Skip to content

Commit 197e1d7

Browse files
Adding changes for l4DC submission
1 parent e72f312 commit 197e1d7

11 files changed

+1833
-104
lines changed

COMMANDS.py

Lines changed: 64 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,64 @@
1+
import os
2+
import sys
3+
4+
mcs_sessions = ["349e4383-da38-4138-8371-9a5fed63a56a","015b7571-9f0b-4db4-a854-68e57640640d","c613945f-1570-4011-93a4-8c8c6408e2cf","dfda5c67-a512-4ca2-a4b3-6a7e22599732","7562e3c0-dea8-46f8-bc8b-ed9d0f002a77","275561c0-5d50-4675-9df1-733390cd572f","0e10a4e3-a93f-4b4d-9519-d9287d1d74eb","a5e5d4cd-524c-4905-af85-99678e1239c8","dd215900-9827-4ae6-a07d-543b8648b1da","3d1207bf-192b-486a-b509-d11ca90851d7","c28e768f-6e2b-4726-8919-c05b0af61e4a","fb6e8f87-a1cc-48b4-8217-4e8b160602bf","e6b10bbf-4e00-4ac0-aade-68bc1447de3e","d66330dc-7884-4915-9dbb-0520932294c4","0d9e84e9-57a4-4534-aee2-0d0e8d1e7c45","2345d831-6038-412e-84a9-971bc04da597","0a959024-3371-478a-96da-bf17b1da15a9","ef656fe8-27e7-428a-84a9-deb868da053d","c08f1d89-c843-4878-8406-b6f9798a558e","d2020b0e-6d41-4759-87f0-5c158f6ab86a","8dc21218-8338-4fd4-8164-f6f122dc33d9"]
5+
6+
case = int(sys.argv[1])
7+
8+
if case == 0:
9+
exp_name = "LowSurrogateFootSlding"
10+
low = 0.15
11+
high = 0.25
12+
elif case == 1:
13+
exp_name = "MidSurrogateFootSlding"
14+
low = 0.25
15+
high = 0.35
16+
elif case == 2:
17+
exp_name = "HighSurrogateFootSlding"
18+
low = 0.35
19+
high = 0.45
20+
21+
os.environ['CUDA_VISIBLE_DEVICES'] = str(case + 2)
22+
23+
for session in mcs_sessions[::-1]:
24+
print(f"Running Command for Session: conda run -n T2M-GPT python LIMO_Surrogate.py --exp-name {exp_name} --vq-name /data/panini/T2M-GPT/output/VQVAE14/120000.pth --dataname mcs --seq-len 49 --total-iter 3000 --lr 0.5 --num-runs 1 --min-samples 20 --subject /data/panini/MCS_DATA/Data/{session} --low {low} --high {high}")
25+
os.system(f"conda run -n T2M-GPT python LIMO_Surrogate.py --exp-name {exp_name} --vq-name /data/panini/T2M-GPT/output/VQVAE14/120000.pth --dataname mcs --seq-len 49 --total-iter 3000 --lr 0.5 --num-runs 1 --min-samples 20 --subject /data/panini/MCS_DATA/Data/{session} --low {low} --high {high}")
26+
27+
28+
# # VQVAE Training:
29+
# python3 train_vq.py --batch-size 256 --lr 2e-4 --total-iter 300000 --lr-scheduler 200000 --nb-code 512 --down-t 2 --depth 3 --dilation-growth-rate 3 --out-dir output --dataname mcs --vq-act relu --quantizer ema_reset --loss-vel 0.5 --recons-loss l1_smooth --exp-name VQVAE4
30+
31+
# # with deepspeed:
32+
# python3.8 /home/ubuntu/.local/bin/deepspeed train_vq.py --batch-size 256 --lr 2e-4 --total-iter 300000 --lr-scheduler 200000 --nb-code 512 --down-t 2 --depth 3 --dilation-growth-rate 3 --out-dir output --dataname mcs --vq-act relu --quantizer ema_reset --loss-vel 0.5 --recons-loss l1_smooth --exp-name VQVAE9
33+
34+
# # VQVAE sample generation after training (generates both NPY and MOT):
35+
# python MOT_eval.py --dataname mcs --out-dir output --exp-name VQVAE5_v2 --resume-pth output/VQVAE5_v2/300000.pth
36+
37+
# # LIMO Optimization:
38+
# # python VQ_Limo.py --exp-name VQVAE7 --vq-name model pth path --dataname mcs --seq-len 49 --total-iter 20000 --lr 0.1 --num-runs 10 --min-samples 20
39+
# # Latest: python VQ_Limo.py --exp-name VQVAE7 --vq-name output/VQVAE7_bs32_temporal/400000.pth --dataname mcs --seq-len 49 --total-iter 3000 --lr 0.5 --num-runs 10 --min-samples 20
40+
41+
# # Latestlimo code: /data/panini/digital-coach-anwesh/VQ_Limo_Subject.py
42+
43+
# python VQ_Limo_Subject.py --exp-name Simulation-Train-Data --vq-name output/VQVAE11/260000.pth --dataname mcs --seq-len 49 --total-iter 3000 --lr 0.5 --num-runs 1 --min-samples 20
44+
45+
# # Added the same in COMMANDS.txt
46+
47+
48+
# # Generate MOT from NPY (after LIMO):
49+
# python write_mot.py
50+
51+
# # Visualize PCA embeddings of training samples from encoder (embeddings generated during LIMO):
52+
# # visualize_embedding.ipynb
53+
54+
# # Calculate wasserstein distance:
55+
# # python calculate_wasserstein.py --folder name to generated data (.NPY) files
56+
# # python calculate_wasserstein.py "/home/ubuntu/data/opencap-processing/Data/*/OpenSimData/VQVAE7_Temporal_Kinematics/*_pred.npy"
57+
58+
# # Generate mp4 from MOT:
59+
# # cd UCSD-OpenCap-Fitness_Dataset/
60+
# # export DISPLAY=:99.0
61+
# python src/opencap_reconstruction_render.py <absolute subject-path> <absolute mot-path> <absolute save-path>
62+
63+
# # Run Surrogate training:
64+
# python3.8 surrogate_training.py

COMMANDS.txt

Lines changed: 25 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -7,17 +7,6 @@ python3.8 /home/ubuntu/.local/bin/deepspeed train_vq.py --batch-size 256 --lr 2e
77
VQVAE sample generation after training (generates both NPY and MOT):
88
python MOT_eval.py --dataname mcs --out-dir output --exp-name VQVAE5_v2 --resume-pth output/VQVAE5_v2/300000.pth
99

10-
# LIMO Optimization:
11-
# python VQ_Limo.py --exp-name VQVAE7 --vq-name model pth path --dataname mcs --seq-len 49 --total-iter 20000 --lr 0.1 --num-runs 10 --min-samples 20
12-
# Latest: python VQ_Limo.py --exp-name VQVAE7 --vq-name output/VQVAE7_bs32_temporal/400000.pth --dataname mcs --seq-len 49 --total-iter 3000 --lr 0.5 --num-runs 10 --min-samples 20
13-
14-
Latestlimo code: /data/panini/digital-coach-anwesh/VQ_Limo_Subject.py
15-
16-
Command: ` python VQ_Limo_Subject.py --exp-name Simulation-Train-Data --vq-name output/VQVAE11/260000.pth --dataname mcs --seq-len 49 --total-iter 3000 --lr 0.5 --num-runs 1 --min-samples 20 `
17-
18-
Added the same in COMMANDS.txt
19-
20-
2110
Generate MOT from NPY (after LIMO):
2211
python write_mot.py
2312

@@ -34,4 +23,28 @@ export DISPLAY=:99.0
3423
python src/opencap_reconstruction_render.py <absolute subject-path> <absolute mot-path> <absolute save-path>
3524

3625
Run Surrogate training:
37-
python3.8 surrogate_training.py
26+
python3.8 surrogate_training.py
27+
28+
29+
############### LIMO ##################################
30+
import os
31+
mcs_sessions = ["349e4383-da38-4138-8371-9a5fed63a56a","015b7571-9f0b-4db4-a854-68e57640640d","c613945f-1570-4011-93a4-8c8c6408e2cf","dfda5c67-a512-4ca2-a4b3-6a7e22599732","7562e3c0-dea8-46f8-bc8b-ed9d0f002a77","275561c0-5d50-4675-9df1-733390cd572f","0e10a4e3-a93f-4b4d-9519-d9287d1d74eb","a5e5d4cd-524c-4905-af85-99678e1239c8","dd215900-9827-4ae6-a07d-543b8648b1da","3d1207bf-192b-486a-b509-d11ca90851d7","c28e768f-6e2b-4726-8919-c05b0af61e4a","fb6e8f87-a1cc-48b4-8217-4e8b160602bf","e6b10bbf-4e00-4ac0-aade-68bc1447de3e","d66330dc-7884-4915-9dbb-0520932294c4","0d9e84e9-57a4-4534-aee2-0d0e8d1e7c45","2345d831-6038-412e-84a9-971bc04da597","0a959024-3371-478a-96da-bf17b1da15a9","ef656fe8-27e7-428a-84a9-deb868da053d","c08f1d89-c843-4878-8406-b6f9798a558e","d2020b0e-6d41-4759-87f0-5c158f6ab86a","8dc21218-8338-4fd4-8164-f6f122dc33d9"]
32+
exp_name = "FinalFinalHigh"
33+
for session in mcs_sessions:
34+
os.system(f"python LIMO_Surrogate.py --exp-name {exp_name} --vq-name /data/panini/T2M-GPT/output/VQVAE14/120000.pth --dataname mcs --seq-len 49 --total-iter 3000 --lr 0.5 --num-runs 3000 --min-samples 20 --subject /data/panini/MCS_DATA/Data/{session} --low 0.35 --high 0.45")
35+
36+
############### MOCAP Metrics ##################
37+
python wasserstein_mocap.py --file_type mot --folder_path /home/ubuntu/data/MCS_DATA/Data/
38+
39+
40+
41+
########## RESULTS ##############
42+
python calculate_guidance.py --file_type mot --folder_path /home/ubuntu/data/digital-coach-anwesh/output_GPT_Final/FinalHigh/mot_visualization/
43+
44+
python calculate_wasserstein.py --file_type mot --folder_path /home/ubuntu/data/MCS_DATA/LIMO/FinalFinalHigh/mot_visualization/
45+
python calculate_wasserstein.py --file_type mot --folder_path /home/ubuntu/data/MCS_DATA/mdm_baseline/
46+
python calculate_wasserstein.py --file_type mot --folder_path /home/ubuntu/data/MCS_DATA/baselines/mdm_baseline/
47+
python calculate_wasserstein.py --file_type mot --folder_path /home/ubuntu/data/MCS_DATA/LIMO/
48+
python calculate_wasserstein.py --file_type mot --folder_path /home/ubuntu/data/MCS_DATA/LIMO/FinalFinalHigh/mot_visualization/
49+
python calculate_wasserstein.py --file_type mot --folder_path /home/ubuntu/data/MCS_DATA/LIMO/VQVAE-Generations/mot_visualization/
50+
python calculate_wasserstein.py --file_type mot --folder_path /home/ubuntu/data/MCS_DATA/mdm_baseline/

0 commit comments

Comments
 (0)