-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimulator.py
148 lines (120 loc) · 4.09 KB
/
simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# -*- coding: utf-8 -*-
"""
Simulation test w/ random generated noise.
@Author: Rob Mertens
@Author: Ibe Denaux
"""
###############################################################################
# IMPORT
###############################################################################
import time
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from casadi import *
from src.omgtools import *
from src.pid import PID
#np.set_printoptions(threshold=np.nan)
###############################################################################
# OMG-TOOLS problem
###############################################################################
t0 = time.time()
options = {}
options['syslimit'] = 'norm_inf'
options['safety_distance'] = 0.5
# Create the vehicle instance
initPosition = [-9.0, -9.0]
termPosition = [ 9.0, 9.0]
ballbot = Holonomic(options=options)
ballbot.set_initial_conditions(initPosition)
ballbot.set_terminal_conditions(termPosition)
# Create environment
environment = Environment(room={'shape': Square(20.)})
obstacle1 = Rectangle(width=5.0, height=5.0)
environment.add_obstacle(Obstacle({'position': [0.0, 0.0]}, shape=obstacle1))
# Create a point-to-point problem
problem = Point2point(ballbot, environment, freeT=True)
problem.init()
# Create deployer
sampleTime = 0.1
deployer = Deployer(problem, sampleTime, 1)
deployer.reset()
# Desired trajectory
bb_trajectories = deployer.update(0, initPosition)
bb_path = np.c_[bb_trajectories['state']]
bb_vel = np.c_[bb_trajectories['input']]
bb_time = np.c_[bb_trajectories['time']]
#print(len(bb_time))
#print(bb_path[0])
#print('PROBLEM TIME: ', time.time() - t0)
###############################################
# PID
###############################################
actposx = np.zeros(len(bb_path[0]))
actposy = np.zeros(len(bb_path[0]))
actvelx = np.zeros(len(bb_path[0]))
actvely = np.zeros(len(bb_path[0]))
pidvelx = np.zeros(len(bb_path[0]))
pidvely = np.zeros(len(bb_path[0]))
#controlx = PID(0.8*10.0, 1.5*0.4, 0.0, 1.0, -1.0)
#controly = PID(0.8*10.0, 1.5*0.4, 0.0, 1.0, -1.0)
controlx = PID(1.0, 0.01, 0.0, 1.0, -1.0)
controly = PID(1.0, 0.01, 0.0, 1.0, -1.0)
# Loop
for i in xrange(0, len(bb_path[0])):
if(i == 0):
actposx[i] = -9.0
actposy[i] = -9.0
actvelx[i] = 0.0
actvely[i] = 0.0
else:
actposx[i] = actposx[i-1] + actvelx[i-1]*0.1 + np.random.normal(0.0 ,0.05)
actposy[i] = actposy[i-1] + actvely[i-1]*0.1 + np.random.normal(0.0 ,0.05)
pidvelx[i] = controlx.calculate(actposx[i], bb_path[0,i])
pidvely[i] = controly.calculate(actposy[i], bb_path[1,i])
actvelx[i] = bb_vel[0,i] + pidvelx[i]
actvely[i] = bb_vel[1,i] + pidvely[i]
###############################################
# PLOT
###############################################
# Create figure
plt.plot(bb_path[0], bb_path[1], label='Desired path')
plt.plot(actposx, actposy, label='Actual path')
plt.gca().add_patch(patches.Rectangle((-2.5, -2.5), 5.0, 5.0))
plt.legend(loc='upper left')
plt.title('Desired vs. actual path')
plt.xlabel('x-axis [m]')
plt.ylabel('y-axis [m]')
plt.axis('equal')
plt.grid()
plt.savefig('images/simulator/path.png')
plt.gcf().clear()
plt.plot(bb_time[0], bb_vel[0], label='FF velocity x')
plt.plot(bb_time[0], bb_vel[1], label='FF velocity y')
plt.legend(loc='upper left')
plt.title('Desired vs. actual path')
plt.xlabel('Time [s]')
plt.ylabel('Feedforward velocity [m/s]')
plt.grid()
plt.savefig('images/simulator/ffvel.png')
plt.gcf().clear()
plt.plot(bb_time[0], pidvelx, label='PID X output')
plt.plot(bb_time[0], pidvely, label='PID Y output')
plt.legend(loc='upper left')
plt.title('PID output velocities in function of time')
plt.xlabel('Time [s]')
plt.ylabel('PID output velocity [m/s]')
plt.ylim([-0.6,0.6])
plt.grid()
plt.savefig('images/simulator/pidvel.png')
plt.gcf().clear()
plt.plot(bb_time[0], actvelx, label='Actual velocity x')
plt.plot(bb_time[0], actvely, label='Actual velocity y')
plt.legend(loc='upper left')
plt.title('Actual velocities in function of time')
plt.xlabel('Time [s]')
plt.ylabel('Actual velocity [m/s]')
#plt.ylim([-0.2,1.0])
plt.grid()
plt.savefig('images/simulator/actvel.png')
plt.gcf().clear()