-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_guidance.py
387 lines (309 loc) · 15.6 KB
/
calculate_guidance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import numpy as np
import os
import argparse
from dataset import dataset_MOT_MCS, dataset_MOT_segmented
from tqdm import tqdm
from glob import glob
from scipy.stats import entropy
import torch
from guidance import get_guidance_score
# Step 1: Load training data (assuming it's already loaded or available)
def load_training_data():
"""
Load your real training data. For this example, I'm generating random data.
You should replace this with actual code to load the real data.
Returns:
- training_data (numpy array): real training data
"""
real_data = []
data_loader = dataset_MOT_segmented.DATALoader(
dataset_name='mcs',
batch_size=1,
window_size=64,
mode='limo'
)
data_loader.dataset.mode2 = 'metrics'
for i,batch in tqdm(enumerate(data_loader)):
motion, _,_ = batch
real_data.extend(motion)
real_data = np.array([np.array(x) for x in real_data])
real_data = np.squeeze(real_data, axis=1)
return real_data
def load_mocap_data(file_type, folder_path):
"""
Args:
- folder_path (str): path to the folder containing files
Returns:
- generated_data (numpy array): combined generated data
"""
generated_data_list = []
# path = "/home/ubuntu/data/MCS_DATA/Data/*/OpenSimData/Dynamics/*_segment_*/kinematics_activations_*_muscle_driven.mot"
# path = "/home/ubuntu/data/MCS_DATA/Data/*/OpenSimData/Kinematics/*.mot"
path = folder_path + "/OpenSimData/Kinematics/*.mot"
if len(glob(path)) == 0:
return None
mot_files = [file for file in glob(path) if file.endswith(".mot") and ("sqt" in file or "SQT" in file or "Sqt" in file) and ("segment" not in file)]
# print("Loading data from:", mot_files)
for file in glob(path):
if file.endswith(".mot") and ("sqt" in file or "SQT" in file or "Sqt" in file) and ("segment" not in file):
with open(file,'r') as f:
file_data = f.read().split('\n')
# print(file_data)
data = {'info':'', 'poses': []}
read_header = False
read_rows = 0
for line in file_data:
line = line.strip()
if len(line) == 0:
continue
if not read_header:
if line == 'endheader':
read_header = True
continue
if '=' not in line:
data['info'] += line + '\n'
else:
k,v = line.split('=')
if v.isnumeric():
data[k] = int(v)
else:
data[k] = v
else:
rows = line.split()
if read_rows == 0:
data['headers'] = rows
else:
rows = [float(row) for row in rows]
data['poses'].append(rows)
read_rows += 1
data['poses'] = np.array(data['poses']) #[:,1:34]
current_format = data['headers']
required_format = ["pelvis_tilt","pelvis_list","pelvis_rotation","pelvis_tx","pelvis_ty","pelvis_tz","hip_flexion_l","hip_adduction_l","hip_rotation_l","hip_flexion_r","hip_adduction_r","hip_rotation_r","knee_angle_l","knee_angle_r","ankle_angle_l","ankle_angle_r","subtalar_angle_l","subtalar_angle_r","mtp_angle_l","mtp_angle_r","lumbar_extension","lumbar_bending","lumbar_rotation","arm_flex_l","arm_add_l","arm_rot_l","arm_flex_r","arm_add_r","arm_rot_r","elbow_flex_l","elbow_flex_r","pro_sup_l","pro_sup_r"]
mapping_indices = [current_format.index(name) for name in required_format]
# print(mapping_indices)
data['poses'] = data['poses'][:,mapping_indices]
segmentation_file = os.path.join(os.path.dirname(os.path.dirname(folder_path)), "squat-segmentation-data", os.path.basename(folder_path) + ".npy")
print(segmentation_file)
segments = np.load(segmentation_file,allow_pickle=True).item()
# print(segments)
print("Number of segments:", len(segments))
if os.path.basename(file.replace(".mot","")) not in segments:
continue
segments = segments[os.path.basename(file.replace(".mot",""))]
for segment in segments:
poses = data['poses'][segment[0]:segment[1]]
if poses.shape[0] < 196:
rc = (196+poses.shape[0]-1)//poses.shape[0]
poses = np.tile(poses, (rc,1))[:196]
generated_data_list.append(poses)
generated_data = np.array(generated_data_list)
# print("Shape of generated data:", generated_data.shape)
return generated_data
# Step 2: Load generated data from .npy files
def load_generated_data(file_type, folder_path, baseline='bige'):
"""
Load generated data from .npy files in the specified folder.
Args:
- folder_path (str): path to the folder containing .npy files
Returns:
- generated_data (numpy array): combined generated data
"""
generated_data_list = []
if file_type == 'npy':
# for file in os.listdir(folder_path):
print(len(glob(folder_path + "/*.npy")))
for file in glob(folder_path + "/*.npy"):
if file.endswith(".npy"):
# file_path = os.path.join(folder_path, file)
# print(file)
data = np.load(file)
if data.shape[0]!=196:
continue
generated_data_list.append(data)
# Combine all the loaded generated data into a single numpy array
# generated_data = np.concatenate(generated_data_list, axis=0)
generated_data = np.array(generated_data_list)
elif file_type == 'mot':
glob_files = glob(folder_path + "/*.mot")
if baseline == 't2m':
glob_files = [ file for file in glob_files if "degrees" in file ]
# print(glob_files)
if len(glob_files) == 0:
return None
for file in glob(folder_path + "/*.mot"):
if file.endswith(".mot"):
with open(file,'r') as f:
file_data = f.read().split('\n')
# print(file_data)
data = {'info':'', 'poses': []}
read_header = False
read_rows = 0
for line in file_data:
line = line.strip()
if len(line) == 0:
continue
if not read_header:
if line == 'endheader':
read_header = True
continue
if '=' not in line:
data['info'] += line + '\n'
else:
k,v = line.split('=')
if v.isnumeric():
data[k] = int(v)
else:
data[k] = v
else:
rows = line.split()
if read_rows == 0:
data['headers'] = rows
else:
rows = [float(row) for row in rows]
data['poses'].append(rows)
read_rows += 1
data['poses'] = np.array(data['poses'])[:,1:34]
if data["poses"].shape[0] < 196:
rc = (196+data["poses"].shape[0]-1)//data["poses"].shape[0]
data["poses"] = np.tile(data["poses"], (rc,1))[:196]
generated_data_list.append(data["poses"])
generated_data = np.array(generated_data_list)
return generated_data
# Step 3: Flatten the data into a single dimension
def flatten_data(data):
"""
Flatten the time series data into a single dimension.
Args:
- data (numpy array): shape (n_samples, n_timesteps, n_features)
Returns:
- flattened_data (numpy array): shape (n_samples, )
"""
return data.reshape(data.shape[0], -1)
# Step 4: Compute mean and variance
def aggregate_mean_and_variance(data):
"""
Aggregates flattened data by computing the mean and variance.
Args:
- data (numpy array): flattened data
Returns:
- mean (float): mean of aggregated data
- std (float): standard deviation of aggregated data
"""
mean = np.mean(data)
std = np.std(data)
return mean, std
# Step 5: Compute the 2-Wasserstein distance
def wasserstein_distance_mean_variance(real_data, generated_data):
"""
Calculate the 2-Wasserstein distance between two datasets using mean and variance.
Args:
- real_data (numpy array): real flattened data
- generated_data (numpy array): generated flattened data
Returns:
- wasserstein_distance (float): the 2-Wasserstein distance
"""
# Aggregate data by computing mean and variance
mean_real, std_real = aggregate_mean_and_variance(real_data)
mean_generated, std_generated = aggregate_mean_and_variance(generated_data)
# Compute mean and variance terms
mean_diff_squared = (mean_real - mean_generated) ** 2
std_diff_squared = (std_real - std_generated) ** 2
# Compute the 2-Wasserstein distance using the formula
wasserstein_distance = mean_diff_squared + std_diff_squared
return wasserstein_distance
def calculate_entropy(data, num_bins=10):
"""
Calculate Shannon entropy for a dataset.
Args:
- data (numpy array): flattened data array (each row is a sample)
- num_bins (int): number of bins to discretize the data into
Returns:
- entropies (numpy array): array of entropies for each sample
"""
entropies = []
for sample in data:
# Create a histogram (binning) for the data
hist, bin_edges = np.histogram(sample, bins=num_bins, density=True)
# Calculate the entropy (adding epsilon to avoid log(0))
sample_entropy = entropy(hist + np.finfo(float).eps)
entropies.append(sample_entropy)
return np.array(entropies)
def entropy_difference(real_data, generated_data, num_bins=10):
"""
Compute the difference in entropy between real and generated data.
Args:
- real_data (numpy array): real flattened data
- generated_data (numpy array): generated flattened data
- num_bins (int): number of bins to discretize the data into
Returns:
- entropy_diff (float): absolute difference in entropy between real and generated data
"""
# Calculate entropy for real and generated data
real_entropy = calculate_entropy(real_data, num_bins=num_bins)
# print("Training data entropy:", real_entropy.mean())
generated_entropy = calculate_entropy(generated_data, num_bins=num_bins)
print("Generated data entropy:", generated_entropy.mean())
# Calculate the absolute difference between the entropies
# entropy_diff = np.abs(real_entropy.mean() - generated_entropy.mean())
entropy_diff = np.abs(generated_entropy.mean())
return entropy_diff
# Step 6: Main script function
def main(file_type, folder_path,baseline='bige'):
if file_type == 'npy':
all_folders = [z[0] for z in os.walk(folder_path)][1:]
elif file_type == 'mot':
all_folders = [folder_path + name for name in os.listdir(folder_path) if os.path.isdir(os.path.join(folder_path, name))]
elif file_type == 'mocap':
mcs_sessions = ["349e4383-da38-4138-8371-9a5fed63a56a","015b7571-9f0b-4db4-a854-68e57640640d","c613945f-1570-4011-93a4-8c8c6408e2cf","dfda5c67-a512-4ca2-a4b3-6a7e22599732","7562e3c0-dea8-46f8-bc8b-ed9d0f002a77","275561c0-5d50-4675-9df1-733390cd572f","0e10a4e3-a93f-4b4d-9519-d9287d1d74eb","a5e5d4cd-524c-4905-af85-99678e1239c8","dd215900-9827-4ae6-a07d-543b8648b1da","3d1207bf-192b-486a-b509-d11ca90851d7","c28e768f-6e2b-4726-8919-c05b0af61e4a","fb6e8f87-a1cc-48b4-8217-4e8b160602bf","e6b10bbf-4e00-4ac0-aade-68bc1447de3e","d66330dc-7884-4915-9dbb-0520932294c4","0d9e84e9-57a4-4534-aee2-0d0e8d1e7c45","2345d831-6038-412e-84a9-971bc04da597","0a959024-3371-478a-96da-bf17b1da15a9","ef656fe8-27e7-428a-84a9-deb868da053d","c08f1d89-c843-4878-8406-b6f9798a558e","d2020b0e-6d41-4759-87f0-5c158f6ab86a","8dc21218-8338-4fd4-8164-f6f122dc33d9"]
all_folders = [os.path.join(folder_path,session) for session in mcs_sessions]
all_folders = sorted(all_folders)
print(all_folders)
# Load test data
real_data = load_training_data()
pred_motion = torch.from_numpy(real_data).float()
real_data_loss_dict, real_data_muscle_activations = get_guidance_score(pred_motion)
real_data_loss_dict = {k: real_data_loss_dict[k].item() for k in real_data_loss_dict if isinstance(real_data_loss_dict[k], torch.Tensor)}
losses_dict = {}
for folder in tqdm(all_folders):
# print("Going through folder:", folder)
# Load generated data from .npy files
if file_type == 'mocap':
generated_data = load_mocap_data(file_type, folder)
else:
generated_data = load_generated_data(file_type, folder,baseline=baseline)
if generated_data is None:
print(f"Empty folder:{folder}")
continue
# print("Shape of generated data:", generated_data.shape)
pred_motion = torch.from_numpy(generated_data).float()
loss_dict, muscle_activations = get_guidance_score(pred_motion)
loss_dict = {k: loss_dict[k].item() for k in loss_dict if isinstance(loss_dict[k], torch.Tensor)}
# print(muscle_activations)
for k in loss_dict:
if k not in losses_dict:
losses_dict[k] = []
losses_dict[k].append(loss_dict[k])
losses_dict = {k: np.array(losses_dict[k]) for k in losses_dict}
print("Losses dict:", losses_dict)
mean_loss = {k: np.mean(losses_dict[k]) for k in losses_dict}
std_loss = {k: np.std(losses_dict[k]) for k in losses_dict}
distribution = {k: (losses_dict[k].mean(), losses_dict[k].std()) for k in losses_dict}
print("Distribution:", distribution)
print(" & ".join([ k + "$\\rightarrow$" for k in distribution.keys()]))
print(f"mot sim", end=' & ')
for k in real_data_loss_dict:
print("${:.2f}^{{\pm0.0}}$ ".format(real_data_loss_dict[k]), end=' & ')
print(f'\\\\ % {args.folder_path}')
print(f"{args.file_type} {args.baseline}", end=' & ')
for k in distribution:
print("${:.2f}^{{\pm{:.2f}}}$ ".format(distribution[k][0], distribution[k][1]), end=' & ')
print(f'\\\\ % {args.folder_path}')
# Step 7: Argument parser to pass folder path
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Compute 2-Wasserstein Distance between real and generated data.")
parser.add_argument("--file_type", type=str)
parser.add_argument("--folder_path", type=str, help="Path to the folder containing .npy files of generated data")
parser.add_argument("--baseline", type=str, default='bige', help="Baseline to use for guidance")
args = parser.parse_args()
# Run the main function with the provided folder path
main(args.file_type, args.folder_path, args.baseline)