-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStrassen_Tabular.py
126 lines (100 loc) · 4.28 KB
/
Strassen_Tabular.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import timeit
import perf
import random
import matplotlib.pyplot as plt
import pandas as pd
###Split a matrix into four equal-sized submatrices.
def split_matrix(matrix):
rows, cols = len(matrix), len(matrix[0])
split_row, split_col = rows // 2, cols // 2
# Split the matrix into four submatrices
A11 = [row[:split_col] for row in matrix[:split_row]]
A12 = [row[split_col:] for row in matrix[:split_row]]
A21 = [row[:split_col] for row in matrix[split_row:]]
A22 = [row[split_col:] for row in matrix[split_row:]]
return A11, A12, A21, A22
### Add two matrices element-wise.
def add_matrices(matrix1, matrix2):
return [
[matrix1[i][j] + matrix2[i][j] for j in range(len(matrix1[0]))]
for i in range(len(matrix1))
]
###Subtract one matrix from another element-wise.
def subtract_matrices(matrix1, matrix2):
return [
[matrix1[i][j] - matrix2[i][j] for j in range(len(matrix1[0]))]
for i in range(len(matrix1))
]
###Strassen's Matrix Multiplication algorithm.
def strassen(matrix1, matrix2):
# Base case: if matrices are 1x1, perform standard multiplication
if len(matrix1) == 1:
return [[matrix1[0][0] * matrix2[0][0]]]
# Split matrices into submatrices
A11, A12, A21, A22 = split_matrix(matrix1)
B11, B12, B21, B22 = split_matrix(matrix2)
# Calculate intermediate matrices
P1 = strassen(A11, subtract_matrices(B12, B22))
P2 = strassen(add_matrices(A11, A12), B22)
P3 = strassen(add_matrices(A21, A22), B11)
P4 = strassen(A22, subtract_matrices(B21, B11))
P5 = strassen(add_matrices(A11, A22), add_matrices(B11, B22))
P6 = strassen(subtract_matrices(A12, A22), add_matrices(B21, B22))
P7 = strassen(subtract_matrices(A11, A21), add_matrices(B11, B12))
# Calculate result submatrices
C11 = subtract_matrices(add_matrices(P5, P4), subtract_matrices(P2, P6))
C12 = add_matrices(P1, P2)
C21 = add_matrices(P3, P4)
C22 = subtract_matrices(subtract_matrices(P5, P3), subtract_matrices(P1, P7))
# Combine result submatrices into the final result matrix
result = [
C11[i] + C12[i]
for i in range(len(C11))
] + [
C21[i] + C22[i]
for i in range(len(C21))
]
return result
def generate_random_matrix(rows, cols , seed = None):
if seed is not None :
random.seed(Seed)
else:
return [[random.randint(1, 100) for _ in range(cols)] for _ in range(rows)]
def benchmark(matrix_size, repetitions=5, warm_up_runs=3, seed=None):
data = {'Matrix Size': [], 'Run Number': [], 'Individual Runtime': []}
# Warm-up runs to stabilize the system and trigger optimizations
for _ in range(warm_up_runs):
matrix1 = generate_random_matrix(matrix_size, matrix_size, seed=seed)
matrix2 = generate_random_matrix(matrix_size, matrix_size, seed=seed)
strassen(matrix1, matrix2) # Warm-up run
# Actual benchmarking repetitions
for run_number in range(1, repetitions + 1):
matrix1 = generate_random_matrix(matrix_size, matrix_size, seed=seed)
matrix2 = generate_random_matrix(matrix_size, matrix_size, seed=seed)
# Repeat the measurement and calculate runtime
start_time = timeit.default_timer()
strassen(matrix1, matrix2)
end_time = timeit.default_timer()
runtime = end_time - start_time
# Store data in the dictionary
data['Matrix Size'].append(matrix_size)
data['Run Number'].append(run_number)
data['Individual Runtime'].append(runtime)
print(f"Matrix size: {matrix_size}x{matrix_size}")
print(f"Run {run_number} - Runtime: {runtime} seconds")
print("The result is", strassen(matrix1, matrix2)[0][:min(matrix_size, 5)], "...")
print()
df = pd.DataFrame(data)
average_runtimes = df.groupby('Matrix Size')['Individual Runtime'].mean().reset_index()
print("\nAverage Runtimes:\n", average_runtimes)
print()
return df
# Collect benchmark data
matrix_sizes = [2, 4, 8, 16, 32, 64, 128]
repetitions = 5
all_data = pd.DataFrame()
for matrix_size in matrix_sizes:
matrix_data = benchmark(matrix_size, repetitions=repetitions)
all_data = pd.concat([all_data, matrix_data], ignore_index=True)
# Display the combined data table
print("\nCombined Data Table:\n", all_data)