|
| 1 | +import os |
| 2 | +import time |
| 3 | +import random |
| 4 | +import pandas as pd |
| 5 | +from statistics import mean, stdev |
| 6 | + |
| 7 | +# Pin the process to CPU core 0 |
| 8 | +os.system("taskset -p 0x1 %d" % os.getpid()) |
| 9 | + |
| 10 | +def split_matrix(matrix): |
| 11 | + # Split the matrix into 4 submatrices |
| 12 | + rows, cols = len(matrix), len(matrix[0]) |
| 13 | + split_row, split_col = rows // 2, cols // 2 |
| 14 | + |
| 15 | + A11 = [row[:split_col] for row in matrix[:split_row]] |
| 16 | + A12 = [row[split_col:] for row in matrix[:split_row]] |
| 17 | + A21 = [row[:split_col] for row in matrix[split_row:]] |
| 18 | + A22 = [row[split_col:] for row in matrix[split_row:]] |
| 19 | + |
| 20 | + return A11, A12, A21, A22 |
| 21 | + |
| 22 | +def add_matrices(matrix1, matrix2): |
| 23 | + # Add two matrices element-wise |
| 24 | + return [ |
| 25 | + [matrix1[i][j] + matrix2[i][j] for j in range(len(matrix1[0]))] |
| 26 | + for i in range(len(matrix1)) |
| 27 | + ] |
| 28 | + |
| 29 | +def subtract_matrices(matrix1, matrix2): |
| 30 | + # Subtract matrix2 from matrix1 element-wise |
| 31 | + return [ |
| 32 | + [matrix1[i][j] - matrix2[i][j] for j in range(len(matrix1[0]))] |
| 33 | + for i in range(len(matrix1)) |
| 34 | + ] |
| 35 | + |
| 36 | +def strassen(matrix1, matrix2): |
| 37 | + # Recursive implementation of Strassen's algorithm |
| 38 | + if len(matrix1) == 1: |
| 39 | + return [[matrix1[0][0] * matrix2[0][0]]] |
| 40 | + |
| 41 | + A11, A12, A21, A22 = split_matrix(matrix1) |
| 42 | + B11, B12, B21, B22 = split_matrix(matrix2) |
| 43 | + |
| 44 | + P1 = strassen(A11, subtract_matrices(B12, B22)) |
| 45 | + P2 = strassen(add_matrices(A11, A12), B22) |
| 46 | + P3 = strassen(add_matrices(A21, A22), B11) |
| 47 | + P4 = strassen(A22, subtract_matrices(B21, B11)) |
| 48 | + P5 = strassen(add_matrices(A11, A22), add_matrices(B11, B22)) |
| 49 | + P6 = strassen(subtract_matrices(A12, A22), add_matrices(B21, B22)) |
| 50 | + P7 = strassen(subtract_matrices(A11, A21), add_matrices(B11, B12)) |
| 51 | + |
| 52 | + C11 = subtract_matrices(add_matrices(P5, P4), subtract_matrices(P2, P6)) |
| 53 | + C12 = add_matrices(P1, P2) |
| 54 | + C21 = add_matrices(P3, P4) |
| 55 | + C22 = subtract_matrices(subtract_matrices(P5, P3), subtract_matrices(P1, P7)) |
| 56 | + |
| 57 | + result = [ |
| 58 | + C11[i] + C12[i] |
| 59 | + for i in range(len(C11)) |
| 60 | + ] + [ |
| 61 | + C21[i] + C22[i] |
| 62 | + for i in range(len(C21)) |
| 63 | + ] |
| 64 | + |
| 65 | + return result |
| 66 | + |
| 67 | +def generate_random_matrix(rows, cols, seed=None): |
| 68 | + # Generate a random matrix with specified dimensions |
| 69 | + if seed is not None: |
| 70 | + random.seed(seed) |
| 71 | + return [[random.randint(1, 100) for _ in range(cols)] for _ in range(rows)] |
| 72 | + |
| 73 | +def benchmark(matrix_size, repetitions=5, warm_up_runs=3, stress_runs=100, seed=None): |
| 74 | + data = {'Matrix Size': [], 'Run Number': [], 'Runtime (seconds)': []} |
| 75 | + |
| 76 | + # Warm-up phase |
| 77 | + for _ in range(warm_up_runs): |
| 78 | + matrix1 = generate_random_matrix(matrix_size, matrix_size, seed=seed) |
| 79 | + matrix2 = generate_random_matrix(matrix_size, matrix_size, seed=seed) |
| 80 | + strassen(matrix1, matrix2) |
| 81 | + |
| 82 | + # Actual benchmarking |
| 83 | + for run_number in range(1, repetitions + 1): |
| 84 | + matrix1 = generate_random_matrix(matrix_size, matrix_size, seed=seed) |
| 85 | + matrix2 = generate_random_matrix(matrix_size, matrix_size, seed=seed) |
| 86 | + |
| 87 | + start_time = time.perf_counter() |
| 88 | + strassen(matrix1, matrix2) |
| 89 | + end_time = time.perf_counter() |
| 90 | + |
| 91 | + runtime = end_time - start_time |
| 92 | + |
| 93 | + data['Matrix Size'].append(matrix_size) |
| 94 | + data['Run Number'].append(run_number) |
| 95 | + data['Runtime (seconds)'].append(runtime) |
| 96 | + |
| 97 | + df = pd.DataFrame(data) |
| 98 | + average_runtimes = df.groupby('Matrix Size')['Runtime (seconds)'].agg([mean, stdev]).reset_index() |
| 99 | + print("\nAverage Runtimes:\n", average_runtimes) |
| 100 | + |
| 101 | + # Stress testing |
| 102 | + stress_data = [] |
| 103 | + for _ in range(stress_runs): |
| 104 | + matrix1 = generate_random_matrix(matrix_size, matrix_size, seed=seed) |
| 105 | + matrix2 = generate_random_matrix(matrix_size, matrix_size, seed=seed) |
| 106 | + |
| 107 | + start_time = time.perf_counter() |
| 108 | + strassen(matrix1, matrix2) |
| 109 | + end_time = time.perf_counter() |
| 110 | + |
| 111 | + runtime = end_time - start_time |
| 112 | + stress_data.append(runtime) |
| 113 | + |
| 114 | + print(f"\nStress Testing for Matrix Size {matrix_size}x{matrix_size}:") |
| 115 | + print(f"Mean Runtime: {mean(stress_data)} seconds") |
| 116 | + print(f"Standard Deviation: {stdev(stress_data)} seconds") |
| 117 | + |
| 118 | + return df |
| 119 | + |
| 120 | +def multiple_independent_runs(matrix_size, independent_runs=5, repetitions=5, warm_up_runs=3, stress_runs=100, seed=None): |
| 121 | + all_data = pd.DataFrame() |
| 122 | + |
| 123 | + for run in range(independent_runs): |
| 124 | + print(f"\nIndependent Run {run + 1}/{independent_runs}") |
| 125 | + run_data = benchmark(matrix_size, repetitions=repetitions, warm_up_runs=warm_up_runs, stress_runs=stress_runs, seed=seed) |
| 126 | + all_data = pd.concat([all_data, run_data], ignore_index=True) |
| 127 | + |
| 128 | + return all_data |
| 129 | + |
| 130 | +# Collect benchmark data |
| 131 | +matrix_sizes = [2, 4, 8, 16, 32, 64, 128] |
| 132 | +independent_runs = 3 |
| 133 | +repetitions = 5 |
| 134 | +stress_runs = 100 |
| 135 | + |
| 136 | +final_data = pd.DataFrame() |
| 137 | + |
| 138 | +for matrix_size in matrix_sizes: |
| 139 | + matrix_data = multiple_independent_runs(matrix_size, independent_runs=independent_runs, repetitions=repetitions, stress_runs=stress_runs) |
| 140 | + final_data = pd.concat([final_data, matrix_data], ignore_index=True) |
| 141 | + |
| 142 | +# Display the combined data table |
| 143 | +print("\nCombined Data Table:\n", final_data) |
0 commit comments