-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbpnn.c
executable file
·215 lines (201 loc) · 7.13 KB
/
bpnn.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#include "bpnn.h"
double sigmoid(double x)
{
x = 1.0/(1 + exp(-x));
return x;
}
void Set_nn(NN* nn, int N)
{
int i;
printf("input the number of hidden layer: ");
scanf("%d", &nn->hidden_l);
nn->layer = nn->hidden_l + 2;
nn->node_num = (int*)malloc(sizeof(int) * nn->layer);
printf("input the node number of input layer: ");
scanf("%d", &nn->node_num[0]);
if(nn->node_num[0] != N)
{
printf("Error input\n");
exit(0);
}
for(i = 0; i < nn->hidden_l; ++i)
{
printf("input the node number of hidden layer %d: ", i+1);
scanf("%d", &nn->node_num[i+1]);
}
printf("input the node number of output layer: ");
scanf("%d", &nn->node_num[i+1]);
printf("set function\n");
}
void Create_nn(NN* nn)
{
int i, j;
nn->node = (double**)malloc(sizeof(double*) * nn->layer);
for(i = 0; i < nn->layer-1; ++i)
nn->node[i] = (double*)malloc(sizeof(double) * (nn->node_num[i] + 1));
nn->node[i] = (double*)malloc(sizeof(double) * nn->node_num[i]);
nn->weight = (double***)malloc(sizeof(double**) * (nn->layer - 1));
for(i = 0; i < nn->layer-1; ++i)
{
nn->weight[i] = (double**)malloc(sizeof(double*) * (nn->node_num[i]+1));
for(j = 0; j < nn->node_num[i] + 1; ++j)
nn->weight[i][j] = (double*)malloc(sizeof(double) * (nn->node_num[i+1]));
}
nn->d = (double**)malloc(sizeof(double*) * (nn->layer - 1));
for(i = 0; i < nn->layer-1; ++i)
nn->d[i] = (double*)malloc(sizeof(double) * nn->node_num[i+1]);
printf("Create function\n");
}
void Show_nn(NN* nn)
{
int i, j, k;
printf("the number of hidden layer is %d\n", nn->hidden_l);
printf("the number of input layer node is %d\n", nn->node_num[0]);
for(i = 0; i < nn->hidden_l; ++i)
printf("the number of hidden layer %d node is %d\n", i+1, nn->node_num[i+1]);
printf("the number of output layer node is %d\n", nn->node_num[i+1]);
for(i = 0; i < nn->layer-1; ++i)
for(j = 0; j <= nn->node_num[i]; ++j)
printf("node[%d][%d] = %f\n", i, j, nn->node[i][j]);
for(j = 0; j < nn->node_num[i]; ++j)
printf("node[%d][%d] = %f\n", i, j, nn->node[i][j]);
for(i = 0; i < nn->layer-1; ++i)
for(j = 0; j <= nn->node_num[i]; ++j)
for(k = 0; k < nn->node_num[i+1]; ++k)
printf("weight[%d][%d][%d] = %f\n", i, j, k, nn->weight[i][j][k]);
}
void Show_nn_d(NN* nn)
{
int i, j;
for(i = 0; i < nn->layer-1; ++i)
for(j = 0; j < nn->node_num[i+1]; ++j)
printf("d[%d][%d] = %f\n", i, j, nn->d[i][j]);
}
void Show_result(NN* nn)
{
int i;
for(i = 0; i < nn->node_num[0]; ++i)
printf("%f ", nn->node[0][i]);
for(i = 0; i < nn->node_num[nn->layer-1]; ++i)
printf("%f\n", nn->node[nn->layer-1][i]);
}
void Init_nn(NN* nn, int flag)
{
int i, j, k;
for(i = 0; i < nn->layer; ++i)
for(j = 0; j < nn->node_num[i]; ++j)
nn->node[i][j] = 0;
for(i = 0; i < nn->layer-1; ++i)
nn->node[i][nn->node_num[i]] = 1;
for(i = 0; i < nn->layer-1; ++i)
for(j = 0; j < nn->node_num[i+1]; ++j)
nn->d[i][j] = 0;
if(flag == 0)
{
srand((unsigned)time(NULL));
for(i = 0; i < nn->layer-1; ++i)
for(j = 0; j <= nn->node_num[i]; ++j)
for(k = 0; k < nn->node_num[i+1]; ++k)
{
nn->weight[i][j][k] = (double)rand()/RAND_MAX;
nn->weight[i][j][k] -= 0.5;
nn->weight[i][j][k] *= 2;
///nn->weight[i][j][k] *= 0.2;
}
}
//printf("Init function\n");
}
void foward_propagation(NN* nn)
{
int i, j, k;
for(i = 1; i < nn->layer; ++i)
for(j = 0; j < nn->node_num[i]; ++j)
{
for(k = 0; k <= nn->node_num[i-1]; ++k)
nn->node[i][j] += nn->node[i-1][k] * nn->weight[i-1][k][j];
nn->node[i][j] = sigmoid(nn->node[i][j]);
}
}
void back_propagation(NN* nn, int step, int sample_n, int output_sample_dim, double* output, double learning_rate)
{
int i, j, k;
double temp;
//calculate d
for(i = 0; i < nn->node_num[nn->layer-1]; i++)
nn->d[nn->layer-2][i] = (output[step%sample_n * output_sample_dim + i] - nn->node[nn->layer-1][i]) * nn->node[nn->layer-1][i] * (1 - nn->node[nn->layer-1][i]);
for(i = nn->layer-2; i > 0; --i)
{
for(j = 0; j < nn->node_num[i]; ++j)
{
temp = 0;
for(k = 0; k < nn->node_num[i+1]; ++k)
temp += nn->d[i][k] * nn->weight[i][j][k];
nn->d[i-1][j] = temp * nn->node[i][j] * (1 - nn->node[i][j]);
}
}
//Show_nn_d(nn);
//update weight
for(i = 0; i < nn->layer-1; ++i)
for(j = 0; j <= nn->node_num[i]; ++j)
for(k = 0; k < nn->node_num[i+1]; ++k)
nn->weight[i][j][k] += learning_rate * nn->d[i][k] * nn->node[i][j];
}
void update_input_layer(NN* nn, int step, int sample_n, int input_sample_dim, double* input)
{
int i;
for(i = 0; i < nn->node_num[0]; ++i)
nn->node[0][i] = input[(step%sample_n)*input_sample_dim+i];
}
double cal_loss(NN* nn, int step, int sample_n, int output_sample_dim, double* output)
{
double Loss = 0.0;
int i;
for(i = 0; i < nn->node_num[nn->layer-1]; ++i)
Loss += (output[step%sample_n * output_sample_dim + i] - nn->node[nn->layer-1][i]) * (output[step%sample_n * output_sample_dim + i] - nn->node[nn->layer-1][i]);
//printf("Loss = %f\n", Loss);
return Loss;
}
double train(NN* nn, int step_num, double learning_rate, double* input, double* output, int sample_n, int input_sample_dim, int output_sample_dim, double er)
{
int step = 0;
double Loss_total = 1, Loss, Loss_temp = 0;
Init_nn(nn, 0);
//printf("%f", input[1]);
while(step < step_num && Loss_total > er)
{
Init_nn(nn, 1);
update_input_layer(nn, step, sample_n, input_sample_dim, input);
//Show_nn(nn);
foward_propagation(nn);
Loss = cal_loss(nn, step, sample_n, output_sample_dim, output);
//Show_nn(nn);
back_propagation(nn, step, sample_n, output_sample_dim, output, learning_rate);
//Show_nn(nn);
Show_result(nn);
Loss_temp += Loss;
if(step%sample_n == 0 && step != 0)
{
Loss_total = Loss_temp;
Loss_temp = 0;
printf("Loss = %f\n", Loss_total);
Save(Loss_total);
}
++step;
}
printf("step = %d", step);
}
void test(NN* nn, double* input, double* output, int test_n, int input_sample_dim, int output_sample_dim)
{
double Loss = 0;
int i;
printf("\n");
for(i = 0; i < test_n; ++i)
{
update_input_layer(nn, i, test_n, input_sample_dim, input);
foward_propagation(nn);
Loss = cal_loss(nn, i, test_n, output_sample_dim, output);
printf("%d", i);
Show_result(nn);
printf("Test_set[%d]: Loss = %f", i, Loss);
}
}