-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrainer.py
415 lines (350 loc) · 15.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
from argparse import ArgumentParser
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import pytorch_lightning as pl
from pytorch_lightning import Trainer, seed_everything
from pytorch_lightning.strategies import DDPStrategy
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor, StochasticWeightAveraging, TQDMProgressBar
from pytorch_lightning.utilities.model_summary import ModelSummary
from torchmetrics import Accuracy, AUROC
import hydra
from omegaconf import OmegaConf
from functools import lru_cache
#hide warnings
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import warnings
warnings.filterwarnings("ignore")
from pkg_resources import PkgResourcesDeprecationWarning
warnings.simplefilter("ignore", category=PkgResourcesDeprecationWarning)
from models.chordmixer import ChordMixer, ChordMixerNoDec
from optim.register import map_scheduler
from optim.custom_metrics import CustomAccuracy
from dataloaders.register import map_dataset
import torch
import pytorch_lightning as pl
from torch.nn import functional as F
from torch.utils.data import DataLoader, random_split
class LitMixer(pl.LightningModule):
def __init__(self, backbone, cfg, args):
super().__init__()
self.save_hyperparameters(cfg)
self.model_config = self.hparams.backbone
self.training_config = self.hparams.training
self.args = args
self.backbone = backbone(**self.model_config)
# Metrics
if self.args.metric == 'acc':
self.train_acc = Accuracy(task='multiclass', num_classes=self.model_config.output_size, top_k=1)
self.val_acc = Accuracy(task='multiclass', num_classes=self.model_config.output_size, top_k=1)
self.test_acc = Accuracy(task='multiclass', num_classes=self.model_config.output_size, top_k=1)
elif self.args.metric == 'rocauc':
self.train_acc = AUROC(task='binary')
self.val_acc = AUROC(task='binary')
self.test_acc = AUROC(task='binary')
elif self.args.metric == 'reg_acc':
self.train_acc = CustomAccuracy()
self.val_acc = CustomAccuracy()
self.test_acc = CustomAccuracy()
def forward(self, x, lengths):
return self.backbone(x, lengths)
def _calculate_loss(self, batch, mode):
sequences, target, lengths = batch
preds = self(sequences, lengths)
if self.args.loss == 'crossentropy':
loss = F.cross_entropy(preds, target)
preds = preds.argmax(dim=-1)
elif self.args.loss == 'mse':
preds = preds.squeeze()
loss = F.mse_loss(preds, target)
self.log("%s_loss" % mode, loss)
return {"loss": loss, 'preds': preds, 'target': target}
def training_step(self, batch, batch_idx):
outputs = self._calculate_loss(batch, mode='train')
return outputs
def training_step_end(self, outputs):
self.train_acc(outputs['preds'], outputs['target'])
self.log('train_acc', self.train_acc, on_step=True, on_epoch=True)
return {'loss': outputs['loss'].sum()}
def validation_step(self, batch, batch_idx):
outputs = self._calculate_loss(batch, mode='val')
return outputs
def validation_step_end(self, outputs):
self.val_acc(outputs['preds'], outputs['target'])
self.log('val_acc', self.val_acc, on_step=False, on_epoch=True)
return {'loss': outputs['loss'].sum()}
def test_step(self, batch, batch_idx):
outputs = self._calculate_loss(batch, mode='test')
return outputs
def test_step_end(self, outputs):
self.test_acc(outputs['preds'], outputs['target'])
self.log('test_acc', self.test_acc, on_step=False, on_epoch=True)
return {'loss': outputs['loss'].sum()}
@lru_cache
def total_steps(self):
l = len(self.trainer.datamodule.train_dataloader())
# l = 1000
print('Num devices', self.trainer.num_devices)
max_epochs = self.trainer.max_epochs
accum_batches = self.trainer.accumulate_grad_batches
manual_total_steps = l // accum_batches * max_epochs
print('MANUAL Total steps', manual_total_steps)
return manual_total_steps
def configure_optimizers(self):
optimizer = optim.AdamW(
self.parameters(),
lr=self.training_config.lr,
weight_decay=self.training_config.weight_decay
)
lr_scheduler = map_scheduler(
scheduler_name=self.training_config.scheduler,
optimizer=optimizer,
num_warmup_steps=self.training_config.n_warmup_steps,
num_training_steps=self.total_steps()
)
return [optimizer], [{"scheduler": lr_scheduler, "interval": "step"}]
class LitMixerImage(pl.LightningModule):
def __init__(self, backbone, cfg, args):
super().__init__()
self.save_hyperparameters(cfg)
self.model_config = self.hparams.backbone
self.training_config = self.hparams.training
self.args = args
self.backbone = backbone(**self.model_config)
# Metrics
if self.args.metric == 'acc':
self.train_acc = Accuracy(task='multiclass', num_classes=self.model_config.output_size, top_k=1)
self.val_acc = Accuracy(task='multiclass', num_classes=self.model_config.output_size, top_k=1)
self.test_acc = Accuracy(task='multiclass', num_classes=self.model_config.output_size, top_k=1)
elif self.args.metric == 'rocauc':
self.train_acc = AUROC(task='binary')
self.val_acc = AUROC(task='binary')
self.test_acc = AUROC(task='binary')
elif self.args.metric == 'reg_acc':
self.train_acc = CustomAccuracy()
self.val_acc = CustomAccuracy()
self.test_acc = CustomAccuracy()
def forward(self, x):
return self.backbone(x)
def _calculate_loss(self, batch, mode):
sequences, target = batch
preds = self(sequences)
loss = F.cross_entropy(preds, target)
preds = preds.argmax(dim=-1)
self.log("%s_loss" % mode, loss)
return {"loss": loss, 'preds': preds, 'target': target}
def training_step(self, batch, batch_idx):
outputs = self._calculate_loss(batch, mode='train')
return outputs
def training_step_end(self, outputs):
self.train_acc(outputs['preds'], outputs['target'])
self.log('train_acc', self.train_acc, on_step=True, on_epoch=True)
return {'loss': outputs['loss'].sum()}
def validation_step(self, batch, batch_idx):
outputs = self._calculate_loss(batch, mode='val')
return outputs
def validation_step_end(self, outputs):
self.val_acc(outputs['preds'], outputs['target'])
self.log('val_acc', self.val_acc, on_step=False, on_epoch=True)
return {'loss': outputs['loss'].sum()}
def test_step(self, batch, batch_idx):
outputs = self._calculate_loss(batch, mode='test')
return outputs
def test_step_end(self, outputs):
self.test_acc(outputs['preds'], outputs['target'])
self.log('test_acc', self.test_acc, on_step=False, on_epoch=True)
return {'loss': outputs['loss'].sum()}
@lru_cache
def total_steps(self):
l = len(self.trainer.datamodule.train_dataloader())
print('Num devices', self.trainer.num_devices)
max_epochs = self.trainer.max_epochs
accum_batches = self.trainer.accumulate_grad_batches
manual_total_steps = l // accum_batches * max_epochs
print('MANUAL Total steps', manual_total_steps)
return manual_total_steps
def configure_optimizers(self):
optimizer = optim.AdamW(
self.parameters(),
lr=self.training_config.lr,
weight_decay=self.training_config.weight_decay
)
lr_scheduler = map_scheduler(
scheduler_name=self.training_config.scheduler,
optimizer=optimizer,
num_warmup_steps=self.training_config.n_warmup_steps,
num_training_steps=self.total_steps()
)
return [optimizer], [{"scheduler": lr_scheduler, "interval": "step"}]
class NetDual(nn.Module):
def __init__(self, backbone, dim, linear_decoder=False, n_class=2):
super(NetDual, self).__init__()
self.model = backbone
if linear_decoder:
self.decoder = nn.Linear(dim*4, n_class)
else:
self.decoder = nn.Sequential(
nn.Linear(dim*4, dim),
nn.GELU(),
nn.Linear(dim, n_class)
)
def forward(self, x1, x2, lengths1, lengths2):
y_dim1 = self.model(x1, lengths1)
y_dim2 = self.model(x2, lengths2)
y_class = torch.cat([y_dim1, y_dim2, y_dim1 * y_dim2, y_dim1 - y_dim2], dim=1)
y = self.decoder(y_class)
return y
class LitMixerRetrieval(pl.LightningModule):
def __init__(self, backbone, cfg, args):
super().__init__()
self.save_hyperparameters(cfg)
self.model_config = self.hparams.backbone
self.training_config = self.hparams.training
self.args = args
self.backbone = backbone(**self.model_config)
dim = int(13 * self.model_config.track_size)
self.backbone = NetDual(
backbone=self.backbone,
dim=dim,
linear_decoder=False
)
# Metrics
if self.args.metric == 'acc':
self.train_acc = Accuracy(task='multiclass', num_classes=self.model_config.output_size, top_k=1)
self.val_acc = Accuracy(task='multiclass', num_classes=self.model_config.output_size, top_k=1)
self.test_acc = Accuracy(task='multiclass', num_classes=self.model_config.output_size, top_k=1)
elif self.args.metric == 'rocauc':
self.train_acc = AUROC(task='binary')
self.val_acc = AUROC(task='binary')
self.test_acc = AUROC(task='binary')
elif self.args.metric == 'reg_acc':
self.train_acc = CustomAccuracy()
self.val_acc = CustomAccuracy()
self.test_acc = CustomAccuracy()
def forward(self, x1, x2, lengths1, lengths2):
return self.backbone(x1, x2, lengths1, lengths2)
def _calculate_loss(self, batch, mode):
sequences1, sequences2, target, lengths1, lengths2 = batch
preds = self(sequences1, sequences2, lengths1, lengths2)
loss = F.cross_entropy(preds, target)
preds = preds.argmax(dim=-1)
self.log("%s_loss" % mode, loss)
return {"loss": loss, 'preds': preds, 'target': target}
def training_step(self, batch, batch_idx):
outputs = self._calculate_loss(batch, mode='train')
return outputs
def training_step_end(self, outputs):
self.train_acc(outputs['preds'], outputs['target'])
self.log('train_acc', self.train_acc, on_step=True, on_epoch=True)
return {'loss': outputs['loss'].sum()}
def validation_step(self, batch, batch_idx):
outputs = self._calculate_loss(batch, mode='val')
return outputs
def validation_step_end(self, outputs):
self.val_acc(outputs['preds'], outputs['target'])
self.log('val_acc', self.val_acc, on_step=False, on_epoch=True)
return {'loss': outputs['loss'].sum()}
def test_step(self, batch, batch_idx):
outputs = self._calculate_loss(batch, mode='test')
return outputs
def test_step_end(self, outputs):
self.test_acc(outputs['preds'], outputs['target'])
self.log('test_acc', self.test_acc, on_step=False, on_epoch=True)
return {'loss': outputs['loss'].sum()}
@lru_cache
def total_steps(self):
l = len(self.trainer.datamodule.train_dataloader())
print('Num devices', self.trainer.num_devices)
max_epochs = self.trainer.max_epochs
accum_batches = self.trainer.accumulate_grad_batches
manual_total_steps = l // accum_batches * max_epochs
print('MANUAL Total steps', manual_total_steps)
return manual_total_steps
def configure_optimizers(self):
optimizer = optim.AdamW(
self.parameters(),
lr=self.training_config.lr,
weight_decay=self.training_config.weight_decay
)
lr_scheduler = map_scheduler(
scheduler_name=self.training_config.scheduler,
optimizer=optimizer,
num_warmup_steps=self.training_config.n_warmup_steps,
num_training_steps=self.total_steps()
)
return [optimizer], [{"scheduler": lr_scheduler, "interval": "step"}]
@hydra.main(config_path="./conf", config_name="config", version_base="1.1")
def cli_main(cfg: OmegaConf):
OmegaConf.set_struct(cfg, False)
pl.seed_everything(42)
# Get the original working directory
original_cwd = hydra.utils.get_original_cwd()
# Load the cli_args.yaml configuration
default_cli_args = OmegaConf.load(os.path.join(original_cwd, "conf/cli_args.yaml"))
# Merge the main configuration with the default CLI arguments
cfg = OmegaConf.merge(default_cli_args, cfg)
# Access command line arguments using cfg.<argument_name>
task_config = cfg[cfg.problem][cfg.model]
model_config = task_config['backbone']
training_config = task_config['training']
print(model_config)
print(training_config)
# ------------
# data
# ------------
dm = map_dataset(
data_dir=cfg.data_dir,
taskname=cfg.problem,
num_workers=cfg.num_workers,
batch_size=training_config['batch_size'],
diff_lengths=cfg.diff_len
)
# ------------
# init model
# ------------
if cfg.model == 'chordmixer':
backbone = ChordMixer
if cfg.problem in ['image', 'pathfinder', 'pathfinderx']:
model = LitMixerImage(backbone, task_config, cfg)
elif cfg.problem == 'retrieval':
backbone = ChordMixerNoDec
model = LitMixerRetrieval(backbone, task_config, cfg)
else:
model = LitMixer(backbone, task_config, cfg)
summary = ModelSummary(model, max_depth=-1)
# ------------
# init trainer
# ------------
wandb_logger = WandbLogger(project=f"{cfg.problem}_{cfg.model}", log_model="all", offline=False)
callbacks_for_trainer = [
TQDMProgressBar(refresh_rate=10),
LearningRateMonitor(logging_interval="step")
]
trainer = Trainer(
fast_dev_run=False,
gradient_clip_val=1.,
accelerator='gpu',
devices=cfg.n_devices,
strategy='dp',
enable_progress_bar=True,
max_epochs=training_config.n_epochs,
logger=wandb_logger,
callbacks=callbacks_for_trainer
)
# ------------
# training
# ------------
print(summary)
trainer.fit(model, datamodule=dm)
os.makedirs(cfg.ckpt_dir, exist_ok=True)
torch.save(model.state_dict(), f'{cfg.ckpt_dir}/{cfg.problem}_{cfg.model}_{cfg.diff_len}.pt')
# ------------
# testing
# ------------
result = trainer.test(datamodule=dm, ckpt_path="last")
print(result)
if __name__ == '__main__':
cli_main()