.iloc[:, :]], axis=1)
return seq_df
#Kmer_KPCA
#定义Kmer函数
def TransDict_from_list(groups):
transDict = dict()
tar_list = ['0', '1', '2', '3', '4', '5', '6']
result = {}
index = 0
for group in groups:
g_members = sorted(group) # Alphabetically sorted list
for c in g_members:
# print('c' + str(c))
# print('g_members[0]' + str(g_members[0]))
result[c] = str(tar_list[index]) # K:V map, use group's first letter as represent.
index = index + 1
return result
def translate_sequence(seq, TranslationDict):
'''
Given (seq) - a string/sequence to translate,
Translates into a reduced alphabet, using a translation dict provided
by the TransDict_from_list() method.
Returns the string/sequence in the new, reduced alphabet.
Remember - in Python string are immutable..
'''
import string
from_list = []
to_list = []
for k, v in TranslationDict.items():#遍历TD
from_list.append(k)
to_list.append(v)
# TRANS_seq = seq.translate(str.maketrans(zip(from_list,to_list)))
TRANS_seq = seq.translate(str.maketrans(str(from_list), str(to_list)))
# TRANS_seq = maketrans( TranslationDict, seq)
return TRANS_seq
def get_3_protein_trids():
nucle_com = []
chars = ['0', '1', '2', '3', '4', '5', '6']
base = len(chars)
end = len(chars) ** 3
for i in range(0, end):
n = i
ch0 = chars[n % base]#求模运算,相当于mod,也就是计算除法的余数
n = n / base
ch1 = chars[int(n % base)]
n = n / base
ch2 = chars[int(n % base)]
nucle_com.append(ch0 + ch1 + ch2)
return nucle_com
def get_4_nucleotide_composition_KPCA(tris, seq, pythoncount=True):
seq_len = len(seq)
tri_feature = [0] * len(tris)
k = len(tris[0])
note_feature = [[0 for cols in range(len(seq) - k + 1)] for rows in range(len(tris))]
if pythoncount:
for val in tris:
num = seq.count(val)
tri_feature.append(float(num) / seq_len)
else:
# tmp_fea = [0] * len(tris)
for x in range(len(seq) + 1 - k):
kmer = seq[x:x + k]
if kmer in tris:
ind = tris.index(kmer)
# tmp_fea[ind] = tmp_fea[ind] + 1
note_feature[ind][x] = note_feature[ind][x] + 1
estimator = KPCA(n_components=1, kernel='rbf', gamma=15)
tri_feature = estimator.fit_transform(note_feature).T
tri_feature = tri_feature.flatten()
# print tri_feature
# pdb.set_trace()
return tri_feature
def Kmer_KPCA(seq_df):
encoding = []
heard = []
for i in range(343):
heard.append("Kmer_KPCA_" + str(i))
encoding.append(heard)
protein_tris = get_3_protein_trids()
groups = ['AGV', 'ILFP', 'YMTS', 'HNQW', 'RK', 'DE', 'C']
group_dict = TransDict_from_list(groups)
for seq in seq_df:
protein_seq = translate_sequence(seq, group_dict)
protein_tri_fea = get_4_nucleotide_composition_KPCA(protein_tris, protein_seq, pythoncount =False)
protein_tri_fea = list(protein_tri_fea)
encoding.append(protein_tri_fea)
return encoding
def insert_Kmer_KPCA(seq_df):
encoding = Kmer_KPCA(seq_df["Sequence"])
encoding = pd.DataFrame(encoding[1:], columns=encoding[0])
seq_df = pd.concat([seq_df, encoding],axis=1)
return seq_df
# CKSAAGP
def generateGroupPairs(groupKey):
gPair = {}
for key1 in groupKey:
for key2 in groupKey:
gPair[key1+'.'+key2] = 0
return gPair
def minSequenceLength(fastas):#查看最小长度
minLen = 10000
for i in fastas:
if minLen > len(i[1]):
minLen = len(i[1])
return minLen
def cksaagp(fastas, gap = 3, **kw):
if gap < 0:
print('Error: the gap should be equal or greater than zero' + '\n\n')
return 0
if minSequenceLength(fastas) < gap+2:
print('Error: all the sequence length should be greater than the (gap value) + 2 = ' + str(gap+2) + '\n\n')
return 0
group = {'alphaticr': 'GAVLMI',
'aromatic': 'FYW',
'postivecharger': 'KRH',
'negativecharger': 'DE',
'uncharger': 'STCPNQ'}
AA = 'ARNDCQEGHILKMFPSTWYV'
groupKey = group.keys()
index = {}
for key in groupKey:
for aa in group[key]:
index[aa] = key
gPairIndex = []
for key1 in groupKey:
for key2 in groupKey:
gPairIndex.append(key1+'.'+key2)
encodings = []
header = ['#']
for g in range(gap + 1):
for p in gPairIndex:
header.append(p+'.gap'+str(g))
encodings.append(header)
for i in fastas:
name, sequence = i[0], re.sub('-', '', i[1])
code = [name]
for g in range(gap + 1):
gPair = generateGroupPairs(groupKey)
sum = 0
for p1 in range(len(sequence)):
p2 = p1 + g + 1
if p2 < len(sequence) and sequence[p1] in AA and sequence[p2] in AA:
gPair[index[sequence[p1]]+'.'+index[sequence[p2]]] = gPair[index[sequence[p1]]+'.'+index[sequence[p2]]] + 1
sum = sum + 1
if sum == 0:
for gp in gPairIndex:
code.append(0)
else:
for gp in gPairIndex:
code.append(gPair[gp] / sum)
encodings.append(code)
return encodings
def insert_CKSAAGP(seq_df, gap=2):
fastas = [[idx, seq] for idx, seq in zip(seq_df['Id'], seq_df['Sequence'])]
encoding = cksaagp(fastas, gap=gap)
encoding = pd.DataFrame(encoding[1:], columns=encoding[0])
seq_df = pd.concat([seq_df, encoding.iloc[:, 1:]], axis=1)
return seq_df
#PAAC
def minSequenceLengthWithNormalAA(fastas):
minLen = 10000
for i in fastas:
if minLen > len(re.sub('-', '', i[1])):
minLen = len(re.sub('-', '', i[1]))
return minLen
def Rvalue(aa1, aa2, AADict, Matrix):
return sum([(Matrix[i][AADict[aa1]] - Matrix[i][AADict[aa2]]) ** 2 for i in range(len(Matrix))]) / len(Matrix)
def paac(fastas, lambdaValue=30, w=0.05, **kw):
if minSequenceLengthWithNormalAA(fastas) < lambdaValue + 1:
print('Error: all the sequence length should be larger than the lambdaValue+1: ' + str(lambdaValue + 1) + '\n\n')
return 0
dataFile = re.sub('codes$', '', os.path.split(os.path.realpath(__file__))[0]) + r'\data\PAAC.txt' if platform.system() == 'Windows' else re.sub('codes$', '', os.path.split(os.path.realpath(__file__))[0]) + '/data/PAAC.txt'
with open(dataFile) as f:
records = f.readlines()
AA = ''.join(records[0].rstrip().split()[1:])
AADict = {}
for i in range(len(AA)):
AADict[AA[i]] = i
AAProperty = []
AAPropertyNames = []
for i in range(1, len(records)):
array = records[i].rstrip().split() if records[i].rstrip() != '' else None
AAProperty.append([float(j) for j in array[1:]])
AAPropertyNames.append(array[0])
AAProperty1 = []
for i in AAProperty:
meanI = sum(i) / 20
fenmu = math.sqrt(sum([(j-meanI)**2 for j in i])/20)
AAProperty1.append([(j-meanI)/fenmu for j in i])
encodings = []
header = ['#']
for aa in AA:
header.append('Xc1.' + aa)
for n in range(1, lambdaValue + 1):
header.append('Xc2.lambda' + str(n))
encodings.append(header)
for i in fastas:
name, sequence = i[0], re.sub('-', '', i[1])
code = [name]
theta = []
for n in range(1, lambdaValue + 1):
theta.append(
sum([Rvalue(sequence[j], sequence[j + n], AADict, AAProperty1) for j in range(len(sequence) - n)]) / (
len(sequence) - n))
myDict = {}
for aa in AA:
myDict[aa] = sequence.count(aa)
code = code + [myDict[aa] / (1 + w * sum(theta)) for aa in AA]
code = code + [(w * j) / (1 + w * sum(theta)) for j in theta]
encodings.append(code)
return encodings
def insert_PAAC(seq_df, lamb=3, w=0.4):
fastas = [[idx, seq] for idx, seq in zip(seq_df['Id'], seq_df['Sequence'])]
encoding = paac(fastas, lambdaValue=lamb, w=w)
encoding = pd.DataFrame(encoding[1:], columns=encoding[0])
seq_df = pd.concat([seq_df, encoding.iloc[:, 1:]], axis=1)
return seq_df
#CTD
# CTD_function
group1 = {'hydrophobicity_PRAM900101': 'RKEDQN', 'normwaalsvolume': 'GASTPDC', 'polarity': 'LIFWCMVY',
'polarizability': 'GASDT', 'charge': 'KR', 'secondarystruct': 'EALMQKRH', 'solventaccess': 'ALFCGIVW'}
group2 = {'hydrophobicity_PRAM900101': 'GASTPHY', 'normwaalsvolume': 'NVEQIL', 'polarity': 'PATGS',
'polarizability': 'CPNVEQIL', 'charge': 'ANCQGHILMFPSTWYV', 'secondarystruct': 'VIYCWFT',
'solventaccess': 'RKQEND'}
group3 = {'hydrophobicity_PRAM900101': 'CLVIMFW', 'normwaalsvolume': 'MHKFRYW', 'polarity': 'HQRKNED',
'polarizability': 'KMHFRYW', 'charge': 'DE', 'secondarystruct': 'GNPSD', 'solventaccess': 'MSPTHY'}
groups = [group1, group2, group3]
propertys = ('hydrophobicity_PRAM900101', 'normwaalsvolume', 'polarity', 'polarizability', 'charge', 'secondarystruct',
'solventaccess')
def Count_C(sequence1, sequence2):
sum = 0
for aa in sequence1:
sum = sum + sequence2.count(aa)
return sum
def Count_D(aaSet, sequence):
number = 0
for aa in sequence:
if aa in aaSet:
number = number + 1
cutoffNums = [1, math.floor(0.25 * number), math.floor(0.50 * number), math.floor(0.75 * number), number]
cutoffNums = [i if i >= 1 else 1 for i in cutoffNums]
code = []
for cutoff in cutoffNums:
myCount = 0
for i in range(len(sequence)):
if sequence[i] in aaSet:
myCount += 1
if myCount == cutoff:
code.append((i + 1) / len(sequence))
break
if myCount == 0:
code.append(0)
return code
def CTD(seqs):
encodings = []
header = []
for i in range(147):
header.append('CTD_' + str(i))
encodings.append(header)
for seq in seqs:
code = []
code2 = []
CTDD1 = []
CTDD2 = []
CTDD3 = []
aaPair = [seq[j:j + 2] for j in range(len(seq) - 1)]
for p in propertys:
c1 = Count_C(group1[p], seq) / len(seq)
c2 = Count_C(group2[p], seq) / len(seq)
c3 = 1 - c1 - c2
code = code + [c1, c2, c3]
c1221, c1331, c2332 = 0, 0, 0
for pair in aaPair:
if (pair[0] in group1[p] and pair[1] in group2[p]) or (pair[0] in group2[p] and pair[1] in group1[p]):
c1221 = c1221 + 1
continue
if (pair[0] in group1[p] and pair[1] in group3[p]) or (pair[0] in group3[p] and pair[1] in group1[p]):
c1331 = c1331 + 1
continue
if (pair[0] in group2[p] and pair[1] in group3[p]) or (pair[0] in group3[p] and pair[1] in group2[p]):
c2332 = c2332 + 1
code2 = code2 + [c1221 / len(aaPair), c1331 / len(aaPair), c2332 / len(aaPair)]
CTDD1 = CTDD1 + [value / float(len(seq)) for value in Count_D(group1[p], seq)]
CTDD2 = CTDD2 + [value / float(len(seq)) for value in Count_D(group2[p], seq)]
CTDD3 = CTDD3 + [value / float(len(seq)) for value in Count_D(group3[p], seq)]
encodings.append(code + code2 + CTDD1 + CTDD2 + CTDD3)
return encodings
def insert_CTD(seq_df):
enconding = CTD(seq_df['Sequence'])
enconding = pd.DataFrame(enconding[1:], columns = enconding[0])
seq_df = pd.concat([seq_df, enconding.iloc[:, :]],axis = 1)
return seq_df
#AAE
def AAE_1(fastas):
length = float(len(fastas))
amino_acids = dict.fromkeys(_AALetter, 0)
encodings = []
for AA in amino_acids:
hits = [a.start() for a in list(re.finditer(AA, fastas))]
p_prev = 0
p_next = 1
sum = 0
while p_next < len(hits):
distance = (hits[p_next] - hits[p_prev]) / length
sum += distance * math.log(distance, 2)
p_prev = p_next
p_next += 1
amino_acids[AA] = -sum
encodings.append(amino_acids[AA])
return encodings
def AAE(seq):
encodings = []
header = []
for i in range(60):
header.append('AAE_' + str(i))
encodings.append(header)
for fastas in seq:
fastas_NT5 = "%s" % fastas[:5]
fastas_CT5 = "%s" % fastas[-5:]
encodings_full = AAE_1(fastas)
encodings_CT5 = AAE_1(fastas_CT5)
encodings_NT5 = AAE_1(fastas_NT5)
encodings.append(encodings_full + encodings_NT5 + encodings_CT5)
return encodings
def insert_AAE(seq_df):
encoding = AAE(seq_df['Sequence'])
encoding = pd.DataFrame(encoding[1:], columns=encoding[0])
seq_df = pd.concat([seq_df, encoding.iloc[:, :]], axis=1)
return seq_df
#PHYCS
def insert_phycs(seq_df):
# Function for compute Isoelectric Point or net_charge of peptide
def get_ieq_nc(seq, is_iep=True):
protparam = PA(seq)
return protparam.isoelectric_point() if is_iep else protparam.charge_at_pH(7.0)
# Calculating IsoElectricPoints and NeutralCharge
data_size = seq_df.size
seq_df['IEP'] = list(map(get_ieq_nc, seq_df['Sequence'], [True] * data_size)) # IsoElectricPoints
seq_df['Net Charge'] = list(map(get_ieq_nc, seq_df['Sequence'], [False] * data_size)) # Charge(Neutral)
# Calculating hydrophobic moment (My assume all peptides are alpha-helix)
descrpt = PeptideDescriptor(seq_df['Sequence'].values, 'eisenberg')
descrpt.calculate_moment(window=1000, angle=100, modality='max')
seq_df['Hydrophobic Moment'] = descrpt.descriptor.reshape(-1)
# Calculating "Hopp-Woods" hydrophobicity
descrpt = PeptideDescriptor(seq_df['Sequence'].values, 'hopp-woods')
descrpt.calculate_global()
seq_df['Hydrophobicity'] = descrpt.descriptor.reshape(-1)
# Calculating Energy of Transmembrane Propensity
descrpt = PeptideDescriptor(seq_df['Sequence'].values, 'tm_tend')
descrpt.calculate_global()
seq_df['Transmembrane Propensity'] = descrpt.descriptor.reshape(-1)
# Calculating Levitt_alpha_helical Propensity
descrpt = PeptideDescriptor(seq_df['Sequence'].values, 'levitt_alpha')
descrpt.calculate_global()
seq_df['Alpha Helical Propensity'] = descrpt.descriptor.reshape(-1)
# Calculating Aliphatic Index
descrpt = GlobalDescriptor(seq_df['Sequence'].values)
descrpt.aliphatic_index()
seq_df['Aliphatic Index'] = descrpt.descriptor.reshape(-1)
# Calculating Boman Index
descrpt = GlobalDescriptor(seq_df['Sequence'].values)
descrpt.boman_index()
seq_df['Boman Index'] = descrpt.descriptor.reshape(-1)
return seq_df
#GTPC
def GTPC(fastas):
group = {
'alphaticr': 'GAVLMI',
'aromatic': 'FYW',
'postivecharger': 'KRH',
'negativecharger': 'DE',
'uncharger': 'STCPNQ'
}
groupKey = group.keys()
baseNum = len(groupKey)
triple = [g1+'.'+g2+'.'+g3 for g1 in groupKey for g2 in groupKey for g3 in groupKey]
index = {}
for key in groupKey:
for aa in group[key]:
index[aa] = key
encodings = []
header = ['#'] + triple
encodings.append(header)
for i in fastas:
name, sequence = i[0], re.sub('-', '', i[1])
code = [name]
myDict = {}
for t in triple:
myDict[t] = 0
sum = 0
for j in range(len(sequence) - 3 + 1):
myDict[index[sequence[j]]+'.'+index[sequence[j+1]]+'.'+index[sequence[j+2]]] = myDict[index[sequence[j]]+'.'+index[sequence[j+1]]+'.'+index[sequence[j+2]]] + 1
sum = sum +1
if sum == 0:
for t in triple:
code.append(0)
else:
for t in triple:
code.append(myDict[t]/sum)
encodings.append(code)
return encodings
def insert_GTPC(seq_df):
fastas = [[idx, seq] for idx, seq in zip(seq_df['Id'], seq_df['Sequence'])]
encoding = GTPC(fastas)
encoding = pd.DataFrame(encoding[1:], columns=encoding[0])
seq_df = pd.concat([seq_df, encoding.iloc[:, 1:]],axis=1)
return seq_df
#DPC
diPeptides = [aa1 + aa2 for aa1 in _AALetter for aa2 in _AALetter]
def DPC(seqs):
encodings = []
hearder = []
for i in range(400):
hearder.append('DPC_' + str(i))
encodings.append(hearder)
for seq in seqs:
AADict = {}
for aa in range(len(_AALetter)):
AADict[_AALetter[aa]] = aa
tmpCode = [0] * 400
for j in range(len(seq) - 2 + 1):
tmpCode[AADict[seq[j]] * 20 + AADict[seq[j + 1]]] = tmpCode[AADict[seq[j]] * 20 + AADict[seq[j + 1]]] + 1
if sum(tmpCode) != 0:
tmpDPC = [i / sum(tmpCode) for i in tmpCode]
encodings.append(tmpDPC)
return encodings
def insert_DPC(seq_df):
encodings = DPC(seq_df['Sequence'])
encodings = pd.DataFrame(encodings[1:], columns=encodings[0])
seq_df = pd.concat([seq_df, encodings.iloc[:,:]], axis=1)
return seq_df
# QSO
def minSequenceLengthWithNormalAA(fastas):
minLen = 10000
for i in fastas:
if minLen > len(re.sub('-', '', i[1])):
minLen = len(re.sub('-', '', i[1]))
return minLen
def QSOrder(fastas, nlag=3, w=0.1, **kw):
if minSequenceLengthWithNormalAA(fastas) < nlag + 1:
print('Error: all the sequence length should be larger than the nlag+1: ' + str(nlag + 1) + '\n\n')
return 0
# dataFile = re.sub('codes$', '', os.path.split(os.path.realpath(__file__))[0]) + r'\data\Schneider-Wrede.txt' if platform.system() == 'Windows' else re.sub('codes$', '', os.path.split(os.path.realpath(__file__))[0]) + '/data/Schneider-Wrede.txt'
# dataFile1 = re.sub('codes$', '', os.path.split(os.path.realpath(__file__))[0]) + r'\data\Grantham.txt' if platform.system() == 'Windows' else re.sub('codes$', '', os.path.split(os.path.realpath(__file__))[0]) + '/data/Grantham.txt'
dataFile = 'data/Schneider-Wrede.txt'
dataFile1 = 'data/Grantham.txt'
AA = 'ACDEFGHIKLMNPQRSTVWY'
AA1 = 'ARNDCQEGHILKMFPSTWYV'
DictAA = {}
for i in range(len(AA)):
DictAA[AA[i]] = i
DictAA1 = {}
for i in range(len(AA1)):
DictAA1[AA1[i]] = i
with open(dataFile) as f:
records = f.readlines()[1:]
AADistance = []
for i in records:
array = i.rstrip().split()[1:] if i.rstrip() != '' else None
AADistance.append(array)
AADistance = np.array([float(AADistance[i][j]) for i in range(len(AADistance)) for j in range(len(AADistance[i]))]).reshape((20, 20))
with open(dataFile1) as f:
records = f.readlines()[1:]
AADistance1 = []
for i in records:
array = i.rstrip().split()[1:] if i.rstrip() != '' else None
AADistance1.append(array)
AADistance1 = np.array(
[float(AADistance1[i][j]) for i in range(len(AADistance1)) for j in range(len(AADistance1[i]))]).reshape((20, 20))
encodings = []
header = ['#']
for aa in AA1:
header.append('Schneider.Xr.' + aa)
for aa in AA1:
header.append('Grantham.Xr.' + aa)
for n in range(1, nlag + 1):
header.append('Schneider.Xd.' + str(n))
for n in range(1, nlag + 1):
header.append('Grantham.Xd.' + str(n))
encodings.append(header)
for i in fastas:
name, sequence = i[0], re.sub('-', '', i[1])
code = [name]
arraySW = []
arrayGM = []
for n in range(1, nlag + 1):
arraySW.append(sum([AADistance[DictAA[sequence[j]]][DictAA[sequence[j + n]]] ** 2 for j in range(len(sequence) - n)]))
arrayGM.append(sum([AADistance1[DictAA1[sequence[j]]][DictAA1[sequence[j + n]]] ** 2 for j in range(len(sequence) - n)]))
myDict = {}
for aa in AA1:
myDict[aa] = sequence.count(aa)
for aa in AA1:
code.append(myDict[aa] / (1 + w * sum(arraySW)))
for aa in AA1:
code.append(myDict[aa] / (1 + w * sum(arrayGM)))
for num in arraySW:
code.append((w * num) / (1 + w * sum(arraySW)))
for num in arrayGM:
code.append((w * num) / (1 + w * sum(arrayGM)))
encodings.append(code)
return encodings
def insert_QSO(seq_df):
fastas = [[idx, seq] for idx, seq in zip(seq_df['Id'], seq_df['Sequence'])]
encoding = QSOrder(fastas)
encoding = pd.DataFrame(encoding[1:], columns=encoding[0])
seq_df = pd.concat([seq_df, encoding.iloc[:, 1:]],axis=1)
return seq_df
#NMBroto
def NMBroto(fastas,
props=['CIDH920105', 'BHAR880101', 'CHAM820101', 'CHAM820102', 'CHOC760101', 'BIGC670101', 'CHAM810101',
'DAYM780201'], nlag=4, **kw):
if minSequenceLength(fastas) < nlag + 1:
print('Error: all the sequence length should be larger than the nlag+1: ' + str(nlag + 1) + '\n\n')
return 0
AA = 'ARNDCQEGHILKMFPSTWYV'
fileAAidx = 'data/AAidx.txt'
with open(fileAAidx) as f:
records = f.readlines()[1:]
myDict = {}
for i in records:
array = i.rstrip().split('\t')
myDict[array[0]] = array[1:]
AAidx = []
AAidxName = []
for i in props:
if i in myDict:
AAidx.append(myDict[i])
AAidxName.append(i)
else:
print('"' + i + '" properties not exist.')
return None
AAidx1 = np.array([float(j) for i in AAidx for j in i])
AAidx = AAidx1.reshape((len(AAidx), 20))
pstd = np.std(AAidx, axis=1)
pmean = np.average(AAidx, axis=1)
for i in range(len(AAidx)):
for j in range(len(AAidx[i])):
AAidx[i][j] = (AAidx[i][j] - pmean[i]) / pstd[i]
index = {}
for i in range(len(AA)):
index[AA[i]] = i
encodings = []
header = ['#']
for p in props:
for n in range(1, nlag + 1):
header.append(p + '.lag' + str(n))
encodings.append(header)
for i in fastas:
name, sequence = i[0], re.sub('-', '', i[1])
code = [name]
N = len(sequence)
for prop in range(len(props)):
for n in range(1, nlag + 1):
if len(sequence) > nlag:
# if key is '-', then the value is 0
rn = sum(
[AAidx[prop][index.get(sequence[j], 0)] * AAidx[prop][index.get(sequence[j + n], 0)] for j in
range(len(sequence) - n)]) / (N - n)
else:
rn = 'NA'
code.append(rn)
encodings.append(code)
return encodings
def insert_NMBroto(seq_df):
fastas = [[idx, seq] for idx, seq in zip(seq_df['Id'], seq_df['Sequence'])]
encoding = NMBroto(fastas)
encoding = pd.DataFrame(encoding[1:], columns=encoding[0])
seq_df = pd.concat([seq_df, encoding.iloc[:, 1:]],axis=1)
return seq_df
#将序列进行1,2,3.。编码
def word2int_1(fastas):
encodings=[]
j = len(fastas)
for i in range(j):
encodings.append(word2int1DDict[fastas[i]])
return encodings
def word2int(seq):
encodings = []
header = []
for i in range(100):
header.append("word2int_"+ str(i))
encodings.append(header)
for fastas in seq:
encoding = word2int_1(fastas)
encodings.append(encoding)
return encodings
def insert_word2int(seq_df):
encodings = word2int(seq_df['Sequence'])
encodings = pd.DataFrame(encodings[1:], columns=encodings[0])
seq_df = pd.concat([seq_df, encodings.iloc[:, :]], axis=1)
return seq_df
#ASDC
"""ASDC"""
Amino_acids = ['A','C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q',
'R', 'S','T','V', 'W','Y']
Amino_acids_ = list(product(Amino_acids,Amino_acids))
Amino_acids_ = [i[0]+i[1] for i in Amino_acids_]
def ASDC(seqs):
header = []
for i in range(400):
header.append('ASDC_'+ str(i))
seqs_ = []
seqs_.append(header)
for seq in seqs:
ASDC_feature = []
skip = 0
for i in range(len(seq)):
ASDC_feature.extend(Skip(seq,skip))
skip+=1
seqs_.append([ASDC_feature.count(i)/len(ASDC_feature) for i in Amino_acids_])
return seqs_
def Skip(seq,skip):
element = []
for i in range(len(seq)-skip-1):
element.append(seq[i]+seq[i+skip+1])
return element
def insert_ASDC(seq_df):
encoding = ASDC(seq_df['Sequence'])
encoding = pd.DataFrame(encoding[1:], columns=encoding[0])
seq_df = pd.concat([seq_df, encoding.iloc[:, :]], axis=1)
return seq_df
"""PSAAC"""
def PSAAC(seqs):
header = []
for i in range(40):
header.append('ASDC_'+ str(i))
seqs_ = []
seqs_.append(header)
PSAAC_profile_forward = []
PSAAC_profile_backward = []
forward_seq = []
backward_seq = []
i = 1
for seq in seqs:
forward_seq.append(list(seq[:5]))
backward_seq.append(list(seq[-5:]))
for position in range(5):
PSAAC_profile_forward.append([list(np.array(forward_seq)[:,position]).count(amino)/len(seqs) for amino in Amino_acids])
for position in range(5):
PSAAC_profile_backward.append([list(np.array(backward_seq)[:,position]).count(amino)/len(seqs) for amino in Amino_acids])
for seq in forward_seq:
num = 0
new_seq = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
for amino in seq:
index_ = Amino_acids.index(amino)
new_seq[index_] = np.array(PSAAC_profile_forward)[num,index_]
num+=1
seqs_.append(new_seq)
for seq in backward_seq:
num = 0
new_seq = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
for amino in seq:
index_ = Amino_acids.index(amino)
new_seq[index_] = np.array(PSAAC_profile_backward)[num,index_]
num+=1
seqs_[i].extend(new_seq)
i+=1
return seqs_
def insert_PSAAC(seq_df):
encodings = PSAAC(seq_df['Sequence'])
encoding = pd.DataFrame(encodings[1:], columns=encodings[0])
seq_df = pd.concat([seq_df, encoding.iloc[:, :]], axis=1)
return seq_df