forked from excitedkid/vipaug
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
146 lines (114 loc) · 5.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import sys
import argparse
import datetime
import time
import os.path as osp
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import torch
import torch.nn as nn
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
from datasets import CIFAR10D, CIFAR100D
from utils.utils import Logger, save_networks, load_networks
from core import train, test, test_robustness
parser = argparse.ArgumentParser()
# dataset
parser.add_argument('--data', type=str, default='/ws/data') #set your owns
parser.add_argument('--data-c', type=str, default='/ws/data_c') #set your owns
parser.add_argument('-d', '--dataset', type=str, default='cifar10') #set your owns
parser.add_argument('--fractal_path', type=str, default='./fractals/images_32/') #change 'images_32' to 'images_224' in ImageNet
parser.add_argument('--outfolder', type=str, default='./results')
# optimization
parser.add_argument('--batch-size', type=int, default=128) #cifar: 128, imagenet: 32
parser.add_argument('--lr', type=float, default=0.1, help="learning rate for model")
parser.add_argument('--max-epoch', type=int, default=250)
parser.add_argument('--aug', type=str, default='none', help='none, vipaug')
# model
parser.add_argument('--model', type=str, default='resnet18')
# eval mode
parser.add_argument('--eval', type=str, default='none', help='none, eval')
# etc.
parser.add_argument('--workers', default=16, type=int, help="number of data loading workers")
parser.add_argument('--gpu', type=str, default='0') #set your own gpu
parser.add_argument('--eval-freq', type=int, default=10)
parser.add_argument('--print-freq', type=int, default=100)
parser.add_argument('--memo', type=str, default='none')
#vipaug parameter
parser.add_argument('--kernel', type=int, default=2) #set the argument depending on datasets
parser.add_argument('--nonvital', type=float, default=0.014) #set the argument depending on datasets cifar10: 0.014, cifar100: 0.012, imagenet: 0.005
parser.add_argument('--vital', type=float, default=0.001) #set the argument depending on datasets cifar10: 0.001, cifar100: 0.005, imagenet: 0.001
args = parser.parse_args()
options = vars(args)
if not os.path.exists(options['outfolder']):
os.makedirs(options['outfolder'])
sys.stdout = Logger(osp.join(options['outfolder'], 'logs.txt'))
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = options['gpu']
use_gpu = torch.cuda.is_available()
options.update({'use_gpu': use_gpu})
if use_gpu:
print("Currently using GPU: {}".format(options['gpu']))
cudnn.benchmark = True
else:
print("Using CPU error")
return
if 'cifar10' == options['dataset']:
Data = CIFAR10D(kernel=2, vital=options['vital'], nonvital=options['nonvital'], dataroot=options['data'], dataroot_c=options['data_c'], num_workers=options['workers'], batch_size=options['batch_size'], _transforms=options['aug'], _eval=options['eval'], fractal_images=options['fractal_path'])
else:
Data = CIFAR100D(kernel=2, vital=options['vital'], nonvital=options['nonvital'], dataroot=options['data'], dataroot_c=options['data_c'], num_workers=options['workers'], batch_size=options['batch_size'], _transforms=options['aug'], _eval=options['eval'], fractal_images=options['fractal_path'])
trainloader, testloader = Data.train_loader, Data.test_loader
normalize = Data.normalize
num_classes = Data.num_classes
from model.resnet import ResNet18
net = ResNet18(num_classes=num_classes)
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
net = torch.nn.DataParallel(net).cuda()
file_name = f"{options['model']}_gpu{options['gpu']}_{options['dataset']}_{options['aug']}_batch{options['batch_size']}_var{options['vital']}_var{options['nonvital']}_{options['memo']}" #set your owns
if options['eval'] == 'eval':
net, criterion = load_networks(net, options['outfolder'], file_name, criterion=criterion)
results = test(net, testloader, normalize)
print("clean accuracy:", results)
res = dict()
res['ACC'] = dict()
acc_res = []
for key in Data.corruption_keys:
results = test_robustness(net, Data.corruption_loaders[key], normalize)
print('{} (%): {:.3f}\t'.format(key, results['ACC']))
res['ACC'][key] = results['ACC']
acc_res.append(results['ACC'])
print("corruption error:", 100-results['ACC'])
print('Mean ACC:', np.mean(acc_res))
print('Mean Error:', 100-np.mean(acc_res))
print("mean acc:", np.mean(acc_res), "mean error:", 100-np.mean(acc_res))
return
params_list = [{'params': net.parameters()},
{'params': criterion.parameters()}]
optimizer = torch.optim.SGD(params_list, lr=options['lr'], momentum=0.9, nesterov=True, weight_decay=5e-4)
scheduler = lr_scheduler.MultiStepLR(optimizer, gamma=0.2, milestones=[60, 120, 160, 190])
start_time = time.time()
best_acc = 0.0
for epoch in range(options['max_epoch']):
epoch_time = time.time()
print("==> Epoch {}/{}".format(epoch+1, options['max_epoch']))
epoch_loss = train(net, criterion, optimizer, trainloader, normalize, **options)
print("epoch_loss:", epoch_loss)
if epoch > 150:
print("==> Test")
results = test(net, testloader, normalize)
print("accuracy:", results)
if best_acc < results:
best_acc = results
print("Best Acc (%): {:.3f}\t".format(best_acc))
save_networks(net, options['outfolder'], file_name, criterion=criterion)
scheduler.step()
print('epoch_time(min):', (time.time()-epoch_time)//60)
elapsed = round(time.time() - start_time)
elapsed = str(datetime.timedelta(seconds=elapsed))
print("Finished. Total elapsed time (h:m:s): {}".format(elapsed))
print("best accuracy:", best_acc)
if __name__ == '__main__':
main()