forked from IndrajeetPatil/ggstatsplot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
1195 lines (968 loc) · 48.7 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
output:
github_document:
pandoc_args: --webtex=https://chart.apis.google.com/chart?cht=tx&chl=
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
# show me all columns
options(tibble.width = Inf)
knitr::opts_chunk$set(
collapse = TRUE,
dpi = 300,
warning = FALSE,
message = FALSE,
out.width = "100%",
comment = "#>",
fig.path = "man/figures/README-"
)
```
# `ggstatsplot`: `ggplot2` Based Plots with Statistical Details
Package | Status | Usage | GitHub | References
----------------- | ----------------- | ----------------- | ----------------- | -----------------
[](https://CRAN.R-project.org/package=ggstatsplot) | [](https://travis-ci.org/IndrajeetPatil/ggstatsplot) | [](https://CRAN.R-project.org/package=ggstatsplot) | [](https://github.com/IndrajeetPatil/ggstatsplot/) | [](https://indrajeetpatil.github.io/ggstatsplot/)
[](https://cran.r-project.org/web/checks/check_results_ggstatsplot.html) | [](https://ci.appveyor.com/project/IndrajeetPatil/ggstatsplot) | [](https://CRAN.R-project.org/package=ggstatsplot) | [$forks[[1]]`-blue.svg)](https://github.com/IndrajeetPatil/ggstatsplot/) | [](https://indrajeetpatil.github.io/ggstatsplot/reference/index.html)
[](https://cran.r-project.org/) | [](https://www.tidyverse.org/lifecycle/) | [](https://CRAN.R-project.org/package=ggstatsplot) | [$open_issues[[1]]`-red.svg)](https://github.com/IndrajeetPatil/ggstatsplot/issues) | [](https://CRAN.R-project.org/package=ggstatsplot/vignettes/)
[](https://github.com/IndrajeetPatil/ggstatsplot) | [](https://coveralls.io/github/IndrajeetPatil/ggstatsplot?branch=master) | [](https://CRAN.R-project.org/package=ggstatsplot) | [](https://github.com/IndrajeetPatil/ggstatsplot) | [](https://doi.org/10.5281/zenodo.2074621)
[](https://www.gnu.org/licenses/gpl-3.0.en.html) | [](https://codecov.io/gh/IndrajeetPatil/ggstatsplot?branch=master) | [](https://hits.dwyl.com/IndrajeetPatil/ggstatsplot) | [)`-yellowgreen.svg)](https://github.com/IndrajeetPatil/ggstatsplot/commits/master) | [](https://github.com/IndrajeetPatil/ggstatsplot/commits/master)
[](https://CRAN.R-project.org/package=ggstatsplot) | [](https://github.com/IndrajeetPatil/ggstatsplot) | [](https://gitter.im/ggstatsplot/community) | [](https://www.repostatus.org/#active) | [](https://github.com/IndrajeetPatil/ggstatsplot/issues)
# Raison d'être <img src="man/figures/logo.png" align="right" width="360" />
> "What is to be sought in designs for the display of information is the clear
portrayal of complexity. Not the complication of the simple; rather ... the
revelation of the complex."
- Edward R. Tufte
[`ggstatsplot`](https://indrajeetpatil.github.io/ggstatsplot/) is an extension
of [`ggplot2`](https://github.com/tidyverse/ggplot2) package for creating
graphics with details from statistical tests included in the information-rich
plots themselves. In a typical exploratory data analysis workflow, data
visualization and statistical modeling are two different phases: visualization
informs modeling, and modeling in its turn can suggest a different visualization
method, and so on and so forth. The central idea of `ggstatsplot` is simple:
combine these two phases into one in the form of graphics with statistical
details, which makes data exploration simpler and faster.
# Summary of available plots
It, therefore, produces a limited kinds of plots for the supported analyses:
Function | Plot | Description
------- | ---------- | -----------------
`ggbetweenstats` | **violin plots** | for comparisons *between* groups/conditions
`ggwithinstats` | **violin plots** | for comparisons *within* groups/conditions
`gghistostats` | **histograms** | for distribution about numeric variable
`ggdotplotstats` | **dot plots/charts** | for distribution about labeled numeric variable
`ggpiestats` | **pie charts** | for categorical data
`ggbarstats` | **bar charts** | for categorical data
`ggscatterstats` | **scatterplots** | for correlations between two variables
`ggcorrmat` | **correlation matrices** | for correlations between multiple variables
`ggcoefstats` | **dot-and-whisker plots** | for regression models and meta-analysis
In addition to these basic plots, `ggstatsplot` also provides **`grouped_`**
versions (see below) that makes it easy to repeat the same analysis for
any grouping variable.
# Summary of types of statistical analyses
Currently, it supports only the most common types of statistical tests:
**parametric**, **nonparametric**, **robust**, and **bayesian** versions of
**t-test**/**anova**, **correlation** analyses, **contingency table** analysis,
**meta-analysis**, and **regression** analyses.
The table below summarizes all the different types of analyses currently
supported in this package-
Functions | Description | Parametric | Non-parametric | Robust | Bayes Factor
------- | ------------------ | ---- | ----- | ----| -----
`ggbetweenstats` | Between group/condition comparisons | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font>
`ggwithinstats` | Within group/condition comparisons | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font>
`gghistostats`, `ggdotplotstats` | Distribution of a numeric variable | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font>
`ggcorrmat` | Correlation matrix | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font>
`ggscatterstats` | Correlation between two variables | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font>
`ggpiestats`, `ggbarstats` | Association between categorical variables | <font color="green">Yes</font> | `NA` | `NA` | <font color="green">Yes</font>
`ggpiestats`, `ggbarstats` | Equal proportions for categorical variable levels | <font color="green">Yes</font> | `NA` | `NA` | <font color="green">Yes</font>
`ggcoefstats` | Regression model coefficients | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font> | <font color="green">Yes</font>
`ggcoefstats` | Random-effects meta-analysis | <font color="green">Yes</font> | <font color="red">No</font> | <font color="green">Yes</font> | <font color="green">Yes</font>
# Statistical reporting
For **all** statistical tests reported in the plots, the default template abides
by the [APA](https://my.ilstu.edu/~jhkahn/apastats.html) gold standard for
statistical reporting. For example, here are results from Yuen's test for
trimmed means (robust *t*-test):
<img src="man/figures/stats_reporting_format.png" align="center" />
# Summary of statistical tests and effect sizes
Here is a summary table of all the statistical tests currently supported across
various functions:
<https://indrajeetpatil.github.io/statsExpressions/articles/stats_details.html>
# Installation
To get the latest, stable `CRAN` release:
```{r installationCRAN, eval = FALSE}
install.packages("ggstatsplot")
```
*Note*: If you are on a linux machine, you will need to have OpenGL libraries
installed (specifically, `libx11`, `mesa` and Mesa OpenGL Utility library -
`glu`) for the dependency package `rgl` to work.
You can get the **development** version of the package from `GitHub`. To see what
new changes (and bug fixes) have been made to the package since the last release
on `CRAN`, you can check the detailed log of changes here:
<https://indrajeetpatil.github.io/ggstatsplot/news/index.html>
If you are in hurry and want to reduce the time of installation,
prefer-
```{r installation1, eval = FALSE}
# needed package to download from GitHub repo
install.packages("remotes")
# downloading the package from GitHub (needs `remotes` package to be installed)
remotes::install_github(
repo = "IndrajeetPatil/ggstatsplot", # package path on GitHub
dependencies = FALSE, # assumes you have already installed needed packages
quick = TRUE # skips docs, demos, and vignettes
)
```
If time is not a constraint-
```{r installation2, eval = FALSE}
remotes::install_github(
repo = "IndrajeetPatil/ggstatsplot", # package path on GitHub
dependencies = TRUE, # installs packages which ggstatsplot depends on
upgrade_dependencies = TRUE # updates any out of date dependencies
)
```
If you are not using the [RStudio IDE](https://www.rstudio.com/) and you get an
error related to "pandoc" you will either need to remove the argument
`build_vignettes = TRUE` (to avoid building the vignettes) or install
[pandoc](https://pandoc.org/). If you have the `rmarkdown` R package installed
then you can check if you have pandoc by running the following in R:
```{r pandoc}
rmarkdown::pandoc_available()
```
# Citation
If you want to cite this package in a scientific journal or in any other
context, run the following code in your `R` console:
```{r citation}
citation("ggstatsplot")
```
There is currently a publication in preparation corresponding to this package
and the citation will be updated once it's published.
# Documentation and Examples
To see the detailed documentation for each function in the stable **CRAN**
version of the package, see:
- README:
<https://CRAN.R-project.org/package=ggstatsplot/readme/README.html>
- Presentation:
<https://indrajeetpatil.github.io/ggstatsplot_slides/slides/ggstatsplot_presentation.html#1>
- Vignettes: <https://CRAN.R-project.org/package=ggstatsplot/vignettes/additional.html>
To see the documentation relevant for the **development** version of the package,
see the dedicated website for `ggstatplot`, which is updated after every new
commit: <https://indrajeetpatil.github.io/ggstatsplot/>.
# Primary functions
Here are examples of the main functions currently supported in `ggstatsplot`.
**Note**: If you are reading this on `GitHub` repository, the documentation below
is for the **development** version of the package. So you may see some features
available here that are not currently present in the stable version of this
package on **CRAN**. For documentation relevant for the `CRAN` version, see:
<https://CRAN.R-project.org/package=ggstatsplot/readme/README.html>
## `ggbetweenstats`
This function creates either a violin plot, a box plot, or a mix of two for
**between**-group or **between**-condition comparisons with results from
statistical tests in the subtitle. The simplest function call looks like this-
```{r ggbetweenstats1, message = FALSE, warning = FALSE}
# loading needed libraries
library(ggstatsplot)
# for reproducibility
set.seed(123)
# plot
ggstatsplot::ggbetweenstats(
data = iris,
x = Species,
y = Sepal.Length,
title = "Distribution of sepal length across Iris species"
)
```
Note that this function returns object of class `ggplot` and thus can be further
modified using `ggplot2` functions.
A number of other arguments can be specified to make this plot even more
informative or change some of the default options. Additionally, this time we
will use a grouping variable that has only two levels. The function will
automatically switch from carrying out an ANOVA analysis to a *t*-test.
The `type` (of test) argument
also accepts the following abbreviations: `"p"` (for *parametric*) or `"np"`
(for *nonparametric*) or `"r"` (for *robust*) or `"bf"` (for *Bayes Factor*).
Additionally, the type of plot to be displayed can also be modified (`"box"`,
`"violin"`, or `"boxviolin"`).
A number of other arguments can be specified to make this plot even more
informative or change some of the default options.
```{r ggbetweenstats2, message = FALSE, warning = FALSE}
# for reproducibility
set.seed(123)
library(ggplot2)
# plot
ggstatsplot::ggbetweenstats(
data = ToothGrowth,
x = supp,
y = len,
notch = TRUE, # show notched box plot
mean.ci = TRUE, # whether to display confidence interval for means
k = 3, # number of decimal places for statistical results
outlier.tagging = TRUE, # whether outliers need to be tagged
outlier.label = dose, # variable to be used for the outlier tag
xlab = "Supplement type", # label for the x-axis variable
ylab = "Tooth length", # label for the y-axis variable
title = "The Effect of Vitamin C on Tooth Growth", # title text for the plot
ggtheme = ggthemes::theme_fivethirtyeight(), # choosing a different theme
ggstatsplot.layer = FALSE, # turn off `ggstatsplot` theme layer
package = "wesanderson", # package from which color palette is to be taken
palette = "Darjeeling1" # choosing a different color palette
)
```
Additionally, there is also a `grouped_` variant of this function that makes it
easy to repeat the same operation across a **single** grouping variable:
```{r ggbetweenstats3, message = FALSE, warning = FALSE, fig.height = 14, fig.width = 12}
# for reproducibility
set.seed(123)
# plot
ggstatsplot::grouped_ggbetweenstats(
data = dplyr::filter(
.data = ggstatsplot::movies_long,
genre %in% c("Action", "Action Comedy", "Action Drama", "Comedy")
),
x = mpaa,
y = length,
grouping.var = genre, # grouping variable
pairwise.comparisons = TRUE, # display significant pairwise comparisons
ggsignif.args = list(textsize = 4, tip_length = 0.01),
p.adjust.method = "bonferroni", # method for adjusting p-values for multiple comparisons
# adding new components to `ggstatsplot` default
ggplot.component = list(ggplot2::scale_y_continuous(sec.axis = ggplot2::dup_axis())),
k = 3,
title.prefix = "Movie genre",
caption = substitute(paste(italic("Source"), ":IMDb (Internet Movie Database)")),
palette = "default_jama",
package = "ggsci",
plotgrid.args = list(nrow = 2),
title.text = "Differences in movie length by mpaa ratings for different genres"
)
```
### Summary of tests
Following (between-subjects) tests are carried out for each type of analyses-
Type | No. of groups | Test
----------- | --- | -------------------------
Parametric | > 2 | Fisher's or Welch's one-way ANOVA
Non-parametric | > 2 | Kruskal-Wallis one-way ANOVA
Robust | > 2 | Heteroscedastic one-way ANOVA for trimmed means
Bayes Factor | > 2 | Fisher's ANOVA
Parametric | 2 | Student's or Welch's *t*-test
Non-parametric | 2 | Mann-Whitney *U* test
Robust | 2 | Yuen's test for trimmed means
Bayes Factor | 2 | Student's *t*-test
The omnibus effect in one-way ANOVA design can also be followed up with more
focal pairwise comparison tests. Here is a summary of multiple pairwise
comparison tests supported in *ggbetweenstats*-
Type | Equal variance? | Test | *p*-value adjustment?
----------- | --- | ------------------------- | ---
Parametric | No | Games-Howell test | <font color="green">Yes</font>
Parametric | Yes | Student's *t*-test | <font color="green">Yes</font>
Non-parametric | No | Dunn test | <font color="green">Yes</font>
Robust | No | Yuen's trimmed means test | <font color="green">Yes</font>
Bayes Factor | `NA` | Student's *t*-test | `NA`
For more, see the `ggbetweenstats` vignette:
<https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggbetweenstats.html>
## `ggwithinstats`
`ggbetweenstats` function has an identical twin function `ggwithinstats` for
repeated measures designs that behaves in the same fashion with a few minor
tweaks introduced to properly visualize the repeated measures design. As can be
seen from an example below, the only difference between the plot structure is
that now the group means are connected by paths to highlight the fact that these
data are paired with each other.
```{r ggwithinstats1, message = FALSE, warning = FALSE, fig.width = 8, fig.height = 6}
# for reproducibility and data
set.seed(123)
library(WRS2)
# plot
ggstatsplot::ggwithinstats(
data = WineTasting,
x = Wine,
y = Taste,
pairwise.comparisons = TRUE, # show pairwise comparison test results
title = "Wine tasting",
caption = "Data source: `WRS2` R package",
ggtheme = ggthemes::theme_fivethirtyeight(),
ggstatsplot.layer = FALSE,
messages = FALSE
)
```
As with the `ggbetweenstats`, this function also has a `grouped_` variant that
makes repeating the same analysis across a single grouping variable quicker. We
will see an example with only repeated measurements-
```{r ggwithinstats2, message = FALSE, warning = FALSE, fig.height = 6, fig.width = 14}
# common setup
set.seed(123)
# plot
ggstatsplot::grouped_ggwithinstats(
data = dplyr::filter(
.data = ggstatsplot::bugs_long,
region %in% c("Europe", "North America"),
condition %in% c("LDLF", "LDHF")
),
x = condition,
y = desire,
xlab = "Condition",
ylab = "Desire to kill an artrhopod",
grouping.var = region,
outlier.tagging = TRUE,
outlier.label = education,
ggtheme = hrbrthemes::theme_ipsum_tw(),
ggstatsplot.layer = FALSE,
messages = FALSE
)
```
### Summary of tests
Following (within-subjects) tests are carried out for each type of analyses-
Type | No. of groups | Test
----------- | --- | -------------------------
Parametric | > 2 | One-way repeated measures ANOVA
Non-parametric | > 2 | Friedman's rank sum test
Robust | > 2 | Heteroscedastic one-way repeated measures ANOVA for trimmed means
Bayes Factor | > 2 | One-way repeated measures ANOVA
Parametric | 2 | Student's *t*-test
Non-parametric | 2 | Wilcoxon signed-rank test
Robust | 2 | Yuen's test on trimmed means for dependent samples
Bayes Factor | 2 | Student's *t*-test
The omnibus effect in one-way ANOVA design can also be followed up with more
focal pairwise comparison tests. Here is a summary of multiple pairwise
comparison tests supported in *ggwithinstats*-
Type | Test | *p*-value adjustment?
----------- | ---------------------------- | ---
Parametric | Student's *t*-test | <font color="green">Yes</font>
Non-parametric | Durbin-Conover test | <font color="green">Yes</font>
Robust | Yuen's trimmed means test | <font color="green">Yes</font>
Bayes Factor | Student's *t*-test | `NA`
For more, see the `ggwithinstats` vignette:
<https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggwithinstats.html>
## `ggscatterstats`
This function creates a scatterplot with marginal distributions overlaid on the
axes (from `ggExtra::ggMarginal`) and results from statistical tests in the
subtitle:
```{r ggscatterstats1, message = FALSE, warning = FALSE}
ggstatsplot::ggscatterstats(
data = ggplot2::msleep,
x = sleep_rem,
y = awake,
xlab = "REM sleep (in hours)",
ylab = "Amount of time spent awake (in hours)",
title = "Understanding mammalian sleep",
messages = FALSE
)
```
The available marginal distributions are-
- histograms
- boxplots
- density
- violin
- densigram (density + histogram)
Number of other arguments can be specified to modify this basic plot-
```{r ggscatterstats2, message = FALSE, warning = FALSE}
# for reproducibility
set.seed(123)
# plot
ggstatsplot::ggscatterstats(
data = dplyr::filter(.data = ggstatsplot::movies_long, genre == "Action"),
x = budget,
y = rating,
type = "robust", # type of test that needs to be run
xlab = "Movie budget (in million/ US$)", # label for x axis
ylab = "IMDB rating", # label for y axis
label.var = "title", # variable for labeling data points
label.expression = "rating < 5 & budget > 100", # expression that decides which points to label
title = "Movie budget and IMDB rating (action)", # title text for the plot
caption = expression(paste(italic("Note"), ": IMDB stands for Internet Movie DataBase")),
ggtheme = hrbrthemes::theme_ipsum_ps(), # choosing a different theme
ggstatsplot.layer = FALSE, # turn off `ggstatsplot` theme layer
marginal.type = "density", # type of marginal distribution to be displayed
xfill = "pink", # color fill for x-axis marginal distribution
yfill = "#009E73", # color fill for y-axis marginal distribution
centrality.parameter = "median", # central tendency lines to be displayed
messages = FALSE # turn off messages and notes
)
```
Additionally, there is also a `grouped_` variant of this function that makes it
easy to repeat the same operation across a **single** grouping variable. Also,
note that, as opposed to the other functions, this function does not return a
`ggplot` object and any modification you want to make can be made in advance
using `ggplot.component` argument (available for all functions, but especially
useful for this particular function):
```{r ggscatterstats3, message = FALSE, warning = FALSE, fig.height = 12, fig.width = 14}
# for reproducibility
set.seed(123)
# plot
ggstatsplot::grouped_ggscatterstats(
data = dplyr::filter(
.data = ggstatsplot::movies_long,
genre %in% c("Action", "Action Comedy", "Action Drama", "Comedy")
),
x = rating,
y = length,
grouping.var = genre, # grouping variable
label.var = title,
label.expression = length > 200,
xfill = "#E69F00",
yfill = "#8b3058",
xlab = "IMDB rating",
title.prefix = "Movie genre",
ggtheme = ggplot2::theme_grey(),
ggplot.component = list(
ggplot2::scale_x_continuous(breaks = seq(2, 9, 1), limits = (c(2, 9)))
),
plotgrid.args = list(nrow = 2),
title.text = "Relationship between movie length by IMDB ratings for different genres"
)
```
### Summary of tests
Following tests are carried out for each type of analyses. Additionally, the
correlation coefficients (and their confidence intervals) are used as effect
sizes-
Type | Test | CI?
----------- | ------------------------- | ---
Parametric | Pearson's correlation coefficient | <font color="green">Yes<font>
Non-parametric | Spearman's rank correlation coefficient | <font color="green">Yes<font>
Robust | Percentage bend correlation coefficient | <font color="green">Yes<font>
Bayes Factor | Pearson's correlation coefficient | <font color="red">No<font>
For more, see the `ggscatterstats` vignette:
<https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggscatterstats.html>
## `ggpiestats`
This function creates a pie chart for categorical or nominal variables with
results from contingency table analysis (Pearson's chi-squared test for
between-subjects design and McNemar's chi-squared test for within-subjects
design) included in the subtitle of the plot. If only one categorical variable
is entered, results from one-sample proportion test (i.e., a chi-squared
goodness of fit test) will be displayed as a subtitle.
To study an interaction between two categorical variables:
```{r ggpiestats1, message = FALSE, warning = FALSE, fig.height=4, fig.width=8}
# for reproducibility
set.seed(123)
# plot
ggstatsplot::ggpiestats(
data = mtcars,
x = am,
y = cyl,
title = "Dataset: Motor Trend Car Road Tests", # title for the plot
legend.title = "Transmission", # title for the legend
caption = substitute(paste(italic("Source"), ": 1974 Motor Trend US magazine")),
messages = FALSE
)
```
In case of repeated measures designs, setting `paired = TRUE` will produce
results from McNemar's chi-squared test-
```{r ggpiestats2, message = FALSE, warning = FALSE, fig.height=4}
# for reproducibility
set.seed(123)
# plot
ggstatsplot::ggpiestats(
data = data.frame(
"before" = c("Approve", "Approve", "Disapprove", "Disapprove"),
"after" = c("Approve", "Disapprove", "Approve", "Disapprove"),
counts = c(794, 150, 86, 570),
check.names = FALSE
),
x = before,
y = after,
counts = counts,
title = "Survey results before and after the intervention",
label = "both",
paired = TRUE, # within-subjects design
package = "wesanderson",
palette = "Royal1"
)
```
Additionally, there is also a `grouped_` variant of this function that makes it
easy to repeat the same operation across a **single** grouping variable.
Following example is a case where the theoretical question is about proportions
for different levels of a single nominal variable:
```{r ggpiestats3, message = FALSE, warning = FALSE, fig.height = 10, fig.width = 10}
# for reproducibility
set.seed(123)
# plot
ggstatsplot::grouped_ggpiestats(
data = ggstatsplot::movies_long,
x = genre,
grouping.var = mpaa, # grouping variable
title.prefix = "Movie genre", # prefix for the faceted title
label.repel = TRUE, # repel labels (helpful for overlapping labels)
package = "ggsci", # package from which color palette is to be taken
palette = "default_ucscgb", # choosing a different color palette
title.text = "Composition of MPAA ratings for different genres"
)
```
### Summary of tests
Following tests are carried out for each type of analyses-
Type of data | Design | Test
----------- | ------------ | -------------------------
Unpaired | $n \times p$ contingency table | Pearson's $\chi^{2}$ test
Paired | $n \times p$ contingency table | McNemar's $\chi^{2}$ test
Frequency | $n \times 1$ contingency table | Goodness of fit ($\chi^{2}$)
Following effect sizes (and confidence intervals/CI) are available for each type
of test-
Type | Effect size | CI?
--------------- | ------------------------- | ---
Pearson's chi-squared test | Cramér's *V* | <font color="green">Yes<font>
McNemar's test | Cohen's *g* | <font color="green">Yes<font>
Goodness of fit | Cramér's *V* | <font color="green">Yes<font>
For more, see the `ggpiestats` vignette:
<https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggpiestats.html>
## `ggbarstats`
In case you are not a fan of pie charts (for very good reasons), you can
alternatively use `ggbarstats` function which has a similar syntax-
```{r ggbarstats1, message = FALSE, warning = FALSE, fig.height = 8, fig.width = 10}
# for reproducibility
set.seed(123)
library(ggplot2)
# plot
ggstatsplot::ggbarstats(
data = ggstatsplot::movies_long,
x = mpaa,
y = genre,
sampling.plan = "jointMulti",
title = "MPAA Ratings by Genre",
xlab = "movie genre",
legend.title = "MPAA rating",
ggtheme = hrbrthemes::theme_ipsum_pub(),
ggplot.component = list(scale_x_discrete(guide = guide_axis(n.dodge = 2))),
palette = "Set2",
messages = FALSE
)
```
And, needless to say, there is also a `grouped_` variant of this function-
```{r ggbarstats2, message = FALSE, warning = FALSE, fig.height = 12, fig.width = 10}
# setup
set.seed(123)
# smaller dataset
df <-
dplyr::filter(
.data = forcats::gss_cat,
race %in% c("Black", "White"),
relig %in% c("Protestant", "Catholic", "None"),
!partyid %in% c("No answer", "Don't know", "Other party")
)
# plot
ggstatsplot::grouped_ggbarstats(
data = df,
x = relig,
y = partyid,
grouping.var = race,
title.prefix = "Race",
xlab = "Party affiliation",
ggtheme = ggthemes::theme_tufte(base_size = 12),
ggstatsplot.layer = FALSE,
title.text = "Race, religion, and political affiliation",
plotgrid.args = list(nrow = 2)
)
```
### Summary of tests
This is identical to the `ggpiestats` function summary of tests.
## `gghistostats`
To visualize the distribution of a single variable and check if its mean is
significantly different from a specified value with a one-sample test,
`gghistostats` can be used.
```{r gghistostats1, message = FALSE, warning = FALSE}
# for reproducibility
set.seed(123)
# plot
ggstatsplot::gghistostats(
data = iris, # dataframe from which variable is to be taken
x = Sepal.Length, # numeric variable whose distribution is of interest
title = "Distribution of Iris sepal length", # title for the plot
caption = substitute(paste(italic("Source:"), "Ronald Fisher's Iris data set")),
bar.measure = "both",
test.value = 5, # default value is 0
test.value.line = TRUE, # display a vertical line at test value
centrality.parameter = "mean", # which measure of central tendency is to be plotted
centrality.line.args = list(color = "darkred"), # aesthetics for central tendency line
binwidth = 0.10, # binwidth value (experiment)
ggtheme = hrbrthemes::theme_ipsum_tw(), # choosing a different theme
ggstatsplot.layer = FALSE # turn off ggstatsplot theme layer
)
```
As can be seen from the plot, Bayes Factor can be attached (`bf.message = TRUE`)
to assess evidence in favor of the null hypothesis.
Additionally, there is also a `grouped_` variant of this function that makes it
easy to repeat the same operation across a **single** grouping variable:
```{r gghistostats2, message = FALSE, warning = FALSE, fig.height = 10, fig.width = 10}
# for reproducibility
set.seed(123)
# plot
ggstatsplot::grouped_gghistostats(
data = dplyr::filter(
.data = ggstatsplot::movies_long,
genre %in% c("Action", "Action Comedy", "Action Drama", "Comedy")
),
x = budget,
xlab = "Movies budget (in million US$)",
type = "robust", # use robust location measure
grouping.var = genre, # grouping variable
normal.curve = TRUE, # superimpose a normal distribution curve
normal.curve.args = list(color = "red", size = 1),
title.prefix = "Movie genre",
ggtheme = ggthemes::theme_tufte(),
ggplot.component = list( # modify the defaults from `ggstatsplot` for each plot
ggplot2::scale_x_continuous(breaks = seq(0, 200, 50), limits = (c(0, 200)))
),
plotgrid.args = list(nrow = 2),
title.text = "Movies budgets for different genres"
)
```
### Summary of tests
Following tests are carried out for each type of analyses-
Type | Test
----------- | -------------------------
Parametric | One-sample Student's *t*-test
Non-parametric | One-sample Wilcoxon test
Robust | One-sample percentile bootstrap
Bayes Factor | One-sample Student's *t*-test
Following effect sizes (and confidence intervals/CI) are available for each type
of test-
Type | Effect size | CI?
----------- | ------------------------- | ---
Parametric | Cohen's *d*, Hedge's *g* (central-and noncentral-*t* distribution based) | <font color="green">Yes<font>
Non-parametric | *r* | <font color="green">Yes<font>
Robust | robust location measure | <font color="green">Yes<font>
Bayes Factor | <font color="red">No<font> | <font color="red">No<font>
For more, including information about the variant of this function
`grouped_gghistostats`, see the `gghistostats` vignette:
<https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/gghistostats.html>
## `ggdotplotstats`
This function is similar to `gghistostats`, but is intended to be used when the
numeric variable also has a label.
```{r ggdotplotstats1, message = FALSE, warning = FALSE, fig.height = 10, fig.width = 8}
# for reproducibility
set.seed(123)
# plot
ggdotplotstats(
data = dplyr::filter(.data = gapminder::gapminder, continent == "Asia"),
y = country,
x = lifeExp,
test.value = 55,
test.value.line = TRUE,
centrality.parameter = "median",
centrality.k = 0,
title = "Distribution of life expectancy in Asian continent",
xlab = "Life expectancy",
caption = substitute(
paste(
italic("Source"),
": Gapminder dataset from https://www.gapminder.org/"
)
)
)
```
As with the rest of the functions in this package, there is also a `grouped_`
variant of this function to facilitate looping the same operation for all levels
of a single grouping variable.
```{r ggdotplotstats2, message = FALSE, warning = FALSE, fig.height = 8, fig.width = 12}
# for reproducibility
set.seed(123)
# plot
ggstatsplot::grouped_ggdotplotstats(
data = dplyr::filter(.data = ggplot2::mpg, cyl %in% c("4", "6")),
x = cty,
y = manufacturer,
xlab = "city miles per gallon",
ylab = "car manufacturer",
type = "nonparametric", # non-parametric test
grouping.var = cyl, # grouping variable
test.value = 15.5,
test.value.line = TRUE,
title.prefix = "cylinder count",
point.args = list(color = "red", size = 5, shape = 13),
title.text = "Fuel economy data"
)
```
### Summary of tests
This is identical to summary of tests for `gghistostats`.
## `ggcorrmat`
`ggcorrmat` makes a correlalogram (a matrix of correlation coefficients) with
minimal amount of code. Just sticking to the defaults itself produces
publication-ready correlation matrices. But, for the sake of exploring the
available options, let's change some of the defaults. For example, multiple
aesthetics-related arguments can be modified to change the appearance of the
correlation matrix.
```{r ggcorrmat1, message = FALSE, warning = FALSE}
# for reproducibility
set.seed(123)
# as a default this function outputs a correlation matrix plot
ggstatsplot::ggcorrmat(
data = ggplot2::msleep,
type = "robust", # correlation method
p.adjust.method = "holm", # p-value adjustment method for multiple comparisons
cor.vars = c(sleep_rem, awake:bodywt), # a range of variables can be selected
cor.vars.names = c(
"REM sleep", # variable names
"time awake",
"brain weight",
"body weight"
),
matrix.type = "upper", # type of visualization matrix
colors = c("#B2182B", "white", "#4D4D4D"),
title = "Correlalogram for mammals sleep dataset",
subtitle = "sleep units: hours; weight units: kilograms",
caption = "Source: `ggplot2` R package"
)
```
Two things to note:
- If there are `NA`s present in the selected variables, the legend will
display minimum, median, and maximum number of pairs used for correlation
tests.
- If `cor.vars` are not specified, all numeric variables will be used.
There is also a `grouped_` variant of this function that makes it
easy to repeat the same operation across a **single** grouping variable:
```{r ggcorrmat2, message = FALSE, warning = FALSE, fig.height = 10, fig.width = 10}
# for reproducibility
set.seed(123)
# plot
ggstatsplot::grouped_ggcorrmat(
data = dplyr::filter(
.data = ggstatsplot::movies_long,
genre %in% c("Action", "Action Comedy", "Action Drama", "Comedy")
),
cor.vars = length:votes,
colors = c("#cbac43", "white", "#550000"),
grouping.var = genre, # grouping variable
k = 3L, # number of digits after decimal point
title.prefix = "Movie genre",
plotgrid.args = list(nrow = 2)
)
```
You can also get a dataframe containing all relevant details from the
statistical tests:
```{r ggcorrmat3}
# setup
set.seed(123)
# dataframe in long format
ggcorrmat(
data = ggplot2::msleep,
type = "bayes",
output = "dataframe"
)
```
### Summary of tests
Following tests are carried out for each type of analyses. Additionally, the
correlation coefficients (and their confidence intervals) are used as effect
sizes-
Type | Test | CI?
----------- | ------------------------- | ---
Parametric | Pearson's correlation coefficient | <font color="green">Yes<font>
Non-parametric | Spearman's rank correlation coefficient | <font color="green">Yes<font>
Robust | Percentage bend correlation coefficient | <font color="green">Yes<font>
Bayes Factor | Pearson's correlation coefficient | <font color="green">Yes<font>
For examples and more information, see the `ggcorrmat` vignette:
<https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcorrmat.html>
## `ggcoefstats`
The function `ggstatsplot::ggcoefstats` generates **dot-and-whisker plots** for
regression models saved in a tidy data frame. The tidy dataframes are prepared
using the following packages: `broom`, `broom.mixed`, and `parameters`.
Additionally, if available, the model summary indices are also extracted from
the following packages: `broom`, `broom.mixed`, and `performance`.
Although the statistical models displayed in the plot may differ based on the
class of models being investigated, there are few aspects of the plot that will
be invariant across models:
- The dot-whisker plot contains a dot representing the **estimate** and their
**confidence intervals** (`95%` is the default). The estimate can either be
effect sizes (for tests that depend on the `F` statistic) or regression
coefficients (for tests with `t` and `z` statistic), etc. The function will,
by default, display a helpful `x`-axis label that should clear up what
estimates are being displayed. The confidence intervals can sometimes be
asymmetric if bootstrapping was used.
- The caption will always contain diagnostic information, if available, about
models that can be useful for model selection: The smaller the Akaike's
Information Criterion (**AIC**) and the Bayesian Information Criterion
(**BIC**) values, the "better" the model is.
- The output of this function will be a `ggplot2` object and, thus, it can be
further modified (e.g., change themes, etc.) with `ggplot2` functions.
```{r ggcoefstats1, message = FALSE, warning = FALSE, fig.height = 5, fig.width = 6}
# for reproducibility
set.seed(123)
# model
mod <- stats::lm(formula = mpg ~ am * cyl, data = mtcars)
# plot
ggstatsplot::ggcoefstats(mod)
```
This default plot can be further modified to one's liking with additional
arguments (also, let's use a different model now):
```{r ggcoefstats2, message = FALSE, warning = FALSE, fig.height = 6, fig.width = 8}
# for reproducibility
set.seed(123)
# plot
ggstatsplot::ggcoefstats(
x = MASS::rlm(formula = mpg ~ am * cyl, data = mtcars),
point.args = list(color = "red", size = 3, shape = 15),
vline.args = list(size = 1, color = "#CC79A7", linetype = "dotdash"),
stats.label.color = c("#0072B2", "#D55E00", "darkgreen"),
title = "Car performance predicted by transmission & cylinder count",
subtitle = "Source: 1974 Motor Trend US magazine",
ggtheme = hrbrthemes::theme_ipsum_ps(),
ggstatsplot.layer = FALSE
) + # note the order in which the labels are entered
ggplot2::scale_y_discrete(labels = c("transmission", "cylinders", "interaction")) +
ggplot2::labs(x = "regression coefficient", y = NULL)
```
Most of the regression models that are supported in the underlying packages are
also supported by `ggcoefstats`. For example-
`aareg`, `anova`, `aov`, `aovlist`, `Arima`, `BFBayesFactor`, `bayesx`,
`bayesGARCH`, `BBmm`, `BBreg`, `bcplm`, `betamfx`, `betaor`, `bglmerMod`,
`bife`, `bigglm`, `biglm`, `blavaan`, `bmlm`, `blmerMod`, `bracl`, `brglm2`,
`brmsfit`, `brmultinom`, `btergm`, `cch`, `cgam`, `cgamm`, `cglm`, `clm`,
`clm2`, `clmm`, `clmm2`, `coeftest`, `complmrob`, `confusionMatrix`, `coxme`,
`coxph`, `coxph.penal`, `cpglm`, `cpglmm`, `crch`, `crq`, `DirichReg`, `drc`,
`emmGrid`, `epi.2by2`, `ergm`, `feis`, `felm`, `fitdistr`, `flexsurvreg`, `gam`,
`Gam`, `gamlss`, `garch`, `geeglm`, `glmc`, `glmerMod`, `glmmTMB`, `gls`,
`glht`, `glm`, `glmm`, `glmmadmb`, `glmmPQL`, `glmRob`, `glmrob`, `glmx`, `gmm`,
`hurdle`, `ivreg`, `iv_robust`, `lavaan`, `lm`, `lm.beta`, `lmerMod`,
`lmerModLmerTest`, `lmodel2`, `lmRob`, `lmrob`, `lm_robust`, `logitmfx`,
`logitor`, `logitsf`, `LORgee`, `lqm`, `lqmm`, `lrm`, `manova`, `maov`, `mcmc`,
`mcmc.list`, `MCMCglmm`, `mclogit`, `mmclogit`, `mediate`, `metafor`,
`metaplus`, `mixor`, `mjoint`, `mle2`, `mlm`, `multinom`, `negbin`, `negbinmfx`,
`negbinirr`, `nlmerMod`, `nlrq`, `nlreg`, `nls`, `orcutt`, `orm`, `plm`,
`poissonmfx`, `poissonirr`, `polr`, `ridgelm`, `rjags`, `rlm`, `rlmerMod`,
`robmixglm`, `rq`, `rqss`, `semLm`, `semLme`, `slm`, `speedglm`, `speedlm`,
`stanfit`, `stanreg`, `survreg`, `svyglm`, `svyolr`, `svyglm`, `tobit`,
`truncreg`, `vgam`, `vglm`, `wbgee`, `wblm`, `zcpglm`, `zeroinfl`, etc.
Although not shown here, this function can also be used to carry out both
frequentist and Bayesian random-effects meta-analysis.
For a more exhaustive account of this function, see the associated vignette-
<https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggcoefstats.html>
## `combine_plots`
The full power of `ggstatsplot` can be leveraged with a functional programming
package like [`purrr`](https://purrr.tidyverse.org/) that replaces `for` loops
with code that is both more succinct and easier to read and, therefore, `purrr`