forked from allenai/ai2thor-rearrangement
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_subtask_predictor.py
774 lines (681 loc) Β· 32.2 KB
/
train_subtask_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
import os
import argparse
from tqdm import tqdm
import time
import clip
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import LambdaLR
import torchvision
from torch.utils.tensorboard import SummaryWriter
from allenact.base_abstractions.sensor import Sensor, SensorSuite
from allenact.base_abstractions.preprocessor import SensorPreprocessorGraph, Preprocessor, SensorPreprocessorGraph
from allenact.embodiedai.sensors.vision_sensors import IMAGENET_RGB_MEANS, IMAGENET_RGB_STDS
from allenact.embodiedai.preprocessors.resnet import ResNetPreprocessor, ResNetEmbedder
from allenact_plugins.clip_plugin.clip_preprocessors import ClipResNetPreprocessor, ClipResNetEmbedder
from task_aware_rearrange.constants import NUM_OBJECT_TYPES
from task_aware_rearrange.preprocessors import SubtaskActionExpertPreprocessor, SubtaskExpertPreprocessor, Semantic3DMapPreprocessor
from task_aware_rearrange.voxel_utils import GridParameters, image_to_semantic_maps
from task_aware_rearrange.mapping_utils import update_semantic_map
from task_aware_rearrange.layers import (
EgocentricViewEncoderPooled,
Semantic2DMapWithInventoryEncoderPooled,
SemanticMap2DEncoderPooled,
SubtaskHistoryEncoder,
SubtaskPredictor,
)
from task_aware_rearrange.subtasks import NUM_SUBTASKS
from subtask_prediction.subtask_expert_dataset import SubtaskExpertIterableDataset
from subtask_prediction.models import SubtaskPredictionModel
from experiments.test_exp import ExpertTestExpConfig
def get_args():
parser = argparse.ArgumentParser(
description="train_subtask_predictor", formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--exp_name",
type=str,
)
parser.add_argument(
"--batch_size",
type=int,
default=64,
required=False,
)
parser.add_argument(
"--shuffle",
dest="shuffle",
action="store_true",
required=False,
)
parser.set_defaults(shuffle=False)
parser.add_argument(
"-r",
"--resume",
dest="resume",
action="store_true",
required=False,
)
parser.set_defaults(shuffle=False)
parser.add_argument(
"--data_dir",
type=str,
default="expert_data",
required=False,
)
# Data Preprocessing
parser.add_argument(
"--resnet",
type=lambda s: s.lower() in ['true', '1'],
default="true",
required=False
)
parser.add_argument(
"--cnn_type",
type=str,
default="RN50",
required=False,
)
parser.add_argument(
"--cnn_pretrain_type",
type=str,
default="clip",
required=False,
)
parser.add_argument(
"--prev_action",
type=lambda s: s.lower() in ['true', '1'],
default="true",
required=False
)
parser.add_argument(
"--semantic_map_with_inventory",
type=lambda s: s.lower() in ['true', '1'],
default="false",
required=False
)
parser.add_argument(
"--semantic_map",
type=lambda s: s.lower() in ['true', '1'],
default="false",
required=False
)
parser.add_argument(
"--inventory",
type=lambda s: s.lower() in ['true', '1'],
default="false",
required=False
)
parser.add_argument(
"--learning_rate",
type=float,
default=0.0003,
required=False,
)
parser.add_argument(
"--num_epochs",
type=int,
default=3,
required=False,
)
parser.add_argument(
"--log_interval",
type=int,
default=100,
required=False,
)
args = parser.parse_args()
return args
def worker_init_fn(_):
worker_info = torch.utils.data.get_worker_info()
dataset = worker_info.dataset
worker_id = worker_info.id
split_size = dataset.num_episodes // worker_info.num_workers
dataset.episode_paths = dataset.episode_paths[
worker_id * split_size: (worker_id + 1) * split_size
]
def process_resnet(resnet, rgb: torch.Tensor, device: torch.device):
return resnet(
rgb.to(device).permute(0, 3, 1, 2)
).float()
def process_semantic_map(
semseg: torch.Tensor,
depth: torch.Tensor,
extrinsics: torch.Tensor,
pos: torch.Tensor,
num_classes: int = 73,
hfov: int = 90,
grid_params: GridParameters = GridParameters(),
device: torch.device = torch.device('cuda'),
):
semseg = F.one_hot(semseg.long(), num_classes).to(device).permute(0, 3, 1, 2) # bxcxhxw
depth = depth.to(device).permute(0, 3, 1, 2) # bx1xhxw
extrinsics = extrinsics.to(device) # bx4x4
pos = pos.to(device) # bx3
apos_in_maps = torch.zeros_like(pos, dtype=torch.int32, device=device)
for i in range(3):
apos_in_maps[:, i:i+1] = (
(pos[:, i:i+1] - grid_params.GRID_ORIGIN[i]) / grid_params.GRID_RES
).int()
apos_maps = []
map_shape = (
int(grid_params.GRID_SIZE_X / grid_params.GRID_RES),
int(grid_params.GRID_SIZE_Y / grid_params.GRID_RES),
int(grid_params.GRID_SIZE_Z / grid_params.GRID_RES),
)
for apos in apos_in_maps:
apos_map = torch.zeros((1, *map_shape), device=device)
apos_map[0, apos.long()] = 1.0
apos_maps.append(apos_map)
apos_maps = torch.stack(apos_maps, dim=0)
semmaps = image_to_semantic_maps(
scene=semseg,
depth=depth,
extrinsics4f=extrinsics,
hfov_deg=hfov,
grid_params=grid_params,
)
return torch.cat(
(
apos_maps,
semmaps,
),
dim=1
).type(torch.bool)
# def train_one_epoch(model, loss_fn, optimizer, scheduler, dataloader, device, writer, epoch, accum_batch, accum_iter, args):
# train_loss = 0.0
# train_acc = 0.0
# avg_loss = 0.0
# epoch_batches = 0
# epoch_num_data = 0
# model.train()
# with tqdm(dataloader, unit=" batch") as tepoch:
# prev_actions = torch.zeros((args.batch_size + 1)).long()
# for batch, _ in tepoch:
# epoch_batches += 1
# accum_batch += 1
# """
# batch: Dict[str, torch.Tensor]
# keys:
# '(unshuffled/walkthrough)_rgb' => Preprocessed Egocentric RGB Image. (bsize, 224, 224, 3)
# '(unshuffled/walkthrough)_depth' => Preprocessed Egocentric Depth Image. (bsize, 224, 224, 1)
# '(unshuffled/walkthrough)_semseg' => Egocentric Semantic Segmentation Label Image. (bsize, 224, 224)
# '(unshuffled/walkthrough)_pos_rot_horizon' => Agent Position/Rotation/Horizon Angle (in meters, degrees) (bsize, 5)
# '(unshuffled/walkthrough)_pos_unity' => Agent position in "Unity" coordinates system. (in meters) (bsize, 3)
# '(unshuffled/walkthrough)_Tu2w' => Transformation Matrix from unity to world coordinates. (bsize, 4, 4)
# '(unshuffled/walkthrough)_Tw2c' => Transformation Matrix from world to camera. (bsize, 4, 4)
# 'inventory' => Class-wise onehot vector for holding object (bsize, num_objs+1)
# 'expert_subtask_action' => expert subtask & action obtained from expert subtask & action sensor. (bsize, 4)
# 'episode_id' => id for distinguish episodes along rollouts. (bsize)
# 'masks' => indicator for start of episode. (0: start of new episode / 1: during episode) (bsize)
# """
# model_inputs = {}
# # Previous action is same with the batch["expert_subtask_action"][1:, -2].
# bsize = batch["masks"].shape[0]
# epoch_num_data += bsize
# accum_iter += bsize
# prev_actions[0] = prev_actions[-1]
# prev_actions[1:bsize+1] = batch["expert_subtask_action"][:, -2]
# model_inputs["prev_actions"] = prev_actions[:bsize].to(device)
# model_inputs["masks"] = batch["masks"].bool().to(device)
# # Preprocessing for rgb inputs
# unshuffle_rgb_resnet = None
# walkthrough_rgb_resnet = None
# if args.resnet:
# if resnet is not None:
# unshuffle_rgb_resnet = process_resnet(resnet, batch["unshuffle_rgb"], device)
# walkthrough_rgb_resnet = process_resnet(resnet, batch["walkthrough_rgb"], device)
# model_inputs["unshuffle_rgb_resnet"] = unshuffle_rgb_resnet
# model_inputs["walkthrough_rgb_resnet"] = walkthrough_rgb_resnet
# # Preprocessing for Semantic 3D Mapping
# unshuffle_semmap = None
# walkthrough_semmap = None
# if args.semantic_map:
# unshuffle_semmap = []
# walkthrough_semmap = []
# cur_unshuffle_semmap = process_semantic_map(
# batch["unshuffle_semseg"],
# batch["unshuffle_depth"],
# batch["unshuffle_Tw2c"],
# batch["unshuffle_pos_rot_horizon"][..., :3],
# num_classes=NUM_OBJECT_TYPES,
# grid_params=grid_params,
# device=device,
# )
# cur_walkthrough_semmap = process_semantic_map(
# batch["walkthrough_semseg"],
# batch["walkthrough_depth"],
# batch["walkthrough_Tw2c"],
# batch["walkthrough_pos_rot_horizon"][..., :3],
# num_classes=NUM_OBJECT_TYPES,
# grid_params=grid_params,
# device=device,
# )
# # Update Semantic 3D Map Step-wise
# map_masks = batch["masks"].to(device)[:, None, None, None, None].bool()
# for i in range(cur_unshuffle_semmap.shape[0]):
# acc_unshuffle_semmap = update_semantic_map(
# sem_map=cur_unshuffle_semmap[i],
# sem_map_prev=acc_unshuffle_semmap,
# map_mask=map_masks[i],
# ).squeeze(0)
# acc_walkthrough_semmap = update_semantic_map(
# sem_map=cur_walkthrough_semmap[i],
# sem_map_prev=acc_walkthrough_semmap,
# map_mask=map_masks[i],
# ).squeeze(0)
# unshuffle_semmap.append(acc_unshuffle_semmap)
# walkthrough_semmap.append(acc_walkthrough_semmap)
# unshuffle_semmap = torch.stack(unshuffle_semmap)
# walkthrough_semmap = torch.stack(walkthrough_semmap)
# model_inputs["unshuffle_semmap"] = unshuffle_semmap
# model_inputs["walkthrough_semmap"] = walkthrough_semmap
# # Inventory Vector
# if args.inventory:
# model_inputs["inventory"] = batch["inventory"].to(device)
# # Data for Subtask/Action Histories
# model_inputs["subtask_history"] = batch["expert_subtask_action"][:, 0].to(device)
# model_inputs["episode_id"] = batch["episode_id"].to(device)
# output = model(model_inputs)
# labels = batch["expert_subtask_action"][:, 0].to(device)
# # Loss calculation
# loss = loss_fn(
# input=output,
# target=labels,
# )
# # Backpropagation
# optimizer.zero_grad()
# loss.backward()
# optimizer.step()
# train_loss += loss.item()
# avg_loss += loss.item()
# pred_labels = torch.argmax(output, axis=1)
# train_acc += (pred_labels == labels).sum().item()
# tepoch.set_description_str(f'Epoch {epoch + 1}] Loss: {train_loss.item():.04f}')
# if accum_batch % args.log_interval == 0:
# writer.add_scalar("Loss/train", train_loss / args.log_interval, accum_batch)
# train_loss = 0.0
# writer.add_scalar("Accuracy/train", train_acc / args.log_interval, accum_batch)
# train_acc = 0.0
# scheduler.step()
# writer.add_scalar("Training Loss", avg_loss / epoch_batches, epoch)
# save_dict = {
# "model_state_dict": model.state_dict(),
# "total_steps": accum_iter,
# "optimizer_state_dict": optimizer.state_dict(),
# "scheduler_state": scheduler.state_dict(),
# "args": args.__dict__,
# "epochs": epoch,
# "num_batches": epoch_batches,
# "num_data": epoch_num_data,
# }
# torch.save(save_dict, f"subtask_out/checkpoints/{args.exp_name}/{args.exp_name}_epoch_{epoch}.pt")
# return avg_loss, accum_batch, accum_iter
if __name__ == "__main__":
args = get_args()
device = torch.device('cuda')
if not os.path.exists(f'subtask_out/tb/{args.exp_name}'):
os.makedirs(f'subtask_out/tb/{args.exp_name}')
if not os.path.exists(f'subtask_out/checkpoints/{args.exp_name}'):
os.makedirs(f'subtask_out/checkpoints/{args.exp_name}')
writer = SummaryWriter(f'subtask_out/tb/{args.exp_name}')
if args.resnet:
if args.cnn_type == "RN50":
mean, std = None, None
resnet = None
if args.cnn_pretrain_type == "clip":
# import clip
# clip.load(args.cnn_type, "cpu")
mean, std = ClipResNetPreprocessor.CLIP_RGB_MEANS, ClipResNetPreprocessor.CLIP_RGB_STDS
resnet = ClipResNetEmbedder(
clip.load(args.cnn_type, device=device)[0], pool=False
).to(device)
for module in resnet.modules():
if "BatchNorm" in type(module).__name__:
module.momentum = 0.0
resnet.eval()
elif args.cnn_pretrain_type == "imagenet":
mean, std = IMAGENET_RGB_MEANS, IMAGENET_RGB_STDS
resnet = ResNetEmbedder(
torchvision.models.resnet50(pretrained=True).to(device), pool=False
).to(device)
train_data = SubtaskExpertIterableDataset(
episode_paths=[
os.path.join(
args.data_dir, "train", episode
)
for episode in os.listdir(
os.path.join(
args.data_dir, "train"
)
)
],
shuffle=True,
)
train_data_loader = DataLoader(train_data, batch_size=args.batch_size)
val_data = SubtaskExpertIterableDataset(
episode_paths=[
os.path.join(
args.data_dir, "val", episode
)
for episode in os.listdir(
os.path.join(
args.data_dir, "val"
)
)
],
shuffle=True,
)
val_data_loader = DataLoader(val_data, batch_size=args.batch_size)
acc_unshuffle_semmap = None
acc_walkthrough_semmap = None
if args.semantic_map or args.semantic_map_with_inventory:
grid_params = GridParameters()
map_shape = (
int(grid_params.GRID_SIZE_X / grid_params.GRID_RES),
int(grid_params.GRID_SIZE_Y / grid_params.GRID_RES),
int(grid_params.GRID_SIZE_Z / grid_params.GRID_RES),
)
acc_unshuffle_semmap = torch.zeros((NUM_OBJECT_TYPES + 3, *map_shape), device=device, dtype=torch.bool)
acc_walkthrough_semmap = torch.zeros((NUM_OBJECT_TYPES + 3, *map_shape), device=device, dtype=torch.bool)
# Training Models
hidden_size = 512
prev_action_emb_dim = 32
egoview_emb_dim = 2048 if (args.resnet and args.cnn_type == "RN50") else None # Should be edited
model = SubtaskPredictionModel(
hidden_size=hidden_size,
prev_action_embedding_dim=prev_action_emb_dim,
egoview_embedding_dim=egoview_emb_dim,
resnet_embed=args.resnet,
prev_action_embd=args.prev_action,
semantic_map_with_inventory=args.semantic_map_with_inventory,
semantic_map_embed=args.semantic_map,
inventory=args.inventory,
).to(device)
model.train()
loss_fn = nn.NLLLoss()
optimizer = optim.Adam(
params=[p for p in model.parameters() if p.requires_grad],
lr=args.learning_rate,
)
lr_scheduler = LambdaLR(
optimizer=optimizer,
lr_lambda=lambda epoch: 0.95 ** epoch,
)
start_time = time.time()
acc_iter = 0
acc_batch = 0
acc_val_iter = 0
acc_val_batch = 0
for epoch in range(args.num_epochs):
epoch_iter = 0
epoch_batch = 0
epoch_train_loss = 0.0
epoch_train_acc = 0.0
running_loss = 0.0
running_acc = 0.0
running_iter = 0
with tqdm(train_data_loader, unit=" batch") as tepoch:
tepoch.set_description_str(f'Epoch {epoch + 1}]')
prev_actions = torch.zeros((args.batch_size + 1)).long()
for batch, worker_id in tepoch:
acc_batch += 1
epoch_batch += 1
"""
batch: Dict[str, torch.Tensor]
keys:
'(unshuffled/walkthrough)_rgb' => Preprocessed Egocentric RGB Image. (bsize, 224, 224, 3)
'(unshuffled/walkthrough)_depth' => Preprocessed Egocentric Depth Image. (bsize, 224, 224, 1)
'(unshuffled/walkthrough)_semseg' => Egocentric Semantic Segmentation Label Image. (bsize, 224, 224)
'(unshuffled/walkthrough)_pos_rot_horizon' => Agent Position/Rotation/Horizon Angle (in meters, degrees) (bsize, 5)
'(unshuffled/walkthrough)_pos_unity' => Agent position in "Unity" coordinates system. (in meters) (bsize, 3)
'(unshuffled/walkthrough)_Tu2w' => Transformation Matrix from unity to world coordinates. (bsize, 4, 4)
'(unshuffled/walkthrough)_Tw2c' => Transformation Matrix from world to camera. (bsize, 4, 4)
'inventory' => Class-wise onehot vector for holding object (bsize, num_objs+1)
'expert_subtask_action' => expert subtask & action obtained from expert subtask & action sensor. (bsize, 4)
'episode_id' => id for distinguish episodes along rollouts. (bsize)
'masks' => indicator for start of episode. (0: start of new episode / 1: during episode) (bsize)
"""
model_inputs = {}
# Previous action is same with the batch["expert_subtask_action"][1:, -2].
bsize = batch["masks"].shape[0]
acc_iter += bsize
epoch_iter += bsize
running_iter += bsize
prev_actions[0] = prev_actions[-1]
prev_actions[1:bsize+1] = batch["expert_subtask_action"][:, -2]
model_inputs["prev_actions"] = prev_actions[:bsize].to(device)
model_inputs["masks"] = batch["masks"].bool().to(device)
# Preprocessing for rgb inputs
unshuffle_rgb_resnet = None
walkthrough_rgb_resnet = None
if args.resnet:
if resnet is not None:
unshuffle_rgb_resnet = process_resnet(resnet, batch["unshuffle_rgb"], device)
walkthrough_rgb_resnet = process_resnet(resnet, batch["walkthrough_rgb"], device)
# import pdb; pdb.set_trace()
model_inputs["unshuffle_rgb_resnet"] = unshuffle_rgb_resnet
model_inputs["walkthrough_rgb_resnet"] = walkthrough_rgb_resnet
# Preprocessing for Semantic 3D Mapping
unshuffle_semmap = None
walkthrough_semmap = None
if args.semantic_map or args.semantic_map_with_inventory:
unshuffle_semmap = []
walkthrough_semmap = []
cur_unshuffle_semmap = process_semantic_map(
batch["unshuffle_semseg"],
batch["unshuffle_depth"],
batch["unshuffle_Tw2c"],
batch["unshuffle_pos_rot_horizon"][..., :3],
num_classes=NUM_OBJECT_TYPES,
grid_params=grid_params,
device=device,
)
cur_walkthrough_semmap = process_semantic_map(
batch["walkthrough_semseg"],
batch["walkthrough_depth"],
batch["walkthrough_Tw2c"],
batch["walkthrough_pos_rot_horizon"][..., :3],
num_classes=NUM_OBJECT_TYPES,
grid_params=grid_params,
device=device,
)
# Update Semantic 3D Map Step-wise
map_masks = batch["masks"].to(device)[:, None, None, None, None].bool()
for i in range(cur_unshuffle_semmap.shape[0]):
acc_unshuffle_semmap = update_semantic_map(
sem_map=cur_unshuffle_semmap[i],
sem_map_prev=acc_unshuffle_semmap,
map_mask=map_masks[i],
).squeeze(0)
acc_walkthrough_semmap = update_semantic_map(
sem_map=cur_walkthrough_semmap[i],
sem_map_prev=acc_walkthrough_semmap,
map_mask=map_masks[i],
).squeeze(0)
unshuffle_semmap.append(acc_unshuffle_semmap)
walkthrough_semmap.append(acc_walkthrough_semmap)
unshuffle_semmap = torch.stack(unshuffle_semmap)
walkthrough_semmap = torch.stack(walkthrough_semmap)
# import pdb; pdb.set_trace()
model_inputs["unshuffle_semmap"] = unshuffle_semmap
model_inputs["walkthrough_semmap"] = walkthrough_semmap
# Inventory Vector
if args.inventory or args.semantic_map_with_inventory:
model_inputs["inventory"] = batch["inventory"].to(device)
# Data for Subtask/Action Histories
model_inputs["subtask_history"] = batch["expert_subtask_action"][:, 0].to(device)
model_inputs["episode_id"] = batch["episode_id"].to(device)
output = model(model_inputs)
labels = batch["expert_subtask_action"][:, 0].to(device)
# Loss calculation
loss = loss_fn(
input=output,
target=labels,
)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
epoch_train_loss += loss.item()
pred_labels = torch.argmax(output, axis=1)
acc = (pred_labels == labels).sum()
epoch_train_acc += acc.item()
running_acc += acc.item()
tepoch.set_description_str(f'Epoch {epoch + 1}] Training Loss: {loss.item():.04f} | Training Accuracy {(acc.item() / bsize):.04f}')
# Log every (args.log_interval) minibatches
if epoch_batch % int(args.log_interval / (args.batch_size / 64)) == 0:
writer.add_scalar("training_loss_iter", running_loss / args.log_interval, acc_iter)
writer.add_scalar("training_accuracy_iter", (running_acc / running_iter) / args.log_interval, acc_iter)
running_loss = 0.0
running_acc = 0.0
running_iter = 0
lr_scheduler.step()
avg_loss = epoch_train_loss / epoch_batch
avg_acc = epoch_train_acc / epoch_iter
print(f"Epoch {epoch + 1} Training Ended.")
print(f"Epoch train loss: {avg_loss}, train accuracy: {avg_acc}, eBatch: {epoch_batch}, current data #: {epoch_iter}")
writer.add_scalar("training_loss_epoch", avg_loss, epoch)
writer.add_scalar("training_accuracy_epoch", avg_acc, epoch)
print(f"Total data #: {acc_iter}, # iBatch: {acc_batch}")
# print(f"Last training loss: {running_loss / (args.log_interval if iter % args.log_interval == 0 else (iter % args.log_interval))}")
save_dict = {
"model_state_dict": model.state_dict(),
"total_steps": acc_iter,
"total_batches": acc_batch,
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state": lr_scheduler.state_dict(),
"args": args.__dict__,
"epochs": epoch,
"num_iterations": epoch_iter,
"num_batches": epoch_batch,
"avg_loss": avg_loss,
"avg_accuracy": avg_acc,
}
torch.save(save_dict, f"subtask_out/checkpoints/{args.exp_name}/{args.exp_name}_epoch_{epoch}.pt")
# Validation
model.eval()
running_vloss = 0.0
running_vacc = 0.0
running_viter = 0
epoch_val_loss = 0.0
epoch_val_acc = 0.0
vepoch_iter = 0
vepoch_batch = 0
with tqdm(val_data_loader, unit=" batch") as vepoch:
vepoch.set_description_str(f'Epoch {epoch + 1}]')
prev_actions = torch.zeros((args.batch_size + 1)).long()
if args.semantic_map or args.semantic_map_with_inventory:
acc_unshuffle_semmap.zero_()
acc_walkthrough_semmap.zero_()
with torch.no_grad():
for vbatch, worker_id in vepoch:
vepoch_batch += 1
acc_val_batch += 1
vmodel_inputs = {}
# Previous action is same with the batch["expert_subtask_action"][1:, -2].
bsize = vbatch["masks"].shape[0]
vepoch_iter += bsize
acc_val_iter += bsize
running_viter += bsize
prev_actions[0] = prev_actions[-1]
prev_actions[1:bsize+1] = vbatch["expert_subtask_action"][:, -2]
vmodel_inputs["prev_actions"] = prev_actions[:bsize].to(device)
vmodel_inputs["masks"] = vbatch["masks"].bool().to(device)
# Preprocessing for rgb inputs
unshuffle_rgb_resnet = None
walkthrough_rgb_resnet = None
if args.resnet:
if resnet is not None:
unshuffle_rgb_resnet = process_resnet(resnet, vbatch["unshuffle_rgb"], device)
walkthrough_rgb_resnet = process_resnet(resnet, vbatch["walkthrough_rgb"], device)
# import pdb; pdb.set_trace()
vmodel_inputs["unshuffle_rgb_resnet"] = unshuffle_rgb_resnet
vmodel_inputs["walkthrough_rgb_resnet"] = walkthrough_rgb_resnet
# Preprocessing for Semantic 3D Mapping
unshuffle_semmap = None
walkthrough_semmap = None
if args.semantic_map or args.semantic_map_with_inventory:
unshuffle_semmap = []
walkthrough_semmap = []
cur_unshuffle_semmap = process_semantic_map(
vbatch["unshuffle_semseg"],
vbatch["unshuffle_depth"],
vbatch["unshuffle_Tw2c"],
vbatch["unshuffle_pos_rot_horizon"][..., :3],
num_classes=NUM_OBJECT_TYPES,
grid_params=grid_params,
device=device,
)
cur_walkthrough_semmap = process_semantic_map(
vbatch["walkthrough_semseg"],
vbatch["walkthrough_depth"],
vbatch["walkthrough_Tw2c"],
vbatch["walkthrough_pos_rot_horizon"][..., :3],
num_classes=NUM_OBJECT_TYPES,
grid_params=grid_params,
device=device,
)
# Update Semantic 3D Map Step-wise
map_masks = vbatch["masks"].to(device)[:, None, None, None, None].bool()
for i in range(cur_unshuffle_semmap.shape[0]):
acc_unshuffle_semmap = update_semantic_map(
sem_map=cur_unshuffle_semmap[i],
sem_map_prev=acc_unshuffle_semmap,
map_mask=map_masks[i],
).squeeze(0)
acc_walkthrough_semmap = update_semantic_map(
sem_map=cur_walkthrough_semmap[i],
sem_map_prev=acc_walkthrough_semmap,
map_mask=map_masks[i],
).squeeze(0)
unshuffle_semmap.append(acc_unshuffle_semmap)
walkthrough_semmap.append(acc_walkthrough_semmap)
unshuffle_semmap = torch.stack(unshuffle_semmap)
walkthrough_semmap = torch.stack(walkthrough_semmap)
# import pdb; pdb.set_trace()
vmodel_inputs["unshuffle_semmap"] = unshuffle_semmap
vmodel_inputs["walkthrough_semmap"] = walkthrough_semmap
# Inventory Vector
if args.inventory or args.semantic_map_with_inventory:
vmodel_inputs["inventory"] = vbatch["inventory"].to(device)
# Data for Subtask/Action Histories
vmodel_inputs["subtask_history"] = vbatch["expert_subtask_action"][:, 0].to(device)
vmodel_inputs["episode_id"] = vbatch["episode_id"].to(device)
voutput = model(vmodel_inputs)
vlabels = vbatch["expert_subtask_action"][:, 0].to(device)
vloss = loss_fn(voutput, vlabels)
running_vloss += vloss.item()
epoch_val_loss += vloss.item()
vpred_labels = torch.argmax(voutput, axis=1)
val_acc = (vpred_labels == vlabels).sum()
epoch_val_acc += val_acc.item()
running_vacc += val_acc.item()
vepoch.set_description_str(f'Epoch {epoch + 1}] Validation Loss: {vloss.item():.04f} | Validation Accuracy: {(val_acc.item() / bsize):.04f}')
if vepoch_batch % int(args.log_interval / (args.batch_size / 64) / 4) == 0:
writer.add_scalar("validation_loss_iter", running_vloss / (args.log_interval / 4), acc_val_iter)
writer.add_scalar("validation_accuracy_iter", (running_vacc / running_viter) / (args.log_interval / 4), acc_val_iter)
running_vloss = 0.0
running_vacc = 0.0
running_viter = 0
avg_vloss = epoch_val_loss / vepoch_batch
avg_vacc = epoch_val_acc / vepoch_iter
print(f"Epoch {epoch + 1} Validation Ended.")
print(f"Epoch validation loss: {avg_vloss}, validation accuracy: {avg_vacc}, vbatch: {vepoch_batch}")
writer.add_scalar("validation_loss_epoch", avg_vloss, epoch)
writer.add_scalar("validation_accuracy_epoch", avg_vacc, epoch)
writer.add_scalars(
"Training vs. Validation Loss",
{"Training": avg_loss, "Validation": avg_vloss},
epoch,
)
writer.add_scalars(
"Training vs. Validation Accuracy",
{"Training": avg_acc, "Validation": avg_vacc},
epoch,
)
writer.flush()